
RADIATIVE LIFETIME OF Ca+ AND Mg+

TABLE I. Lifetime of Mg+ 3~PItt2 state.

Method

SCF with exchange and
polarization approxi-
mations

Coulomb approximation
Arc emission

Hanle eGect

Reference Result

3.g4X10~ sec

34 3.97X10~ sec
35 4.4 )&10~ sec

(std. dev. of logqor =0 27)
present work (3.67&0.18))&10~ sec

' Self-consistent-field.

dipole) perturbation potential of atom-atom collisions.
(P is the dipole operator for the atom, II is the dipole
operator for the ion, and R is the internuclear vector. )
It can be seen that this additional term will not directly
produce changes in the density matrix of an excited
state of the ion. The added term does make a contribu-
tion ( R ') in second-order perturbation theory when
it is multiplied by a matrix element involving the

electron quadrupole operator for the ion and the
electron dipole operator for the atom. Second order is
also the lowest order in which the dipole-dipole per-
turbation contributes (again Z '). One can verify
that the added term involves matrix elements and
energy denominators of the same order of magnitude
as the dipole-dipole term. For this reason it is not sur-
prising that the Group II ion-argon and atom-argon
depolarization cross sections are of the same order of
magnitude; they are also comparable to the theoretical
and experimental cross sections for argon collisions
with Hg in the lowest 'P& state quoted in Table II of
Ref. 26.
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A method has been formulated to calculate auto-ionization rates by perturbation theory with no internal
inconsistencies. Calculations have been carried out in (2s)' 'S He, (2s,2P) ' 'P He, (is,2s,2P) 4P5ts Li, and
(1s,2s,2p) P~ Li. The applicability of this formulation, as well as how it differs from previous perturbation
methods, is discussed.

I. INTRODUCTION

A N atom in an excited state lying above the first
ionization potential may undergo a radiationless

decay into the continuum. This is the phenomenon of
auto-ionization. It is of significance in the interpretation
of atomic spectra as well as being one of the more
important processes in the upper atmosphere.

Many attempts' ' have been made to calculate the
decay rate of auto-ionizing states. We shall be concerned
with the perturbation-theory approach in this paper. A
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formulation is here presented which removes the internal
inconsistencies that occurred in previous perturbation-
theory calculations and is then used to calculate auto-
ionization decay rate in certain states of helium and
lithium.

Throughout this paper atomic units are used unless
otherwise speci6ed, i.e., h=e=m, 1„~„=1.

II. THE GOLDEN RULE

Suppose we have an atom with Hamiltonian H, and
that at t= 0 the atom is known to be in a state

~
to). I et

Hp be a Hamiltonian such that

where Ep is the energy of the state. In the Schrodinger
representation, then, ~ii, (t=0))=

~
y). Now we trans-

form to the interaction representation dined by Hp,.
~lt;„,(&=0))=

~
q). Define

Hg=H=Hp.
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and the rate calculated as A=2m I(y; I
H H—pI y~) I p(E). The

I por) thus obtained, however, is not a solution to
Hp and it is not even orthogonal to

I p;).

IV. AN IMPROVED FORMULATION

Consider a system of S electrons and a nucleus of charge Z. The total Hamiltonian of such a system, H, is

Z) ~ 1 n'- ~l;s; ~ r;, i ~ 1( (s;r;,)(s,"r;;))-
H=Z 7';—I+K —+—&Z

' '—Z XP'I (s'+»)+E )r,) ~(i r;, 2 '=& r,' 'wi r,,' ) i&ir,,pi
where

1 8' l;(l,+1)
r,+

2f' 8'f 2f '

the kinetic energy. Suppose the atom is initially in an auto-ionizing state described by the Hartree-Fock wave
function,

I q;), which we assume to be a good approximation. Then we find a symmetric, Hermitian, separable
Hp to which

I p;) is a solution at the Hartree-Fock energy Ep. H p is constructed so that it will have a continuum
solution,

I pf), at energy Ep. Then the rate &=2m
I (p; I

H Ho I pf& I
'p—(Ep) is computed.

To illustrate, consider erst the (2s,2p) Pi-+ (1s,kp) I'i transition in helium. The form of the initial state is

Ip;&=(1/v2)Lup. (1)Yp'(1)up„(2)Yg'(2)+», (2)Yo'(2)up, (1)Yg'(2)7(1/v2)Ixg(p(1)x gp(2) —x bio(1)xgip(2)7, (16)

where X~&)2 are the Pauli spinors and m2„N» are determined by the Hartree-Pock equations

2
7'»pa(1) — »*(1)+f(1)»8(1)+h(1)»n(1)= —"»p~(1) )

where

2
Tpupy(2) spy(2)+g(2)upy(2)+h(2)up, (2)= —Xpup, (2),

r2
(17b)

f(1)=
1

up~(2) Yj "(2)F'o (1) up (2) Yy (2) F'p (1)drpdQy (18a)

g(2) =

h(1) =

up. (1)F'p'(1) Y&'*(2)—up, (1)YoP(1)Yg'(2)drgdOp,
r12

1
u»(2) Y,v(2) Y o(1) u»(2) Yoo(2) Yzi(1)drpdQ& ——h(1

(18b)

(18c)

where N2„N» are real. The Hartree-Fock energy is Eo= —P &
—X2—E, where

lC= (uo. (1)Yo'(1)up„(2) Yx'(2)
I
1/rip

I ups(1) Yoo(1)up~(2) Yi'(2)+ups(2) Yo (2)ups(1) Yi'(1)&.
Then

(19)

Hp= Tg+ To—2/rg —2/rp+Q(l)+Q(2) —E, (20)

Q(1)= I Yo'(1))f(1)(Yo'(1) I+ I Yi'(1))g(1)(Yi'(1)
I

+h(1)
I
up, (1)Yg'(1) &(uo„(1)Yg'(1) I+ I up„(1)Yg'(1))(up, (1)Yg'(1)

I h(1)
+h(1) I up~(1) Yo'(1)&(up (1)Yo'(1)

I + I
up. (1)Yo'(1)&(up&(1) Yo'(1)

I h(1)
—

I
u„(1)Y,o(1))(u,„(2)Y, (2) I

h(2) Iu,.(2)Y,'(2))(u,.(1)Y,'(1)
I

—Iupy(1) Yi'(1)&(up. (2) Yo'(2) Ih(2) Iupn(2) Yo'(2))(upn(1) Yi'(1)
I (21)

Writing Hp ——hp(1)+hp(2) —E, Eqs. (17) become'

ho(1) I u28(1) Yo'(1))= —4 I ups(1) Yo'(1)&,

hp(2) I up~(2) Yg'(2) )=—Xp
I up„(2) Yg'(2)&.

(22a)

(22b)
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Tmzz I. Auto-ionization rates in units of sec ~. The ~P+ and ~P refer to the higher and lo~er 2P state
arising from the (1s,2s,2p) con6gnration.

State

(2s)' '5 He
(2s,2P) 'P He
(2s,2p) 'P He
(1s,2s,2p) 'P+ Li
(1s,2s,2p) 'P Li
(1s,2s,2p) 'Pcs Li

This paper

2 3X10"
8.1X10»
1.SX10»
1.7X10»
0.60X10»
1-7X10'

Burke,
McVicar,

and Smiths'

2.40X 10~4

6 2X10»
1.63 X10»

Bransden
and

Dalgarnob

X101.4

] X]015
8X104

Cooper'

1.4X10&4
6.6X10»

Propin~

3.51X10'4
3.84X10»
5 01X10»
2.SSX10'4

4X10"

5 X10»
6X10»

1.96X10'

Ta-You Wu' Experiment'

a Reference 6.
b Reference S.

o Reference 2.
& References 3 and 4.

e Reference 1.
& References 7 and 8.

the rest of H—Ho giving no contribution since AL= 2
in this transition.

This formulation exhibits two important features:
Because of the orthogonality of the single-electron
orbitals, and the fact that an electron with quantum
numbers (ss, l) in the initial state will have the same wave
function as an (ss, l) electron in the "final" state, only
the orbitals of the electrons actually undergoing a transi-
tion will contribute to the rate. Further, since Ho con-
tains only single-particle interactions, the only non-
vanishing contribution to the rate of II—IIO is the two-
electron part of H.

V. RESULTS AND DISCUSSIONS

In Table I (which cites Refs. '7 and 8) the results of
our calculations are shown along with those of several
other calculations and experiments for comparison. The
fact that our results in helium agree best with those of
Burke, McVicar and Smith, ' who did a scattering-
theory close-coupling-approximation calculation, indi-

7 P. Feldman and R. Novick, in A tomic Collision Proc-
esses (North-Holland Publishing Company, Amsterdam, 1964),
p. 201.' U. Fano, Phys. Rev. 124, 1866 (1961).

cates the accuracy of our results. Our result for the
(1s,2s,2p) Ps~2 state of lithium lies within the limit of
error of 20%%u~ of the value obtained by Feldman and
Xovick. 7 Further, the measured value is probably
slightly higher than the true value because some shorter
lived atoms (J= 2, —,') reach the detector.

The accuracy of this calculation depends upon how
good an approximation the Hartree-Fock initial-state
wave function is to the true initial state, i.e., it depends
on the amount of configuration interaction of the initial
state with other discrete states. Thus it cannot be
applied to (2s,3p) 'P or (3s,2p) 'P, for example, since
they are almost degenerate and the true wave functions
are linear combinations of those of the two con6gura-
tions. The fact that our method cannot handle con-
figuration-interaction wave functions or those contain-
ing correlation terms is its major limitation.
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