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Anisotropies in the momentum distribution of positron annihilation radiation have in the past been ob-
served in several single-crystal metals, most recently in Li. Interpretation of the results in terms of Fermi-
surface structure is complicated. The angular correlation pattern is affected not only by the Fermi-surface
shape but also by the necessary departure of the conduction-electron wave function from a plane wave. The
magnitude of these two effects is evaluated in Li. The orthogonalized-plane-wave method with 19 waves is
used to obtain the lowest band, E(k), and the corresponding conduction-electron wave functions. The nu-
merically calculated angular correlation curves show anisotropies in agreement with the measured results if
both the effect of the Fermi-surface shape and the effect of the wave function are included. If the Fermi-surface
shape alone is considered, the observed anisotropies cannot be explained. Quantitative agreement with ex-
periment can be obtained if, in addition to all other effects, the enhancement factor due to electron-positron
attraction calculated by Kahana is included.

INTRODUCTION

~)NE of the aims of positron-annihilation, two-
photon, angular correlation measurements has

been to study the momentum distribution of electrons
in solids. ' This aim has perhaps to some extent been
fulfilled in light metals. When a positron annihilates
with an electron in a solid, the center-of-mass momen-
tum of the two particles appears as a small deviation
from collinearity of the two gamma rays emitted. This
momentum is due mostly to the electron since the
positron can be assumed thermalized. ' The conduction-
electron Inomenta (on a free-electron model) are less
than or equal to the Fermi momentum, kp. Thus one
would expect a sharp drop in the number of y pairs
emitted with a deviation from collinearity correspond-
ing to a momentum larger than kJ. This, in fact, has
been observed for many metals. '

One might, therefore, hope that angular-correlation
studies on oriented metal single crystals would yield
information on Fermi surface structure. Such studies
have been performed on several materials, for example,
graphite, ' Cu7 Alp Ge7 S17 Bey Mgy and) most
recently, Na and Li.' Although in most of these cases
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the angular-correlation curves show clear anisotropies,
interpretation in terms of Fermi-surface structure is
difficult. As Berko pointed out, ' the angular-correlation
curves in a real metal are affected not only by the fact
that the maximum electron momentum k~ depends on
direction in the crystal but also by the departure of the
electron wave function from a plane wave which must
accompany the nonspherical Fermi surface.

In the present paper the orthogonalized plane-wave
method is applied to single-crystal Li to obtain conduc-
tion-electron wave functions which correspond to a
nonspherical Fermi surface. These wave functions are
then used to calculate the long slit angular correlation
curve 1V(p,) for [100], [110],and [111]orientations.
The extent to which anisotropies in the curves and
departures from parabolas can be due to the details of
the wave functions and the extent to which they can
be due to the Fermi surface shape are determined.
Many-body effects are neglected except as discussed at
the end.

1. CONDUCTION-ELECTRON WAVE FUNCTION

The orthogonalized plane wave method" (OPW) has
been used to obtain the conduction-electron energy
bands in several metals. " " Callaway most recently
applied the method to Li."Ke follow his calculation
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utOmiC N1, .
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in an abbreviated form to obtain the 61led part of the
2s band in Li in 5 directions of k, and then, in addition
we determine the wave function at the same points.
(Atomic units with e= tN= Is= 1 are used. )

The conduction-electron wave function is expanded
as follows:

A= Z «(k)XI+K.

The sum extends over reciprocal lattice vectors K which
are inside a sphere about K=O, and the X's are the
orthogonalized plane waves given by

V—I/2' k-x (1.2)

Q—1/2 Q &/k Rgl (r R) .—
R

(1.3)

where V is the volume of the crystal and pz is the tight-
binding approximation to the core state in I i,
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FIG. 1. The positron wave function P+ in the %igner-Seitz
spherical cell approximation (unnormalized). r, =5.19 (atomic
units) is the radius of the cell. The core N~, wave function used in
the PPW calculation (the ground state in the potential seen by
the conduction electrons) is plotted —upper dashed curve,
X=2.37. The atomic N1, wave function with X=2.69 is shown by
the lower dashed curve.

I&, is the core is-type wave function, and the sum is
over the E lattice sites in the crystal located at points
R. The coefficient /i/, is determined so that Xq is
orthogonal to yj,.

The expansion coeflicients ax(k) are determined
variationally so that P/, in Eq. (1.1) is the best approxi-
mation to a solution of the one-electron Schrodinger
equation with an eigenvalue E(k). If yz is assumed to be
an eigenstate with energy E&, of the same Hamiltonian
as fq,""then the (X*,HX)KK and (X*,X)KK matrix
elements are given by simple expressions [in our nota-
tion, Ref. 13, Eqs. (2.52) and (2.53)$. Only the Fourier
coeKcients of the potential enter in these expressions.
We have used the values tabulated by Callaway. '4 If for
the core state we take N~, =X'I"x '~'e "", then the
orthogonality coefficient p& is given explicitly by

and the normalization condition on lt q. (lf q*,lf q) = 1.

2. APPLICATION TO POSITRON
ANNIHILATION

The momentum distribution of the two photons
produced when a positron annihilates with electrons

l I I I

X

[111jdirections. The 19 expansion coef(icients aK(k)
were then determined" at each k by the homogeneous
linear equations [the vanishing of whose determinant
of coefficients determined E(k)),

Q [(X*,11X)xK —E(k)(x*,x)Kx jex.(k)=0,

8z 1/2Q —1/2)t—3/2(] +ks/)ts) —2 (1.4) E(I() for g In

where 0 is the volume of a unit cell, ÃQ=V. Glasser
and Callaway" computed the ground state in the
conduction-electron Hamiltonian, &&, by numerical
integration. With the I&, found in this way they com-
puted a table of orthogonality coefficients p&.'-We can
reproduce this table to within 3%%u~ by choosing ) = 2.37
in the above expression for p,&. The corresponding energy
Ei, is" —3.765 Ry.

According to a variational calculation'~ of the atomic
1s state, X should be 2.69. Thus the u~, wave function
in the crystal potential is somewhat broader as seen
in Fig. 1. (See Ref. 14.)

With these considerations the E(k) and aK(k) were
determined numerically using 19 waves. The results
obtained for E(k) shown in Fig. 2 are in good agree-
ment (within 3%) with Callaway's more accurate 43
wave OPW band calculation for [100), [110j, and

"V.Heine, Proc. Roy. Soc. (London) A240, 354 (1957)."M. L. Glasser and J. Callaway, Phys. Rev. 109, 1541 (1958).
'7 P. M. Morse, L. A. Young, and E. S. Haurwitz, Phys. Rev.

48, 948 (1935).
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FxG. 2. The filled part of the conduction-electron energy band
in Li for 5 diferent directions of h, obtained with 19orthogonalized
plane waves.

Complete tables are published in J. Melngailis, Ph.D. thesis,
Carnegie Institute of Technology, 1965 (unpublished). Because
of the use of an incorrect formula for the potential seen by a posi-
tron, the positron wave function calculated in the thesis is wrong.
However, it is qualitatively similar to the correct one, Fig. 2, and
the subsequent results, which have here been recalculated, are
almost unchanged.
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1.2

'(p) vs. p in llO

Performing the sum over all k inside the Fermi surface
we have

p(p) =1VC P i g ax(y+L)[0 '"G(K+L)

—ps+L+xP(y)) i

' for y+L&kp (2.7)

p(y) =0 otherwise.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ap
27r

PIG. 3. The quantity p'(p) versus p in the f110j direction as
computed by three diferent methods: OP%', free-electron I'FE)
and tight-binding (TB) (using atomic 2s wave function, Ref. 16).
The behavior of p (y) in other directions is similar. The vertical
scale is arbitrary.

in a given band in a solid is' '"
1.4-

N(pz) for pz in 3 directions

1.2

1.0

The sum over K extends over the 19 sites corresponding
to the 19 OPW's chosen at the beginning, but the sum
over L is over all reciprocal lattice sites. The above
inequality means that y+L must lie inside the Fermi
surface. In Eq. (2.7) the terms in the sum over L are

p(y) =C
k& kg

A(r)0+(r)e "'d'», (2.1) 0.8

0.6

XLI -"G(k—p+K) —&-"P.+x~(p)jl', (2 2)

where G and Ii are given by integrals over the unit
cell 0;

G(K) = e'x'p~(r)d'r, (2 3)

p(p) = e-'s'N„(r)p„(r)dsr. (2.4)

For the sum over R in Eq. (2.2) we use

P e'" n=lV Q 3(k—L), (2.5)

where the sum over j extends over all reciprocal lattice
sites, to obtain

where C=rrs/4s', a=1/137, P+ is the positron wave
function, and the sum over k&kF extends over all k
within the Fermi surface. The positron is taken as
thermalized' with wave number zero Henc. e f~(r) by
Sloch's theorem has the periodicity of the lattice.
Substituting the expressions Eqs. (1.1) and (1.2) for
lt& in Eq. (2.1), using the periodicity of if+(r), and
neglecting Nt, (r) outside the central cell, we have

p(p) =C P i P ax(k) P exp(i(k —p) R)

0.4

spatially separated, namely, at a given p only one (if
any) term contributes to p(p).

For later convenience define p'(y) by

p'(y) =p(p) Il/C&LG(0)]', (2 g)

so that p'(0) is of order unity.
The momentum distribution of the annihilation

photons as given by Eq. (2.7) can be determined at the
points p (and p+L) at which the are(y) have been cal-
culated. The quantity ps is given by Eq. (1.4), and
G(K) and F(y) by Eqs. (2.3) and (2.4). The latter
depend on the positron wave function.

The positron wave function was calculated in the
Wigner-Seitz cell in the usual manner. ' ""Instead of
using numerical integration of the Schrodinger equa-
tion, the positron wave function was expanded in a
Fourier series which automatically satisfies the bound-
ary condition that dP~/dr =0 at r = r„the cell radius:

0 01 0 2 03 04 05 06 07 08 09 10 I I 12

Pz

FIG. 4. Calculated angular distribution E(p,) for annihilation
with conduction electrons only for $100], $110$, and 1111$
orientations of p, .

P~(r) = g a„sin
~ e ~

(2.9)
p(p)=C Z IZ a (k)»(k —p —L) 2r.

kg ky' KL

The coeKcients u were determined by the variational
X$P'—'I'G(K+L) —E—'I'ps+~xF(y) $ i

'. (2.6)

» R. A. Ferrel, Rev. Mod. Phys. 28, 308 (1956). Each k value
is occupied by 2 electrons.

~' B. Donovan and N. H. March, Phys. Rev. 110, 582 (1958).
~' K. L. Rose, Ph.D. dissertation, Carnegie Institute of Tech-

nology, 1964 (unpublished).
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In this case F(y) is computed using the atomic ur,
=x '~9,"'e ~' with X=2.69. Integration of Eq. (3.2)
to get X(p,) leads to a fiat broad curve shown in Fig. 5,
which is about an order of magnitude smaller than the
conduction electron contribution.

4. LIFETIME AND ENHANCEMENT

The annihilation rate of positrons with conduction
electrons is given by the integral of p(y), Eq. (2.1),
over all momenta. Since the above calculation is a
small correction to the free-electron model, the an-
nihilation rate would not differ significantly from the
rate obtained from a free-electron calculation. This
rate is' ' ~n'e/0, where n is the number of free electrons

"Reference 9(d). @le thank Dr. A. T. Stewart and Dr. J. J.
Donaghy and the Plenum Press for permission to use these results
prior to publication.

tained by Donaghy et ul. 23 for Li in the same orienta-
tions are shown in Fig. 7. A comparison of Figs. 4 and 6
to Fig. 7 indicates that the Fermi-surface shape as
computed here alone can only account for part of the
observed anisotropy (except perhaps at small angles)
whereas when the effect of nonplane-wave conduction-
electron wave functions is included, the calculated
anisotropies in the curves closely resemble the ex-
perimental ones. However, the calculated curves are all
(together) shifted downward from the experimental ones
for mornenta p,)0.2. A possible explanation will be
discussed in the next section.

The momentum distribution of annihilations with the
two core is electrons in Li can be easily computed as-
suming the tight-binding functions for the core state. '
The result is, in agreement with Berko and Plaskett, '

per atom. The mean life is the reciprocal of this rate, and
for Li is 2.7 X 10 ' sec. The experimental value obtained
by Bell and jorgensen24 is 0.3X10 ' sec. Even if the
calculated rate were decreased 10-20% by including
core annihilations, the value of the lifetime correspond-
ing to the above angular-correlation results would still
be larger than that measured by a factor of 7 to 8. This
discrepancy is probably for the most part due to the
fact that electron-positron correlation was neglected.

Kahana" has calculated positron annihilation rates
including a screened Coulomb attraction between
metallic conduction electrons and the positron. The
results are in the form of a momentum-dependent en-
hancement factor e(y), (y = p/k~), which is a measure of
the increased density of conduction electrons of momen-
tum p at the positron. As shown by Kahana, integra-
tion of e(y) over all conduction-electron momenta gives
annihilation rates in agreement with experiment" for
electron densities corresponding to Na, Li, and Al.

The enhancement factor for Li is"

e(7) = '/. 28+1.6sym+1. 33y4 (4.1)

where the coefficients were interpolated from Table IV
of Kahana's paper. Assuming that the enhancement
somehow does not affect the center-of-mass momentum
distribution of the annihilating pair, we can include the
momentum-dependent enhancement in our calculation
by multiplying the integrand for the central, L=O,
integration in Eq. (3.1) by e(y) (using k& ——0.6). This
does not affect the anisotropy but shifts the curves
slightly outward (normalized to the same height
as before) as shown in Fig. 8 for p, in L100j, and
brings them into better quantitative agreement with
experiment.

~4 R. E. Bell and M. H. Jgrgensen, Can. J. Phys. 38, 652 (1960).' S. Kahana, Phys. Rev. 129, 1622 (1963).
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S. DISCUSSION AND CONCLUSIONS

The model of the conduction electrons in Li chosen
here leads to a Fermi-surface shape which agrees with
other, more careful, calculations. "26 27 The wave
function associated with this Fermi surface was ob-
tained and was incorporated into a positron-annihilation
angular-correlation, calculation. Before Kahana's en-
hancement factor" is introduced, this calculation
predicts anisotropies in the angular distribution curves,
E(p,), which for the three directions are qualitively
in good agreement with experiment. Furthermore, an-
nihilation with conduction electrons of momentum

p+L is shown to affect the anisotropies in the central
"parabolic" peak and to contribute almost as much to
the tails (p.)k~) as expected from core annihilations.
This conduction-electron contribution to the tails also
shows a dependence on the direction of p, . In particular
it is largest for p, in the L111$ direction. This seems to
be due to the fact that we consider only 19 sites in the
reciprocal lattice, and they all lie on only three (111)
planes. Thus the contributions from six sites add to
give a large tail in E(p,). So far there seems to be no
experimental evidence that the tails in the angular-
correlation curves in metals might show structure or
anisotropy, such as seen in Ge and Si.'

~6 F. S. Ham, Phys. Rev. 128, 2524 (1962)."H. Schlosser, Ph.D. thesis, Carnegie Institute of Technology,
1960 (unpublished).
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Fro. 8. A comparison of the measured (solid line) and calcu-
lated (dashed) angular correlation curves for p, in the $100]
direction. The lovrer dashed curve is the same as in Fig. 4 (for
L100j) except that the core contribution, Fig. 5, has been added
to the conduction electron contribution. The upper dashed curve
results from including Kahana's enhancement factor (Ref. 25)
and normalizing to the same height. The measured curve is from
Ref. 9(d), with no core or background corrections subtracted. The
situation in the L110$ and t'111$ directions is similar: the agree-
ment is improved by including the enhancement, and the calcu-
lated tails are too big.

The angular distribution due to annihilations with
core electronswas calculated assuming Nj.,=x '19 "'e ~",

with X= 2.69."(See Fig. 5.) This result is quite sensitive
to the choice of Nr, . A 10'%%uo decrease in X, for example,
doubles the core contribution. The simple form" for the
core 1s state used agrees to better than 5% with the
self-consistent calculation" over the important part of
the range. Nevertheless, the difference between the
tails of the calculated and measured curves (Fig. 8)
could easily be attributed to our choice of core state.
Another reason for the disagreement in the tails might
be provided by the enhancement.

Although the introduction of Kahana's enhancement
factor improves the agreement between the calculation
and experiment, it raises new problems and questions.
Ke have no rigorous justi6cation for simply multiplying
the single particle p(p) by the many-body enhancement
factor e(p/kz). Doing so also destroys any relation be-
tween the parabolic peak and the tails. For example, if
the main peak is raised by a factor of about 7, by how
much should the core contribution be enhanced? On
the other hand, one might speculate as follows: The
momentum distribution of the annihilating pair is
determined to a fair approximation by the one-particle
calculation, while the correlation affects only the
probability of annihilation with an electron of a certain
momentum but does not change the center-of-mass
momentum of the two annihilating particles. If the
two particles could be considered isolated, for example,
then their center-of-mass momentum, even when they
are strongly attracted, would be the same as when they
were too far apart to interact.

In any event, the effect of positron-electron correla-
tion as treated by Kahana" is isotropic. The one-
electron calculation seems to account for the experi-
mentally observed angular-correlation anisotropyif both
the effect of Fermi-surface departure from a sphere and
the associated departure of the conduction-electron wave
function from a plane wave are included.
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