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Acoustic Wave Generation and Ampli6cation in a Plasma*
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Acoustic wave generation resulting from the heating of neutral-gas component by the electrons in a
weakly ionized plasma is analyzed. It is shown that under certain conditions wave ampliication will result,
and criteria for ampliication and for spontaneous excitation of normal modes are derived. The results are
used to explain sound emission in traveling striations in a glow discharge and acoustic modulation of a
plasma afterglow. Recently reported experimental observations of acoustical effects in discharges are dis-
cussed in the light of the present analysis.

INTRODUCTION

'N experiments with electrically modulated discharges
-- several investigators have observed effects that
appear to result from the excitation of ordinary acoustic
waves in the neutral-gas component in the plasma. For
example, Strickler and Stewart, ' while modulating dc
glow discharges in argon and krypton at pressures be-
tween 13 and 38 mm Hg, noticed a pronounced dis-
placement or "kinking" of the constricted discharge
path at a series of discrete modulation frequencies.
They were able to identify these frequencies as those of
radial and azimuthal acoustic modes of oscillation of
the neutral-gas components. Similarly, in afterglow ex-
periments with pulsed helium and neon plasmas,
Serlande, Goldan, and Goldstein' found that during the
decay period of the discharge the electron density and
the light emission were periodically modulated. They
proposed that this modulation is caused by pressure
waves produced by the discharge itself. The frequency of
modulation was found to be of the order of the funda-
mental resonance frequency of a lateral acoustic mode of
the discharge tube. Similar observations of modulation
of light emission' and ion density4 by sound waves
transmitted into a plasma from sound sources outside
the plasma have been reported. Intimately related to
these effects, no doubt, are the emission of sound by an
electrically modulated corona discharge and the
response of such a discharge to an external sound Geld. 5

Even in the absence of external electrical modulation
of a discharge, macroscopic fluctuations of electron
density and temperature in a glow discharge are fre-
quently present in the form of traveling striations or
other instabilities, and it is to be expected that these
will couple to the neutral gas also and give rise to
acoustic waves. Actually, the occurrence of such
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pressure fluctuations has recently been reported by
Carretta and Moore. '

In view of these observations, it is of interest to carry
through a systematic study of the mechanism involved
in the sound emission by fluctuations in charge density
and electron temperature in a weakly ionized gas; we
propose to show how the acoustic Geld in the neutral-gas
component can be calculated from the energy transfer
of the elastic collisions between the charged particles
and the neutrals. In particular, the sound Geld produced
in a discharge with traveling striations and in a plasma
afterglow will be calculated. Furthermore, the possi-
bility of an acoustic-wave instability will be demon-
strated which may serve to explain spontaneous acoustic
oscillations that have been found in discharges under
certain conditions by Alexeff and Neidigh. ~ This
instability is of interest as a possible means of amplifying
acoustic waves.
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ACOUSTIC SOURCES

Since we are interested mainly in the motion of the
neutral-gas component in the plasma, we start by
deriving the wave equation for the pressure in the
neutral gas and express the interaction with the electrons
and the ions in terms of sources in the wave equation.
The equation follows from the relations expressing
balance of mass, momentum, and energy, together with
the equation of state for the gas P=P(p,S), the pressure
I' being regarded as a function of density p and entropy
S. The linearized versions of these equations are the
following:
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Here the perturbations in the field variables, density,
pressure, velocity, and entropy per unit mass are
5=p —

po, P=P P—o, u, and s=S—So. The speed of
sound is c and the specific heat per unit mass at constant
pressure ci . The source terms Q, F, and H are the rates
of transfer of mass, momentum, and energy to the
neutral gas per unit volume. If we neglect the Quctu-
ations in the neutral-particle density resulting from the
unbalance of ionization and recombination rates, we
have Q= 0, and the wave equation for pressure resulting
from Eqs. (1)—(4) is

1 8'p (7—1) BH
Vop

c2 cjP c2

—divF i

where p is the specific heat ratio y=ci /cv. The energy
transfer to the neutrals is due largely to the elastic
collisions with the electrons. In an ordinary laboratory
discharge the electron temperature is considerably
higher than the neutral-gas temperature, and it is a
good approximation to consider the neutrals to be
stationary in the elastic collisions between the electrons
and the neutrals. Then, if we introduce an average
elastic scattering cross section &o) for the electron-
neutral collision and an average electron (thermal)
speed e„ the rate of energy transfer from the electrons
to the neutrals per unit volume may be expressed as

H = (4m,/m„) (,me, '/2)N, N„&4r) . (6)

Here m and g stand for particle mass and particle
density and the subscripts e and m refer to electrons and
neutral particles, respectively. Introducing the electron
temperature T, defined by BkT,/2=m, v,o/2, we can
determine the average cross section &o.) in terms of T,
in the usual way by evaluating the energy transfer
integral involving the electron velocity distribution
function and the differential elastic cross section.

Since the main energy loss of the electrons ordinarily
is due to the elastic collisions with the neutrals, we may
as an alternative express H approximately as the rate
of energy gained by the electrons from the external
electric field E. In a dc discharge this energy rate per
unit volume of the plasma is E,AU„where U, =b,E is
the drift velocity of the electrons, b, being the mobility.
The energy transfer from the ions can be expressed in a
similar manner, but since the mobility of the ions usually
is considerably smaller than the mobility of the elec-
trons, the energy transfer from the ions will be com-
paratively small and it will be omitted in the present
analysis.

In regard to the effect of the momentum transfer,
represented by div F in the wave equation, we note
that the contributions from the electrons and the ions
have opposite signs and tend to cancel each other at
least at the comparatively low acoustic frequencies of
interest here. Furthermore, only a spatial variation of
F leads to sound generation, and in the problems dis-
cussed here this contribution is negligible.

In the subsequent discussion of sound waves in a
plasma afterglow, the relative pressure Quctuations
caused by the sound are of particular importance, and
therefore it is convenient to introduce as a reference the
static gas pressure Pp in the source term in the wave
equation. Thus with c'=yPo/po=ykT /m„and e,'
=3kT,/m„where T„and T, are the temperatures of
the neutrals and the electrons, the acoustic source term
can be expressed as

(y —1) BH

c2 83

The numerical constant that appears when we express
H in terms of T, and T„has been absorbed in &o'), in
««, & ')=6(v —1)(3/7)'"& ).

Having obtained the expression for the source term
in the wave equation for the acoustic pressure in the
neutral gas, we can calculate the sound-pressure field
in terms of the space-time dependence of the electron
temperature and the electron density if these quantities
are assumed to be known a priori; this is considered
to be the case in the following two specific problems to
be analyzed. Later, in the discussion of wave amplifica-
tion and spontaneous oscillations the effect of the
neutral density Quctuation on the electron density will
be accounted for.

TRAVELING STRIATIONS

It is well known that an ordinary glow discharge
frequently contains traveling striations, that is, self-
sustained wavelike periodic perturbations in the electron
density, electron temperature, and electric field. They
usually travel in the direction from the anode to the
cathode with a velocity V of approximately 104 cm/sec.
The frequency of oscillation typically is in the range 10'
to 5 X10' sec '. Under such conditions, the electron den-
sity 1V, and the electron temperature T, in the discharge
tube can be expressed as N, =N, o[1+oi sino&(t —x/V))
and T,=T, [o1 +ooisnco(t —x/U)], where x is the co-
ordinate along the axis of the tube. For simplicity, we
shall consider a somewhat idealized geometry of the
plasma such that the unperturbed values E,p and T p

of the electron density and electron temperature are
both constant along the tube in the interval —L&x(L
and zero outside this region, with only the neutral-gas
component present. If we consider coupling only to
one-dimensional acoustic waves traveling along the
axis of the discharge tube, only the spatial averages of
T,p and E,p across the tube are relevant.

Assuming e«1, we shall retain terms only of first
order in o in the source term (7). Furthermore, we
neglect the perturbation in the scattering cross section
produced by the perturbation in the electron tempera-
ture. The source term in (5) then is a constant times
cosco[t—(x/V)$ for L&oo&L and zero for—~x~ &L.
The corresponding solution to the wave equation is



145 ACOUST I C WA VE 6 EN E RAT I ON

standard, and we find that the amplitude of the sound-
pressure wave emitted from the plasma into the region

~ x) )I outside the plasma is

p=Po(or+goo) sin(ore/c)(c/V&1)/(oil/c)(c/V+1), (8)

where c is the speed of sound, and the characteristic
sound pressure po is given by

Po/Po= (I/&.) (m./m )"'(T.o/T-)"'(&.o/& ) (9)

As before, I'o is the unperturbed gas pressure and
l,=1/1V (a') is of the order of the electron mean-free
path. The minus and plus signs in (8) refer to the acous-
tic waves emitted in the positive and negative x di-
rections, respectively. The amplitude of the wave that
travels in the same direction as the striations (positive
x direction) has a maximum value p,„=Po(oi+3o2/2)
when the speed V of the striations is coincident with the
speed of sound c in the neutral gas. It is interesting to
note that the ratio between the characteristic sound
pressure po and the static gas pressure Po increases with
decreasing gas temperature as T„—'~'. In other words, if
T 0 and E p are held constant, the fractional value of the
perturbation in the pressure of the neutral gas can be
approximately two orders of magnitude greater if the
plasma is brought from room temperature to cryogenic
surroundings. '

To get an idea of the order of magnitude of the sound-
pressure amplitudes obtained, we consider a He plasma
at a pressure = 1 mm Hg and E,o/1V„=10 '. With an
electron temperature =1 eV, we have T,o/T„=40,
and with (o)=6)&10—"cm' the corresponding electron
mean-free path is 1,=0.05 cm. Then, assuming
=~2=0.1 and L=10 cm, we find the largest possible
value of the sound-pressure amplitude for V=@ to be
approximately 10 ' times the static pressure, that is,
=1 dyn/cm'. If under the same electrical operating
conditions, the neutral-gas temperature is lowered, say,
to 10'K, the possible maximum sound-pressure ampli-
tude would be approximately 0.1 times the static
pressure.

PLASMA AFTERGLOW

As a second example, we choose the problem of
the modulation of plasma afterglow as observed by
Berlande, Goldan, and Goldstein. ' A rectangular dis-
charge tube was used in their experiments, and the
observed periodic modulation of the decay of the plasma
was believed to be a result of acoustic oscillations in the
direction transverse to the tube axis. In the analysis of
the excitation of such waves, we let the tube axis be
along the s axis and the tube walls be parallel with the
x-s and y-s planes. We will consider the normal modes

8 It should be borne in mind that for a given neutral particle
density the static pressure is proportional to the temperature.
Therefore, if the relative pressure change depends on temperature
as T 3/~, the sound pressure itself will change with temperature
as T„'&.

corresponding to motion in the y direction. The y de-
pendence of T,o and X,o then plays an important role,
and we express this y dependence in terms of a Fourier
series in which the first (and dominant) harmonic term
is of the form sin(iry/D), the reflecting tube walls being
located at y=0 and y=D. Since we are interested only
in the oscillations in the y direction, we may considerI 0 and E,o to be independent of the two remaining
coordinates.

As a plasma is turned off, the electron temperature
quickly decreases to the value of the surrounding gas
temperature. The decay in the electron density is less
rapid and, as far as sound generation is concerned, of
minor importance. Thus let the time dependence of the
electron temperature be expressed as T,o exp( —bt) for
t) 0 and T,o for t(0. The source term (7) in the wave
equation will then contain a time dependence expressed
by exp( —1.5 bt). If, for simplicity, only the first Fourier
component sin(~y/D) of the Fourier expansion of
(T,o'I'E, o) is considered, the wave equation (5) will be
of the form

—
o &Po(

) ( )
&.o(~') e '"I' sin—(+y/D),

km„) kr„)
in which the brackets indicate the amplitude of the
6rst Fourier component of the quantity inside the
brackets; it differs but little from the average value of
this quantity over the cross section of the tube, and we
shall not distinguish between them in the sequel. With
this source term used, the solution to the wave equation
will be a sum of normal modes symmetrical with re-
spect to the axis of the tube. The pressure amplitude of
the mth symmetrical mode is found to be, assuming
b))c/D, '

p„=2po/+'m(4m' —1), (m=1, 2, .). (10)

The characteristic pressure po is the same characteristic
pressure that was defined in. (9), with I.replaced by D.

As will be discussed further in the next section, the
modulation of the neutral-gas density caused by the
sound wave produces a modulation of the electron den-
sity such that the fractional changes in both are the
same. The relative modulation of the intensity of a
microwave signal transmitted through the decaying
plasma in turn depends on the relative change of the
density and hence on the relative change in the
pressure produced by the sound wave. Under the ex-
perimental conditions of Berlande, Goldan, and Gold-
stein, the relative change in the transmitted microwave
intensity should be of the same order as the relative
change in sound pressure. As in the case of traveling

~ This assumption is equivalent to a steplike change of FX and
hence a delta-function source in time in Eq. (5).
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striations this relative pressure change is proportional
to (T,o/T„)2/2(X, 2/E ) as given in Eq. (9). At room
temperature and under ordinary glow-discharge con-
ditions, the modulation is small and would be difficult
to observe, at least for tubes of the order of 1-cm cross
dimension or smaller. However, if for a given value of
T, the neutral gas temperature is decreased, for example,

by placing the plasma in a cryogenic environment, the
relative pressure change can be large enough, say, 10%,
to account for the observed modulation. Furthermore,
as discussed in the Appendix, low temperatures are
required also to make the decay rate of the acoustic
modes suQiciently small. These observations are con-
sistent with the experiments of Berlande, Goldan, and
Goldstein, who encountered the modulation effect in
the afterglow in their work with cryogenic plasmas.
Another feature of the experimental observations that is
consistentwith (10) is that only the fundamental (nz= 1)
mode was observed. From (10) it follows that the ampli-
tudes of oscillation decrease approximately as m—' so
that higher mode contributions would be small com-

pared with the fundamental.

ACOUSTIC WAVE AMPLIFICATION

Thus far, we have considered the perturbations in

electron temperature and electron density to be given
functions and independent of the acoustic-pressure
Quctuations in the neutral gas. But, to discuss the

possibility of spontaneous excitation of acoustic waves,
it will be necessary to investigate how the source term

might depend on the acoustic field itself. Without going
into the formidable analysis of the general dynamics of,

say, a three-Quid model of the weakly ionized gas, it is

sufhcient in this context to point out that in the ordinary
acoustic mode of motion the neutrals, electrons, and

ions all move in phase with each other, and the relative

density Quctuations in all three components are the
same. "This statement is valid at frequencies of interest
here, smaller than the plasma frequency and the neutral-

neutral collision frequency. Then a perturbation e„of
the neutral particle density will produce a perturbation

m, in the electron density such that

e,= (E./1V )I„.
We have already seen that the source term in the
acoustic wave equation is proportional to the total
electron density. In the presence of a sound wave that
produces a neutral density perturbation m„, the total
electron density is of the form E,+e,=X,+(E,/cV „)e„.
Consequently, a sound wave in the plasma produces a
spatial source distribution in the medium with a strength
proportional to the local amplitude of the sound wave.

The phase relationship between the Quctuation in
density in the sound wave and the acoustic source

strength turns out to be such as to produce wave

» U. Ingard and K. W. Gentle, Phys. Fluids S, 1396 (1965).

growth. To study this quantitatively we replace X, in
the source term (7) by X,+(lV /X„)e„and express n„
in terms of the sound pressure P=c n2s zz„= (ym-/X-)P2.
We find that (5) will be of the form

1 82p
Vzp

c' gP

BA(t) Bp
+B(t)

where

B(t)= (1/yc) (T,/T„)'/'(m, /m„)'/'X, (r'),
A(t) =yPoB(t).

(12)

T, and g, now represent the values of electron tempera-
ture and particle density in the absence of a sound field,
and they may well be functions of time. In the foregoing
discussion of generation of waves this time dependence,
corresponding to the term BA/R in (11), was essential.
Since we are now interested in the transmission of an
acoustic wave through a quiescent plasma, A and 8 are
time-independent and therefore BA/Bt=0 We sh. all
consider only the behavior of a plane traveling wave.
The analysis of other motions applicable to the normal
modes in various discharge tubes adds nothing essen-
tial. Thus, with p exp(izx zest) w—e obtain, from (11)
(with BA/Bt= 0) the dispersion relation

z= (cu/c) (1 z/cur)'/2=—n zp, —

~h'" (1/r) =c2B. The expressions for a and p are:

(a)/c)
{$1+((gr)

—2)1/2+1) 1/2

v2

(13)

=((„B/2)1/2 (&or«1)

=(a&/c)L1+2(2(ar) 2), (&or))1)

(~/')
P — {L1+((gr)—2/1/2 1)1/2

u2

=(~B/2)'"= pi

=1/2cr=P2

(~r«1)

(~r))1).

We see that there is a spatial growth of the wave at a
rate p, which, for ~«(1/r), increases with frequency as
Qcu, and in the limit of high frequencies approaches a
constant value P2.

In obtaining these results, we have neglected the
attenuation of the acoustic wave resulting from various
loss mechanisms. When sufficiently small, the growth
and the attenuation rates are additive so that we can
treat them separately. For a monatomic gas the acoustic
losses are caused solely by viscosity and heat conduc-
tion. Normally, the plasma is contained in a tube, and
we must consider the attenuation caused by the dissipa-
tion at the tube walls, as well as in the bulk of the gas.
The corresponding well-known Kirchhoff attenuation in



ACOUSTI C WAVE GENERATION

a circular tube of diameter d can be expressed as"

(or/c) t'2rt)'I' ( 2K )'t
Cy=

2d kp~i &~pc„i

1
P(-~/c) (elpc)2",

(15)

4 g E
~2= l (~/c)' ——+ (v —1)

3pC pC~C

~1.16(re/c)'(g/pc),

where E is the heat-conduction coefficient, and g is the
coefBcient of viscosity. In obtaining the approximate
expressions in (15), we have set ri~0.67 (K/c„), which
is approximately valid for a monatomic gas.

At low frequencies the attenuation and growth rates
both have the same frequency dependence, g~. At
high frequencies, on the other hand, the attenuation ca~

increases with frequency as ~', whereas the growth rate
levels off to a constant value P2. Consequently, it is
clear that above a certain frequency the attenuation will

predominate, a2)P2, and a net amplification is not
possible. Whether or not an ampliGcation is possible at
lower frequencies depends on the relative magnitude of
P& and n&. Since they both are proportional to gee, it
follows from (12), (14), and (15), using the approximate
expression for nr in (15), that the necessary criterion
for wave amplification, P&)err, can be expressed as

(1/47) (d'it-t. ) (&./& )'"(m./m )'"(&./& ) &1 (16)

where t„= (rt/pc) and l,=1/1V (o') are of the order of
the mean-free path of the neutral particles and of the
electrons, respectively. If this criterion is fulGlled, the
wave growth is ensured in a frequency range from zero to
an upper limit determined by the relationship between
the high-frequency value P2 for the growth rate Lsee
Eq. (14)) and the corresponding attenuation. For
example, if bulk rather than boundary attenuation is
predominant, the upper frequency is obtained by
equating P2 and rr2.

To study the possibility of spontaneous excitatioes
of acoustic oscillations, we again consider the modes
between the two rigid parallel walls in a rectangular
tube as in the previous discussions of the plasma
afterglow. The pressure Geld of a particular mode is
then cos(m7ry/D) exp( —io t), and we obtain from (11),
with BA/Bt=0,

ce = (cm7r/D) fi (D/27rmcr)2]'I'+—i/2r. (17)

As before, r = (1/Bc'), where 8 is given in (12).
Under the conditions considered here, we have

(cr/D)»1 and (17) implies a growth in time at a rate

"P.M. Morse and U, Ingard, in IIandbuch der Physik, edited
by S. Fliigge (Springer-Verlag, Berlin, 1961), Vol XI, Chap 1,
pp. 14 and 22.

given by (1/2r). However, to obtain a criterion for the
onset of spontaneous oscillations, we must compare the
growth rate with the decay caused by acoustic losses
in the gas. The decay constant can be expressed as
"o/T&, where T~ is the fundamental period. of oscillation,
and 8 is a quantity that depends on the viscosity and
heat conduction and other plasma parameters, as dis-
cussed in the Appendix. The criterion for spontaneous
onset of oscillations, that the decay rate be smaller than
the growth rate, (5/T~) ((1/2r), leads to a criterion of
the same form as (16) except for a numerical constant.
The value of this constant depends on the particular
mode considered and, of course, on the geometry of the
discharge chamber. The discussions here are all related
to one-dimensional wave motions, but the criterion (16)
should be qualitatively applicable also to other waves.
For example, we note that for a given tube geometry
and for given values of (T,/T„) and (lV,/1V„) the pres-
sure dependence of the threshold of spontaneous oscil-
lations is expressed by the lengths l„and /„ which are
approximately the neutral and electron mean-free
paths, respectively. Under such conditions a critical
pressure exists above which spontaneous oscillations
should occur. This may explain the fact that Alexei
and Neidigh observed an acoustic wave instability in
their spherical discharge chamber at a comparatively
high pressure (~1 mm Hg) but not at lower pressures.
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In the discussion of both the plasma afterglow and the
spontaneous excitation of acoustic eigenmodes in an
enclosure, results concerning the decay of these modes
were used which will be commented upon here. If the
gas is monatomic, the losses are due to viscosity and heat
conduction, and the calculation of the decay rate can be
carried out in much the same way as for the well-
known spatial decay rate given in Eq. (15).If the mean-
free path of the neutrals is small compared with the
typical size of the discharge chamber, the viscous and
thermal boundary layers in the acoustic Geld are also
small compared with the chamber dimensions. The
energy loss in the Geld is then conveniently separated
into. losses in the bulk of the gas outside the acoustic
boundary layers and the losses in the layers.

In the following we will discuss the result of such a
calculation for the lateral modes perpendicular to the
axes of a square tube. Ke consider a tube with square
cross section, the length of the side being D, and a pres-
sure mode of the form cos(mey/D) exp( —ice„t), the tube
walls being at y=0 and y=D. Then, if we use the ap-
proximate relation K/rtc ~.67 for a mon'atomic gas,
the numerical value for the decay time v &, corresponding
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to the rate exp( —t/r e), is found to be

TsL26 (n'J„/D)+8 (nl„/D)'t'g —'= Tr/B.

Here Tr 2D——/C is the period of the fundamental mode,
t =rt/pc is of the order of the mean-free path, rt is the
mode number (n=1 being the fundamental), and D is
the length of the side of the square tube considered. The
first term in the brackets comes from the losses outside
the boundary layer and the second term from the losses
inside the layer.

The quantity t„=st/pc depends on both the density
and the temperature of the gas. At room temperature
and a pressure of approximately 1 mm Hg, we have
for He, l„~10 ' cm. Then, if I'~1 cm, we obtain for
the first mode v=1, r~T~. Under these conditions
the decay of the acoustic waves will be quite rapid, and
it would be very difficult to observe acoustic resonances
in a plasma at room temperature and pressure =1 mm
Hg or less. This may explain why the acoustic resonances

described by Strickler and Stewart were observed only
at comparatively high pressures (~13 mm Hg), in
which case we get v.d 5 Ty.

In the afterglow experiments of Berlande, Goldan,
and Goldstein, the number density of the neutrals was
X ~7&(10" cm '. The plasma was submerged in a
bath with a temperature of 4.2'K, and at the corre-
sponding low gas temperature in the discharge the
coefficient of viscosity is estimated to be lower than the
value at room temperature (rt 1.9X10 4 cgs units) by
more than a fa,ctor of ten (using, say, Sutherland's
formula" ). Therefore J = st/pc will be less than 10 ' cm.
The corresponding value of the decay time is then found
to be vd&10 T~, which is consistent with the experi-
mental observations.

» J. O. Hirschfelder, C. P. Curtiss, and R. B. Bird, Molecular
Theory of Gases artd LiqtNds (John Wiley tk Sons, Inc., New York,
1954), p. 565.
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Some results of interest in classical nonequilibrium statistical mechanics, previously proved to all orders
in the interaction, are proved without recourse to perturbation expansions, making it possible to avoid con-
vergence questions. One theorem so proved is that when the interaction is switched on slowly, a Maxwellian
distribution goes into the canonical distribution at the same temperature. The two steps in the Prigogine
theory of the approach to equilibrium that originally depended on a perturbation proof are also demon-
strated nonperturbatively. Lastly, the statement that in equilibrium cluster expansions in the density there
are no articulation points in the graphs contributing to the reduced distributions is proved from a time-
dependent point of view.

I. INTRODVCTION
' 'N classical-statistical mechanics, as in quantum-
' - statistical mechanics, perturbation theory has been
a convenient tool for investigations into nonequilibrium
and transport problems. It has been possible in some
cases to sum perturbation series in the interaction
strength to all orders to obtain sensible results. How-
ever, because it is extremely difficult even for Qnite
interactions to prove convergence, it is useful to avoid
perturbation expansions when possible. A procedure
which treats the time development of the classical
distribution function nonperturbatively is developed
here. It is used to justify certain results originally ob-
tained by perturbation methods. The approach is
formally quite similar to time-dependent scattering
theory.

Two problems, the calculation of thermal averages
g,nd the approach to equilibrium, are reconsidered. It

has been shown that it is convenient to compute thermal
averages of many-time quantities by introducing an
interaction picture. ' The distribution function can be
regarded as resulting under the mechanical motion of
the system out of an initial unperturbed distribution
function when the interaction is turned on slowly. ' If
the distribution function is canonical, the initial dis-
tribution function before the interaction is switched on
is Maxwellian at the same temperature, and conversely.
A proof not involving perturbation theory is given here
as an alternative to the perturbation proof given
previously. '

A second application is to the Prigogine treatment of
the approach to equilibrium. The theory, as developed

' R. Aronson, J. Math. Phys. 7, 221 (1966).
~ The term "slowly" means the same as the more commonly

used "adiabatically, " which vre avoid to eliminate possible
confusion.


