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TasiE I. Lifetime of Mgt 32P,, state.

Method Reference Result
SCF® with exchange and 33 3.84X107® sec
polarization approxi-
mations
Coulomb approximation 34 3.97X 107 sec
Arc emission 35 4.4 X107 sec
(std. dev. of logior=0.27)
Hanle effect present work  (3.6720.18) X 1079 sec

8 Self-consistent-field,

dipole) perturbation potential of atom-atom collisions.
(P is the dipole operator for the atom, II is the dipole
operator for the ion, and R is the internuclear vector.)
It can be seen that this additional term will not directly
produce changes in the density matrix of an excited
state of the ion. The added term does make a contribu-
tion (~R~%) in second-order perturbation theory when
it is multiplied by a matrix element involving the
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electron quadrupole operator for the ion and the
electron dipole operator for the atom. Second order is
also the lowest order in which the dipole-dipole per-
turbation contributes (again ~R-%). One can verify
that the added term involves matrix elements and
energy denominators of the same order of magnitude
as the dipole-dipole term. For this reason it is not sur-
prising that the Group II ion-argon and atom-argon
depolarization cross sections are of the same order of
magnitude; they are also comparable to the theoretical
and experimental cross sections for argon collisions
with Hg in the lowest 3P; state quoted in Table II of
Ref. 26.
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A method has been formulated to calculate auto-ionization rates by perturbation theory with no internal
inconsistencies. Calculations have been carried out in (25)2 1S He, (25,2p) 3P He, (1s,25,2p) 4Py Li, and

(15,25,2p) 2P, Li.
methods, is discussed.

I. INTRODUCTION

N atom in an excited state lying above the first
ionization potential may undergo a radiationless
decay into the continuum. This is the phenomenon of
auto-ionization. It is of significance in the interpretation
of atomic spectra as well as being one of the more
important processes in the upper atmosphere.
Many attempts!—® have been made to calculate the
decay rate of auto-ionizing states. We shall be concerned
with the perturbation-theory approach in this paper. A
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The applicability of this formulation, as well as how it differs from previous perturbation

formulation is here presented which removes the internal
inconsistencies that occurred in previous perturbation-
theory calculations and is then used to calculate auto-
ionization decay rate in certain states of helium and
lithium.

Throughout this paper atomic units are used unless
otherwise specified, i.e., #=e="me1eotron=1.

II. THE GOLDEN RULE

Suppose we have an atom with Hamiltonian H, and
that at /=0 the atom is known to be in a state | ¢). Let
H, be a Hamiltonian such that

Ho| p)=Eo| o), (1)

where E, is the energy of the state. In the Schrédinger
representation, then, [¢((=0))=|¢). Now we trans-
form to the interaction representation defined by H;
[¥int(¢=0))= | ). Define

Hi=H=H,. (2)
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Then, in this representation, the time-development

operator, U(¢,0), is to second order:

t t T
Ut0)= 1—i/ eiHOTHw“iH"TdT—-/ / eiHor
0 0 Jo

X e~iHorgitor fyg=iHo'gr'dr - (3)
[Yine(D)=U0) [¥ine(t=0))=U(10) [ ¢). ~ (4)

The probability, then, that the atom will remain in its
initial state after time { is

P=|{n(t=0) [¥me(0))] 2. ©)
Thus

P=[{o|U1,0)| )| 2=

¢

l—i/ (¢|eiBomH1g™i807| p)dT
0

2

t T
_/ / <¢ l eiEorHle—iHoreiHor’Hle—iEor’[ <p>d7"d7’
0 0

(6)

Introducing a unit operator I=3;| ¢;){¢s|, where the
| ¢7) form a complete orthonormal set and Y, means
sum over discrete, integrate over continuum states with
density of states factor,

p=\1—a<¢mll¢>—zf / / (ol o He00r| o))

2
Xy |07 Hygmitor| oir'ds] . ()
|

Let the | ¢;) be the solutions to H,y. Then

p=]1_a<¢1H1|¢>—zfl<¢|H1| ok

t T 2
X/ / e BB (=D ' ©)
0 0
Thus, setting w=E;— E, and integrating,
(1— coswt)
P= Il:l—Zf!(<P|H1| w)lz—““—:l
wZ
i el il el ] o)
[ sinw 2
x(-+=)] - @
©w  o?
Hence, keeping terms up to second order,
2(1—coswt)
P=1-3;[{o| Hi| o1)|* — | Hi| ¢)?
2(1—coswt)
=1— ¥ Kel|Hi|ep)|——. (10)
Iref#e w?

The probability that the atom is not in the initial state
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after time ¢, W, is then
2(1— coswt)
W= ¥ [elHi|lep|———. (1)
foerte w?

The spectrum of states | ¢;) consists of a series of dis-
crete states plus a continuum which is adjacent to some
of the states; in particular, to | ¢). Then if we assume
that there are no discrete states so close to |¢) such
that wi<1 for ¢ of the order of the decay time, the only
significant contribution to W is from the continuum
state where w=0, since (1—coswi)/w? is very sharply
peaked about w=0. Thus

* 2(1— coswt)
W= (el H| o) |*p(Ef)——"——dE;
Emin w
©  2(1—coswt)
=|(e|Ha| ¢;(E;=E0))|*0(Eo) ——dE;
Emin CU2
© 2(1—coswt)
= 1<¢[H1[1//>[2P(Eo) —2—dw
—w 1)
=2 |(o| H1|¥)|*p(Eo)t, (12)
where Y= ¢;(E;=E,). The decay rate, R, is then
R=2r|{e|H:|¢)|*(E0), (13)

the Golden rule.

III. PREVIOUS PERTURBATION
CALCULATIONS

In most earlier perturbation work!~* one started with
a wave function |¢;) representing the initial discrete
state of the N-electron system which was obtained by
a variation procedure. Next a | ¢;) to approximate the
final continuum state was found. Then the rate was

calculated as
2

N 1
(%‘IZ.—[ o) p(E:).

i< 55

R=2m

This procedure is usually inconsistent, since, as has
been shown in the previous section, | ¢;) and | ¢;) must
be solutions to the same H, which is not generally true
here. Further, the perturbing potential, Hy=H— H,, is
not defined unless H, is, and it is not, in general,
equal to 2-;<;V(1/7:).

To surmount these difficulties, Bransden and Dal-
garno® found an H, of which | ¢;) was an eigenfunction at
energy E. Then, in the case of the (25)2 1S, — (15) (%s):So
transition in helium, they write the final state in the

form
| ory=1/VD[u(D)F(2)+u(2)F(1)],

where # is the wave function of the (1s) state in He*.
F is then determined by the equation

(w(1)| Ho| ¢5)=Ew(1)| ¢5) (14)
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and the rate calculated as R=2x|{p;| H—H,| ¢s)|p(E). The | ¢s) thus obtained, however, is not a solution to
H, and it is not even orthogonal to | ¢;).

IV. AN IMPROVED FORMULATION

Consider a system of IV electrons and a nucleus of charge Z. The total Hamiltonian of such a system, H, is

N Z N 1 a? N lis; N r;; ry 1 (Si'rjj)<Sj'rij)
H= S (T E ] 2 £ -5 (FxR)- (ot 24 S —(sesmim ) | a9

i=1 r i<irg 2 =1 73 i \rg %7 14 7ij

where
1 02 L(lA+1)
ri=——m—r

b1
21’1' 61’,,'2 21’,‘2

3

the kinetic energy. Suppose the atom is initially in an auto-ionizing state described by the Hartree-Fock wave
function, |¢;), which we assume to be a good approximation. Then we find a symmetric, Hermitian, separable
H, to which | ¢;) is a solution at the Hartree-Fock energy Eo. H, is constructed so that it will have a continuum
solution, | ¢y), at energy E,. Then the rate R=27|{¢;| H—H,| ¢5)|20(Es) is computed.

To illustrate, consider first the (2s,2p) 1P1— (1s,kp)'P; transition in helium. The form of the initial state is

[ @)= (1/V2) 26 (1) ¥ o°(1)2425(2) Y 11(2) 4 225(2) ¥ o*(2) 2025 (1) Y 1(2) ](1/V2) X1 /2(1)X1/2(2) — X_1/2(1)X22(2) ],  (16)

where X/ are the Pauli spinors and #s,, #s, are determined by the Hartree-Fock equations

2
T1u25(1) —"—%2s(1)+f(l)Mzs(l)'l-h(l)sz(l) = —2,(1), (17a)
2
Tathap(2) ——t42p(2)+ g(2)202(2) +h(2)1425(2) = — Nats,(2) (17b)
where "
1
f)= //ugp(Z) Vi¥(2)Y o (1)—u2,(2) V11(2) Y o°(1)dred (18a)
712
1
g(2)=//uzs(l)Y0°(1)Y11*(2)——uzs(1)Yo"(l)Yll(Z)drlsz, (18b)
712
1
h(1)= //ugp(Z) Vi (2) YV oo(1)—u2s(2) YV 0°(2) V11(1)dred Q1= h(1)*, (18c)

where s, 43, are real. The Hartree-Fock energy is Ey=—A;—As— K, where

- K= (Mzs(l)yoo(l)uzp(Z) Y11(2) I 1/1’12] Mzs(l) Yﬁo(l)u2p(2)Y11(2)+u2s(2) Y00<2)”2p(1)yll(1)> . (19)
en
Hy=T1+To—2/r—2/rs-Q1)+0(2)—K, (20)

Q) =[Y" () f((Y (1) |+ ] Y1 (1))g(1){Y1'(1)|
A1(1) [ 225 (D V1M (1) 02 (D V1M1 |+ | 242 (1) V1 (1) 2o (D) ¥ 1*(1) | 2(1)
+4(1) [12p(1) ¥ (1) Wat2o(1) ¥ o°(1) | + | 2020 (1) ¥ o°(1) Kr2p(1) ¥ o°(1) | (1)
— |26 (1) V6°(1) (2425(2) Y 1(2) | 4(2) | 020(2) ¥ 11(2) Y(e2s (1) Vo°(1) |
— |25 (1) Y1 (1) 242o(2) Y o(2) | 1(2) |12 (2) ¥ o°(2) a2 (D Y (D) | . (21)

Writing Ho=/o(1)+%o(2)— K, Egs. (17) become
ho(1) [225(1) ¥V60(1)) = — A1 | 22,(1) ¥ o°(1)), (22a)
ho(2) |25(2) Y 11(2)) = —Na| 425(2) V11(2)) . (22b)
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The form of | ¢;), the “final” state is

[ oY= (1/V2)[a1(D) Y *(1)bap(2) VY 1*(2)+ a1s(2) ¥V o°(2)bi (1) ¥ (1) J(1/V2) X1 /2(1)X1/2(2) — X1 /2(2)X_112(1) ], (23)

Then, separating H,| ¢5)=Ey| ¢s), we have

ho(1) |a1:(D Y o°(1))=— €| a1s(1) Y *(1)),, (24a)
ho(2)|8p(2) Y1'(2))= (e—N1—N2) | 01:5(2) Y 1(2)) - (24b)

Hence, since es£\1, e—A1—MNs7 —\g, and 4o(2) is a Hermitian operator,
(als|u23)=0, (bkpluz,,)=0. (25)

Equations (24) then reduce to
T101:(1)— (2/r1)a1:(1)+ f(1) ars(1) 4 (u2(2) Y o°(2) | 7(2) | 210(2) Y °(2) Y426 (1) = — €a15(1) , (26a)
- Tobip(2)— (2/72)brp(2)+8(2)bap(2) 4 (t2o(1) Y 1* (1) [ (1) [ bap(1) V1 (1) J2p(2) = (e—N1—N2)bap(2) . (26D)
us

R=2r|{ps| H—Ho| ¢1)|*0(Eo). (27)

Because of Eqs. (24) however, only the two-electron interactions in H— H,, will give a nonvanishing contribution
to the rate. Further, we can to an excellent approximation, neglect the fine structure part of A as small compared
with 1/715. Then,

R=2m|{0i|1/712| 1) %0(E0)
= 2| (0025 (1) Y o? (1) 242 (2) Y11(2) | (1/712) | 01a(1) ¥ o2 (1) B2 p(2) ¥ 11(2) 4 015(2) V (2 b (1) Y 11(1)) | 20(Eo) . (28)

As a second example, consider the (1s,25,2p) *Psjs— (1s%kf) %P5/, transition in lithium.
1
| %):76 2e(—1)CLu1s(1) Y o (1)a2s(2) Vo°(2)25(3) V1(3) J[X1/2(1)X1/2(2)X12(3) ], (29)

where @ is the permutation operator and the orbitals, picked real, are determined by the Hartree-Fock equations
Tyu1s(1) — (3/r1)urs(1)+ fo(1)m1s(1) 4 g(1)1,(1) — 8(1)a2s(1) — (D22 (1) +Nasthos(1) = — Mymrs(1),  (30a)
Tottns(2)— (3/72)uzs(2)~+ho(2)zs(2) g (2)uns(2)— 8(2)t1:(2) =y (2)u2p(2)+ Ma2ttrs(2) = — Maui2s(2),  (30b)
Tsu25(3)— (3/78)2p(3)+ f1(3)12p(3) + s (3)12p(3) — m(3)1s(3) — ¥ (3 2s(3) = — s (3);  (30c)

wh
€ere 1
g(]_) = //Mgp(Z) Y11(2)*Y0°(1)——u2,,(2) Y00(1>Y11(2)d1‘2d91 , (31&)
¥12
1
5= [ [ @P QT @F s )i, (31b)
712
1
hi(l) = //M]_s(Z) YOO(Z) Yﬁ(l)*——uls(Z) YOO(Z) Y/’(l)dl’zdfh y (31C)
712
1
5(1) = //uls(Z) Y°(2) Ygo(l)——uzs(Z) YOO(Z) Yg“(l)drgdﬂl , (31d)
¥12
1
(1) = / / 23p(2) V11 (2)* Y 0(1)—1:(2) Vo*(2) V11 (1) drad s , (31e)
1
vy(1)= / / #2p(2) V11(2)*V °(1)—212:(2) ¥ °(2) V1'(1)dr2d s , (31f)
712

and Ay, is the Lagrange multiplier which insures the orthogonality of %1, and #2,. Note that then multiplying Eq.
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(30a) by #2,(1) and Eq. (30b) by #1,(2) and subtracting
[ OG0 1)= 80Dt (D= (1) s

= / 16(2)[(h(2)+£(2))424(2) — 8(2)114(2) — ¥ (2)u2p(2) Jra?dr2=C.  (31g)

The form of the “final” state is

1
| ¢’f>=ﬁ 2e(—= 1)@, ([ — (6/7)M2V 53(1)X_1/2(1)+(1/7)/2V 52 (1)X1/2(1) ]
X @16(2)a1:(3) Y o°(2) ¥ o°(3) (1/VZ) [ X1/2(2)X_1/2(3) — X_1/2(2)X1/2(3) ]], (32)

where the Clebsch-Gordan coefficients have been used to get a J=3% state. Since there are no f electrons in the
initial state, we can choose an H, to give any solution we wish for bs. Thus we choose the b;; to be Hartree-Fock,
i.e., the solution to

T1c15(1)— 3/r1)c1s(D)+ f'(Dec1e(1)+g' (Ders(1) — 374" (1)brs (1) = — Ners(1) (33a)
Tabies(2)— [3/r2—2f'(2) Jors(2) — 1’ (2)c1s(2) = ebis(2); (33b)
where )
10= [ [au@ro@rsn—a.mre@ vy, (342)
712
1
¢)= [ [B@rserron—s@reerans, (34b)
1
”(1)= / / bis(2)V$3(2)* Y (1) —c15(2) Y o*(2) ¥ 33(1)dr2d ;1. (34c)
We can then write H, for this problem as
3 3
Ho= _Z(T,-———l—Q(i)—l—P(i))—-K, (35)
i=1 75

where K is the difference between —A1—\;—X; and the Hartree-Fock energy Ey of | ¢;);
P(3)=|Y5*&))2 ' (8)— B (8)c1a(i)/brs DNV 5(3) |+ | V() )2 F (6)— I (3)ers(3) /bas ()Y 52(3) |, (36)

Q@) ="[g@)+ fo(2) 1 21s(D) ¥ o° (&) Wt15(8) ¥ o° (&) | + | 915(8) ¥ 6°(2) Y010 (8) ¥ °(3) | [g(8)+ fo(3) ]
— | 1)) Y (@) (1o (DY (D) | gD+ fo( D) |25(D V(1)) — (w24(5) | 8(5) | 2612 (1) Y 0(5) )
— (uap(D Y o°(5) | 1() |16 () Y (1)) Kb15 () Y o°(2) | +[2(2)+ro(5) 1| () ¥ 00(3) Yts2s (3) ¥ () |
+ | 22:(9) ¥ o°(0) 0426 (3) Y o°(3) | Cg (8) +oo() 1 |2826(2) ¥ o (8) ) ({2 (1) Y () | Lg(5) + 1o (5) ]| 1426 (5) ¥ o°( )
— (u1s(1) Y o°(5) | 8(7) | 2425(5) Y 0°(5))— (w20 () Y o°(5) | ¥(5) | 1426 (5) ¥ o°(5)) W26 (£) Y 00(3) |
+1 V1 (@) a8+ (e DY 1 (D) [ 1(5) | #20( DY 1 (DI f1( D)+ 2o V() | v () |20 (D Y12 ) T 11(5) |
+ 12— C—6(2) ]| 22s(1) ¥ o(8) t1s(8) Y o°(2) | — | 9415(8) ¥ 0°(5) Y026 (8) V 00(3) | 8(3)
F 12— C—8(2) | 21s(8) Y o°(4) Yot25(8) ¥ o°(4) | — | 2425 (8) ¥ 0°(3) Y201 (5) ¥ o°(3) | 8(3)
—n0(2) | 15(8) ¥ 1*(6) Xtb2p (8) Y 1 (2) | — | 02(2) YV 12(2) Yt (8) YV 11(3) | ()
—1(3) | 2(8) ¥ o°(2) K002 (8) V o°(3) | — [ 925(8) ¥ 0°(8) X142 (8) ¥ 4°(5) | m (3)
—(8) | w25(8) Y 1(2) b2 (3) Y 1 (3) | — | 2425(3) V'1*(3) 425 (£) V1 (3) | ¥ (4)
— ()| 420(D) Y o°(4) 2o (1) Y o°(2) | — | 42s () ¥ o (3) Wtt2p (D) ¥ o°(3) [v(3),  (37)
C, being defined by (31g). Then, solving Hy| ¢;)= Es| ¢s), we find that a4, is an eigenfunction of the same Hermitian
operator as %1, and, since neither have any nodes, they cannot be orthogonal. Thus, they must have the same
eigenvalue, \;. Hence a1,=1u1,. bis is then the solution to (33b) with e=X;—\;—M\s. The rate is then
R= 27ra4| <u23(2) Y0°(2)u2p(3) Y11(3)X1/2(2)X1/2(3) l (82 . 83/7’233)
— 3[(s2-128) (85° T28) /725" ]| i s () [ — (6/7) 2V 5*(3)X_1/2(3) + (1/7) 2V 52(3)X1/2(3) Ju1s(2) ¥ 6°(2)X_y12(2)
—bas (2L —(6/7) 1Y 5% (2)X1/2(2)+ (1/ T)M12¥ 5%(2)X12(2) Jurs (3) Y o0(3)X1/2(3) ) 20(Eo),  (38)
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TaBLE I. Auto-ionization rates in units of sec™. The 2P, and 2P_ refer to the higher and lower 2P state

arising from the (1s,25,2p) configuration.

Bransden

State This paper Dalgarnob Coopere Propind Ta-You Wue  Experimentf
(25)21S He 2.3X104 3.51 X104 4X10%
(2s5,2p) 1P He 8.1X10®8 1.4X10" 3.84 108 6101
(2s5,2p) 3P He 1.5X10% 6.6X101 5.01X10% 5X101
(1s,25,2p) 2P, Li 1.7X108 2.55x10%
(1s,2s5,2p) *P_Li 0.60X10®
(15,25,2p) “Pss2 Li 1.7X10% 1.96X105

° Reference 2.
d References 3 and 4.

a Reference 6.
b Reference 5.

the rest of H— H, giving no contribution since AL=2
in this transition.

This formulation exhibits two important features:
Because of the orthogonality of the single-electron
orbitals, and the fact that an electron with quantum
numbers (%,/) in the initial state will have the same wave
function as an (,l) electron in the “final” state, only
the orbitals of the electrons actually undergoing a transi-
tion will contribute to the rate. Further, since H, con-
tains only single-particle interactions, the only non-
vanishing contribution to the rate of H—H, is the two-
electron part of H.

V. RESULTS AND DISCUSSIONS

In Table I (which cites Refs. 7 and 8) the results of
our calculations are shown along with those of several
other calculations and experiments for comparison. The
fact that our results in helium agree best with those of
Burke, McVicar and Smith,® who did a scattering-
theory close-coupling-approximation calculation, indi-

7P. Feldman and R. Novick, in Alomic Collision Proc-
esses (North-Holland Publishing Company, Amsterdam, 1964),
201

p- 201.
8 U. Fano, Phys. Rev. 124, 1866 (1961).

© Reference 1.
t References 7 and 8.

cates the accuracy of our results. Our result for the
(1s,25,2p) 4Ps;s state of lithium lies within the limit of
error of 209, of the value obtained by Feldman and
Novick.” Further, the measured value is probably
slightly higher than the true value because some shorter
lived atoms (J =%, $) reach the detector.

The accuracy of this calculation depends upon how
good an approximation the Hartree-Fock initial-state
wave function is to the true initial state, i.e., it depends
on the amount of configuration interaction of the initial
state with other discrete states. Thus it cannot be
applied to (2s,3p) 1P or (3s,2p) 'P, for example, since
they are almost degenerate and the true wave functions
are linear combinations of those of the two configura-
tions. The fact that our method cannot handle con-
figuration-interaction wave functions or those contain-
ing correlation terms is its major limitation.
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