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An experimental and theoretical study is reported on second-harmonic generation (SHG) by focused laser
beams in nonlinear crystals which are large compared with the extent of the focus. The gas-laser beam is in
the lowest order (Gaussian) mode and very close to index-matching conditions in the crystal. The intensity
pattern of the SHG observed photographically has roughly the shape of a half moon with a very sharp edge.
The distribution on the bright side of the edge has been measured using a traveling slit and photomultiplier
detector. Fine structure has been observed consisting of a series of fringes extending from the edge into the
bright region. The nature of the 6ne structure depends upon where the pattern is observed. The pattern at
the surface of the crystal has fringes at the positions one would expect for diffraction of a second-harmonic
beam by a straight-edged screen placed at the focus. The pattern at great distance from the crystal has uni-
formly spaced fringes; in this case fringes have also been seen on the dim side of the edge. It has been shown
that the position of the edge relative to the axis of the laser beam is sensitive to extremely 6ne adjustments
of the crystal orientation. The power has also been measured as a function of crystal orientation, and the
position of the edge has been determined for the orientation giving maximum power. The theoretical treat-
ment of the problem, which occupies most of the paper, is based upon an exact formula for the second-
harmonic 6eld for the case in which the laser beam is in a Guassian mode. In a far-6eld approximation this
formula is decomposed into three types of terms having diferent dependence upon distance. The leading
term in the limit of large distance has a sharp edge and describes the gross behavior on the bright side of the
edge. The other terms are associated with 6ne structure of the Fresnel and Fraunhofer types arising from the
focus and the crystal surfaces, respectively. The theory contains a parameter to specify the phase-matching
conditions which can be simply related to changes in the crystal orientation. The power is obtained as a
function of this parameter, and the optimum matching condition corresponding to maximum power is
thereby determined. A detailed analysis of the experimental data is presented which shows the theory to be
in quantitative as well as qualitative agreement with experiment.

1. INTRODUCTION
' ' N a previous paper, ' hereafter referred to as BADK,
~ ~ we have described the properties of second-harmonic
generation (SHG) by paralle/ laser beams in very long
crystals. Experimentally this work was an extension of
the work of Ashkin, Boyd, and Dziedzic, ' who demon-
strated that under index-matching conditions the gas
laser is capable of producing useful amounts of SHG,
and used the effect to measure the second-order polariza-
tion coefficient d36 for potassium dihydrogen phosphate
(KDP). The success of these experiments was due to the
very long coherence length possible with the gas laser in
single-mode operation. The fact that the crystal was an
order of magnitude shorter than the estimated coher-
ence length of the beam indicated that new experiments
should be carried out using much longer crystals. Pre-
viously, it had been pointed out' that the effective co-
herence length (the aperture length) for very parallel
beams in perfect crystals would ultimately be limited
by double refractsoN, and would be proportional to the
aperture of the beam. This double-refraction effect was
observed experimentally and found to be in quantitative
agreement with theory as reported in BADK. The
effect has also been observed in photographs of the
SHG by Bhawalkar, Gambling, Smith, and Watkins. 4

' G. D. Boyd, A. Ashkin, J. M. Dziedzic, and D. A. Kleinman,
Phys. Rev. 137, A1305 (1965).

~A. Ashkin, G. D. Boyd, and J. M. Dziedzic, Phys. Rev.
Letters 11, 14 (1963).

3 D. A. Kleinman, Phys. Rev. 128, 1761 (1962).
4 D. D. Bhawalkar, W. A. Gambling, R. C. Smith, and L. S.

Watkins, Phys. Letters 15, 220 (1965).
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The theory of the double-refraction effect in SHG
was given in BADK from two points of view. It was
shown first that the standard theory' "of SHG by un-
bounded plane waves can be formulated in such a way
that double refraction, absorption, and the hnite aper-
ture of the beam can all be introduced in a plausible
manner. This heuristic approach for parallel beams has
the advantage of being intuitive, easy to follow, and
relatively nonmathematical. It was applied specifically
to the experimental situation in which the fundamental
beam is in the Gaussian (lowest order, TEM, s) mode of
the laser resonator. It could equally well be applied to
more complicated modes or to any superposition of
modes in the laser beam. The other theoretical point of
view presented in BADK was the formal approach,
which is presumably rigorous in that it rests upon the
accepted and well verified theory of SHG by un-
bounded plane waves without additional assumptions.
When the 6nite aperture of the beam is taken into
account by representing the laser and second harmonic
beams as Fourier integrals over plane-wave components,
it is found that double refraction comes in automatically,
and a formula is obtained in agreement with the
heuristic theory for the case of a parallel beam.

The assumption of a parallel beam of finite aperture
cannot be strictly true, but is an excellent approxima-
tion in the region of the focus (minimum beam radius)

' J. A. Armstrong, N. Bloembergen, J. Queuing, and p, S.
Pershan Phys Rev 127 1918 (1962)

'N. Bloembergen and P. S. Pershan, Phys. R.ev, 12,'8, 606
(1962).
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of a laser employing spherical mirrors of large radius of
curvature. The experiments reported in BADE were
carried out in the near field, the region sufficiently near
to the focus that the laser beam is essentially parallel. In
the far field at much greater distances from the focus
the beam eventually diverges with a constant diffrac-
tion angle inversely proportional to the minimum spot
size of the beam. ~ Ordinarily the beam emerging from a
gas laser' has a very long near Q.eld ( 300 crn), a cor-
respondingly small diffraction angle ( 0.03') and a cor-
respondingly large spot size ( 0.07 cm) as required by
the theory' of optical resonators. It is then quite practi-
cal as was done in BADK to work in the near Geld, but
relatively dificult to work in the far Geld. By means of
focusieg cheeses, however, it is possible to obtain a very
short near field ( 0.013 cm) with correspondingly large
diffraction angle ( 4') and small spot size ( 5 p). In
this way the far Geld can be reached in a crystal of
reasonable size. Therefore the essential distinction
which must be made between SHG by unfocused and by
focused beams is the following: In the case of unfocused
(parallel) beams interest centers on the near held, while
in the case of focused beams it centers on the far field.

Experimentally the motive for focusing has usually
been to increase the ie/easily and thereby enhance non-
linear optical effects. Thus, Franken et ul. ,

' by focusing
the beam from a ruby laser in quartz, were able to ob-
serve SHG, although index matching was not used and
the coherence length was therefore very short ( 14 p).
It was found by Ashkin, Boyd, and Dziedzic, ' however,
that SHG does not increase monotonically as the spot
size is reduced and the intensity increased by focus-
ing, but goes through a maximum. They suggest
that, under index-matching conditions, the effective
coherence length of the beam is inversely proportional
to its diffraction angle, and the maximum corresponds
to a coherence length comparable to the crystal length.
These ideas were sharpened somewhat in BADK, where
it was shown that the effective coherence length
associated with the diffraction angle is actually identical
with the aperture length arising from double refraction.
In view of the frequent experimental use of focusing,
the ease of reaching the far field within ordinary crystal
samples, and the potential importance of the problem of
maximizing the nonlinear interactions of light beams,
it is clear that a need exists for a discussion of the
properties of SHG in the far Geld under matching con-
ditions, which forms the subject of this paper.

In attempting to arrive at an understanding of these
properties we have followed a course guided both by
experiment and by theory. To begin with it should be
emphasized that the far-field pattern of intensity in
SHG is surprisingly complex and completely different
from the near-field pattern. There is therefore a com-

7 G. D. Boyd and J. P. Gordon, Bell System Tech. J. 40, 489
(1961).

'P. A. Franken, A. E. Hill, C. W. Peters, and G. Vfeinreich,
Phys. Rev. Letters 7, 118 (1961).

plicated transition region between the near and far
field in which the intensity pattern undergoes radical
changes as the distance from the focus increases. We
shall not attempt a general discussion of this inter-
mediate field. The dominant feature of the far-Geld
pattern whenever double refraction is present is a
sharp edge dividing the pattern into a dim region and a
bright region. A fine structure can also be seen in both
regions. As the distance from the focus increases the
edge becomes sharper and the fine structure weaker.
Nevertheless, with sufficient exposure an elaborate
Gne structure can be recorded photographically at any
distance from the focus. The fine structure may have a
uniform or a nonuniform spacing of fringes. These
facts have been observed experimentally, and serve to
define the main objectives of the theory which are:
(1) to explain the sharp edge in the intensity pattern,
(2) describe the gross intensity distribution on the
bright side of the edge, and (3) explain and describe the
Gne structure.

The theory given here proceeds from the formal
approach of BADK which is completely general and not
limited to parallel beams. As shown in BADK the
theory takes into account all mixing effects between
plane-wave components of the nonlinear polarization.
It is shown that the theory can be cast in a Green's-
function formulation which directly relates the second-
harmonic electric field to the distribution of polarization
producing it. For practical calculations it may be more
advantageous to make use of the Fourier transform of
the second-harmonic polarization. By either method,
an exact formula is obtained for the second-harmonic
Geld for the case in which the laser beam is in a Gaussian
mode. The method could also be applied to higher modes,
since convenient analytical expressions for all the modes
of a confocal resonator have been given by Boyd and
Gordon. ~ For small diffraction angles (paraxial ap-
proximation) these expressions take the diffraction of
the laser beam into account exactly. Only the laser
beam is assumed to be in a single mode; the theory
gives an explicit expression for the second-harmonic
field which in general does not correspond to a single
mode. The formula obtained here reduces in the near
field to that obtained in BADK assuming a parallel
beam. Although the formula is valid in the inter-
mediate field, it is difficult to obtain much information
from it except for the special case in which double re-
fraction is absent.

The most interesting results of the theory follow from
a far field approxim-aloe which neglects that part of the
field falling off faster than the inverse square of the dis-
tance from the focus. The resulting expression is
analyzed from the point of view of the three objectives
mentioned above. It is decomposed into three types of
terms having different dependence upon distance. The
leading term in the limit of large distance has a sharp
edge and describes the gross behavior of the intensity
distribution on the bright side of the edge. This will
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FIG. 1. Experimental arrangement for measuring the SHG
by a focused laser beam.

be called the dominant term. The other terms are
associated with the structure of the edge and with the
surfaces of the crystal, and give rise, through inter-
ference with the dominant term and with each other, to
two general kinds of 6ne structure. In this way the
theory meets the objectives dictated by experiment. The
desire to test the predictions of the theory led to further
experiments of a more quantitative nature. The results
reported here indicate that theory and experiment are in
excellent agreement.

Previously, a theory has been given' for SHG by
focused beams neglecting double refraction. In this
theory the region of the focus was replaced by an
appropriate cylindrical volume containing a uniform

plane second-harmonic polarization wave. The radia-
tion from this volume into a surrounding isotropic
medium was calculated using the standard Green's
function of physical optics. This treatment clearly
showed the importance of phase matching in SHG by
focused beams in both the power and the intensity dis-

tribution, but was too crude to predict the effects that
have been observed. The theory given here supersedes
the previous theory. The "plane wave in a cylinder"
approximation has been eliminated and the bire-
fringence of the medium has been retained. All phase-
matching (coherence) effects, including double refrac-
tion and diffraction, are now contained in the Green's
function, which is derived from erst principles. The de-

pendence of the intensity and the power upon the
matching conditions are discussed in detail.

Experimentally the sharp edge in the intensity
pattern has been reported for focused ruby laser beams
by Maker, Terhune, Nisenoff, and Savage. ' These
authors explain the effect in terms of the @sixie of
various rays present in the focused beam. The edge
presumably corresponds to the matching direction for a
ray along the beam axis; on the bright side mixing of
off-axis rays can take place under matching conditions,
but on the dim side mixing can only take place under
nonmatching conditions. For the ruby laser beam
which may contain many modes this simple theory may
be quite appropriate. In such a case the various Fourier
components of the beam may be regarded as essentially
uncorrelated, and the second-harmonic waves arising
from the various mixing processes are also uncorrelated.
When the laser beam is in a single mode, however, this
is obviously not the case, and it is not clear to what
extent the simple mixing-matching theory applies. For
the near Q.eld this question was considered in BADE,
where it was shown that considering the beam as a
diverging pencil of rays gives the correct effective co-
herence length for the power, but does not give the
correct intensity distribution. In the far Geld, however,
we Qnd experimentally and theoretically that a sharp
edge is present, so the simple mixing-matching theory
is to some extent vindicated. Actually, the sharp edge
is observed not along the beam axis but closer to the
double-refraction direction through the focus. This
might be taken into account in the mixing-matching
theory in the manner of the heuristic theory of BADE
by postulating that the second harmonic energy propa-
gates (from the focus) along the double-refraction
direction. It may also be possible to offer simple ex-
planations for the fine structure similar to those offered
by Giordmaine" for the fringes he observed under
nearly matching conditions with the (unfocused) ruby
laser beam. In this paper, however, we have chosen not
to digress in this direction but to relate our discussion
entirely to the formal theory and the approximations
that can be derived from it appropriate for the far Beld.

Two papers have recently appeared dealing with cer-
tain aspects of SHG by focused beams. McMahon and
Franklin" have given a theoretical formula for the
second harmonic field produced by a focused laser beam.
Their formula agrees exactly with out result (4.19) for
the nominal matching case. This does not correspond
to the condition for Inaximum power, and their criterion
for the condition of maximum power disagrees vio.ent yI
with our Fig. 32. Although they give a general integral
expression for the power (in the nominal matching case),
they discuss this expression only in the near Geld limit.

~ P. D. Maker, R. W. Terhune, M. NisenoR, and C. M. Savage,
Phys. Rev. Letters 8, 21 (1962).

'0 J. A. Giordrosine, Phys. Rev. Letters 8, 19 (1962).
"D. H. McMahon and A. R. Franklin, Appl. Phys. Letters

6, 14 (1965).
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Their experimental results are also taken in the near
Geld, and are entirely explained by the aperture eGect
discussed in BADE. The pattern of intensity in the
far field, which is the central problem considered here,
is not mentioned. Francois and Siegman" have dis-
cussed the intensity pattern in the SHG by a Gaussian
beam using a Fourier representation of the beam. How-
ever, their Fourier representation describes what BADE
call a "parallel beam, "which is only valid for a crystal
which is thin compared with the length of the near Geld.
Therefore their theory does not apply to SHG by a
localized focus in a large crystal, the situation con-
sidered here.

The reader primarily interested in the experimental
results and their interpretation should read Sec. 2 and
then proceed directly to Sec. 9, where theory is com-
pared with experiment. In the theoretical development
Secs. 3—8, equations of central importance, particularly
those containing results that are compared with ex-
periment in Sec. 9, are marked with an asterisk (a). As
an aid in reading Sec. 9, especially for those who do not
wish to read the theoretical sections carefully, a
glossary of notation is provided at the beginning con-
taining all the symbols from the theory that appear in
the section. Separate summaries are provided at the
ends of Secs. 5, 6, 7, and 8 which together summarize
the theory. A brief over-all summary including the
comparison with experiment is given at the end of
Sec. 9.

2. EXPERIMENTAL TECHNIQUE AND DATA

2.1 Technique

The experimental technique used in this focused beam
work is an extension of the gas laser technique de-
scribed previously. " The fundamental wavelength
chosen for these experiments was the 1.1526-p, line of
the He-Ne laser. This creates a harmonic at 0.5763 p
which is readily detected photographically or with a
photomultiplier.

Figure 1 shows schematically the basic experimental
arrangement used for observing the harmonic output
from focused beams. Fundamental power emerges from
the laser at the Qat mirror in the lowest order trans-
verse mode (a Gaussian beam). For some experiments
the simple front-surface mirror sketched in Fig. 1 was
replaced by a Brewster prism-type Qat mirror. This is
essentially a prism-shaped back-surface mirror, the
front surface of which makes the Brewster angle with
the beam in the resonator. This dispersive type of Qat
mirror was introduced in order to discourage subsidiary
oscillations such as 1.1614, 1.1767, and 1.1985 p, , which
fall near the desired 1.1526-p line, and which can oscil-
late with as much as. 30%%u~ of the power at high dis-
charge currents. One side eGect, however, of the prism
is that the output laser beam is elongated in the y direc-

» G. E. Francois and A. E. Siegman, Phys. Rev. D9, A4 (1965).
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FIG. 2. Fundamental beam (shaded) focused at s =f in a crystal
which is much longer than the confocal parameter b of the focus.
The spot size is mo, the far Geld diffraction half-angle bo, and the
double refraction angle is p. The fundamental 6eld strength at the
exit surface s=l is shown dashed in the plot at the right. Also
sketched is the second-harmonic 6eld (labeled SHG) according to
(5.28) and p lines through the focus and the incident point. The
variable s is defined in (5;4) and the points s=uq, s=tts in (5.6).

tion (note coordinates in Fig. 1). The Gaussian beam
radius in the y direction is increased by e, the index of
the prism-type mirror at 1.1526 p, whereas the Gaussian
beam radius in the x direction remains the same as for a
simple Qat mirror. By adjusting the focal length L, of
the focusing lens and its distance a2 from the nonlinear
crystal we can focus the fundamental beam to the de-
sired spot size w, and depth f in the nonlinear crystal.
The angle between the fundamental hearn and the
crystal optic axis is adjusted for optimum second-
harmonic power unless otherwise stated. The crystal is
mounted on a rotatable stage described in BADE
which can be motor driven. Figure 2 sketches the
fundamental beam geometry and the fundamental and
harmonic field distributions in qualitative fashion at the
exit surface for a strongly focused beam where the near
field of the fundamental is a small fraction of the crystal
length l.

The Fig. 2 shows two dashed lines making the angle p
with respect to the beam axis, where p is the double
refraction angle. As in BADE we call these p lines. The
one through the focus is particularly useful in visualizing
the Qow of harmonic power. By means of the imaging
lens of Fig. 1, which images the exist surface on the
plane of observation, we can measure the harmonic and
fundamental intensity distributions suitably enlarged.
For accurate measurement of the intensity distributions
a combined slit and photomultiplier detector could be
scanned across the harmonic or fundamental distribu-
tions in the plane of observation. A vertical slit parallel
to the y direction was used in all the scanning measure-
ments rather than a pinhole in order to improve the
sensitivity. The y distribution of light is Gaussian and
all the information of interest is in the x direction as
shown in Fig. 2.

The output of the photomultiplier was amplified and
fed into a phase-sensitive detector with a suitable time
constant. The output of the phase-sensitive detector,
which was proportional to the light intensity falling on
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(b)

PIG. 3. Photographs showing the SHG by a focused beam in
ADP in the intermediate Geld which show the gradual evolution
of the edge from the nearly circular pattern of the near Geld. The
pattern of (a), shown at greater exposure in (b), corresponds to
(l—f)~1.5b. That of (c), shown at greater exposure in (d),
corresponds to (l—f) 3b. The edge appears in the shorter expo-
sures as a flattening on the left side. The longer exposures bring
out a Gne structure which is relatively strong at these intermediate
distances, but which becomes very weak in the far Geld.

output at the exit surface from a fundamental beam of
spot radius zv(air) 0.07 with L 6, as 3.5, f 3 8, .
and l= 5, where all dimensions are given in centimeters.
For these conditions (l—f) 1.5b, where b is the con-
focal parameter (see BADE). Thus we are just entering
into the far-Geld region. We see that the harmonic
beam is far from circular. A Qattening has developed on
one side followed by a series of fringes which are more
evident in the longer exposure of Fig. 3(b). We now make

f 2.5, which makes (l f) —3b and we are deeper in
the far Geld. The harmonic output is as shown in Figs.
3(c) and 3(d), taken at different exposures. The flatten-
ing is now more pronounced and the spacing of the
fringes has decreased. The Battening that appears on
the gross shape of the harmonic we call the "edge" of
the harmonic pattern. This will be defined more pre-
cisely in the theoretical treatment. Figure 4 is a photo-
graph displaying both fundamental and harmonic light
distributions from an ammonium dihydrogen phosphate
(ADP) crystal for a case where we were even further in
the far field, w(air) 0.07, L 6, f 2, i=10.4, as 20
(no imaging lens), and (l f) 10—b. Since the film used
was insensitive to the 1.15-p fundamental beam used, a
translucent phosphorescent card which glowed in the
visible was placed in direct contact with the Glm during
the exposure for the fundamental which produced the
circular pattern. In addition to showing a more cleanly
deGned edge and a few even more closely spaced
ripples, it shows that double refraction is playing a ro.e
inasmuch as the harmonic emerges displaced from the
axis of the fundamental beam as sketched in Fig. 2.

the slit, was fed to the y input of an x-y recorder while

the x input was driven in synchronism with the movable
slit and photomultiplier combination. Thus we ob-
tained plots of the intensity variation in the x direction
directly. For photographic detection the movable slit
and photomultiplier shown in Fig. 1 were replaced by a
photographic film (Polaroid 3000 or 10 000). In some
experiments the imaging lens was removed and the
fundamental and harmonic intensity distributions were
observed after traversing a length of free space a5. As
will be seen this method of observation changes the
harmonic intensity distribution in some of its details
(fine structure) but not in gross shape.

2.3 Data

We now proceed to data taken well into the far Geld
where we will look at many of the features observed
above in greater detail. The data is given in Figs. 5—16,
and the corresponding experimental conditions in the
notation of Fig. 1 are speciGed in Table I. Of interest in
Fig. 5 is the position of the harmonic intensity distribu-
tion relative to the fundamental beam distribution.

2.2 Development of Far-Field Pattern

Before describing the far-Geld distributions in detail,
it is instructive to note briefly with the aid of Figs. 3, 4
how the nearly circular harmonic energy distribution
for the near Geld described by BADE transforms to the
far-Geld distribution. Although these intermediate situa-
tions will not be studied quantitatively in this paper,
the photographs show the gradual evolution of some of
the characteristics which will occupy our attention in
the far field. In Figs. 3(a) and 3(b) we see photographs
taken with two different exposure times of the harmonic

FIG. 4. Photograph showing both the fundamental (circular)
and second-harmonic intensity patterns when (1—f) j.ob. Double
refraction in the ADP crystal causes the edge to be displaced from
the axis of the fundamental beam.
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TABLE I. Experimental constants in the notation of Fig. 1
relevant to the experimental data given in Figs. 5-16. All dimen-
sions are in centimeters.

Fig. 5 6 7 8, 9, 10 11, 12, 13 14, 15, 16

R Cm
d/2

L
Cg

l

C3

84
85

5000
150
69
3.2
0.2

10.4
ADP

5000
150
69
3.2
0.2

10.4
ADP

6.8
11.0

5000
150
69
3.2
0.2

10.4
ADP

2.8
13.0

5000
150
69
3.2
0.2

10.4
ADP

2.8
18.0

5000
150
69
3.2
2.8
1.23

KDP

ADP n=1.5, p =0.030 rad
KDP w=1.5, p=0.028

300
150
69
3.2
3.0

10.4
ADP

15.8
SLIT~ 0 0.1 0.2 0.3 0.4 0.5 CM

Fio. 6. Fundamental and harmonic intensity distributions of
Fig. 5 measured with an imaging lens giving a magnification
m = 1.62. The p line, computed as explained in Fig. 5, just happens
to fall on the second edge fringe in this experiment.

This is most directly measured by scanning across the
distributions with a slit and photomultiplier directly
outside the exit surface (no lens, a5 ——0). For experimen-
tal reasons, however, it was necessary to guide the
radiation transmitted through the slit to the photo-
multiplier with a light pipe. This technique gave the
desired data in the most straightforward fashion, al-
though it suffered somewhat from poor resolution
associated with the small beam size at the exit surface
and the high absorption of the Lucite light pipe at
1.15 p. The sharp rise of harmonic output that occurs
as one moves away from the fundamental beam axis is
the edge. The beam axis was estimated from the ap-
proximately Gaussian fundamental. The p line through
the focus shown in Fig. 5 was computed from the
geometry as explained in Sec. 9. On the side of the
harmonic intensity pattern that decays more gradually,
which we denote as the bright side, there is a slight
suggestion of a ripple at about the position of the p line.

BEAM AXIS /7 LINE

SLIT ---- --'

I I I

0 O. I

I I I

0.2 0.3
CM

I

0.4

FIG. 5. Fundamental and harmonic intensity distributions meas-
ured with a traveling slit at the exit surface of the crystal. The
beam axis was determined by estimating the center of the nearly
Gaussian fundamental. The p line through the focus was deter-
mined from the geometry shown in Fig. 2 using the value p =0.03
appropriate (Ref. 2) for ADP. The intensity scale is linear here
and throughout this paper. Constants for this experiment are
given in Table I.

After having assured ourselves of the position of the p
line directly, the harmonic and fundamental intensity
distributions were studied with somewhat more resolu-
tion using the imaging lens with a3 ——6.8 and a4 ——11.0.
The results of these scans are shown in Fig. 6. The
magnification of the harmonic pattern in the visible was
determined to be m=11/6. 8=1.62 from the fact that
the output face of the crystal was imaged in the plane of
observation with ordinary room light. The position of
the p line relative to the beam axis was computed from
m. Since the magnification of the fundamental beam is
likely to differ from the magnification in the visible,
we took the precaution of passing the axis of the
fundamental beam through the axis of the lens. This
eliminates the need to know the infrared magnification
at least as far as the beam axis location is concerned.
We see that the position of the p line agrees with the re-
sult of Fig. 5. With the improved resolution we see the
presence of bright side structure in the harmonic
intensity with more certainty.

In order to study the bright-side structure and the
shape of the harmonic intensity still more carefully,
data were taken with u3 ——2.8 and a4 ——13.0 which gives a
magnification m=4. 65. This permits still higher resolu-
tion with results as shown by the solid curve of Fig. 7.
The fringes are more pronounced and more numerous,
decreasing in size and spacing down to the resolution of
the slit width. This intensity data will be the basis of
our comparison of the over-all shape of the distribution
with theoretical calculations for the case which we shall
call the well developed edge. For comparison with
theory this and some of the subsequent figures contain
theoretical scales, curves, and lines which will be fully
explained in Sec. 9.

Since the bright-side fringes are a rather striking
feature of the far-field harmonic distribution, further
efforts were made to determine their spacing photo-
graphically. Figure 8 shows the results of placing photo-
graphic Qlm at the plane of observation with el=2.8
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Fro. 7. Harmonic intensity (solid curve) at the exit surface as
in Fig. 6 but measured with an optical magni6cation m=4.65.
The slit position (arbitrary origin) is indicated by the scale at the
top. The scale at the bottom, which is needed for comparison with
theory, is laid out according to (9.8), (9.9), and (9.22). The
calculated positions of eight edge fringes according to (9.7) are
shown by lines. The dashed curve shows the dominant term (9.23)
normalized to the data at one point as indicated. This is an ex-
ample of well-developed edge structure, and may be compared
with the calculated intensity of Fig. 20.

and a4= 18.0 which gives m= 6.85. ln comparing the
shapes observed here with previous photographs or
with theory, it must be recalled that these pictures

0
0 10 15

FRINGE NUMBER
20

Fzo. 9. Fringe positions measured on the photographs of Fig. 8
are shown by circles. Curve is calculated from (9.26) with no
adjustable parameters.

are expanded by a factor of v=1.5 in the y direction
relative to the x direction (prism eGect). By studying
the pictures taken with various exposures the positions
of as many as 23 fringes could be measured. More
fringes with decreasing intensity and spacing were seen

but their positions could not be accurately recorded.

Cb)

::,i I
' ll Is

FIG. 8. Photographs
of the harmonic beam
scanned in Fig. 5 taken
at the exit surface with
an optical magnification
m =6.85. The over-all
magnification of the re-
production shown here
is ~14)&. Four ex-
posures are shown to
reveal the edge struc-
ture; longer exposures
than (d) give a half-
moon appearance like
Fig. 4. This is well-de-
veloped edge structure.
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FIG. 10. Fringe spacing ratio (circles) defined in (9.25) for the
data of Fig. 9. This ratio is independent of the magnification.
Solid curve is the universal function (6.41) characteristic of well-

developed edge structure. The same structure would be produced
by a straight edge screen placed at the focus and illuminated with
second-harmonic light. Dashed curve is the more accurate formula
(6.42) which depends upon the specific parameters of the experi-
ment. The dashed curve passes through the circles, but only its
extension is shown to avoid confusing the figure.
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FRINGE
POSITION (CM)
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S IDE

FIG. 11. Photographs of the
harmonic taken by direct ex-
posure without a lens at a dis-
tance u5 ——18 cm from the crys-
tal (KDP). The over-all mag-
nification of the reproductions
is 5&(. Four exposures re-
veal the bright-side structure.
This is partially developed edge
structure.
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The results of the fringe position measurements are
shown by the circles in Fig. 9.

To remove any uncertainties regarding the magnifica-
tion, it is convenient to measure the fringe spacing
ratio E(j). R(j) gives the relative fringe spacings in
normalized fashion and is dined as the ratio of the
spacing between the jth maximum and the erst max-
imum to the spacing between the second maximum
and the first maximum. This is plotted (circles) in Fig.
10.

We now describe results obtained by removing the
imaging lens and observing the harmonic af ter traversing
an air space u5. We call this case the partially developed
edge. Figure 11 shows various exposures of the har-
monic pattern taken with no prism in'the laser. In many
ways this is the easiest situation to observe experi-
mentally. The patterns still show a pronounced edge

FIG. 13. Fringe positions measured on the photographs of Figs.
11 and 12 are shown by circles. The lines are calculated according
to (9.31) and (9.32). The Grst dim-side fringe could not be resolved
so it is not plotted. The second dim-side fringe and erst bright-side
fringe have been arbitrarily placed on the theoretical lines.

-1.0 -0 5
I I

D EGREES
0 05

I
d

MEASURED~TOTAL POWER

Qe

1.0
I

and bright-side fringes, but the fringes are more diGuse
and uniformly spaced. Although no prism was used,
the tube current was reduced to keep the intensity of
the extraneous lines low.

Since the theory predicts the presence of dim side
fringes of much reduced intensity, long exposures with
more sensitive film (Polaroid 10000) were made. One
of these is shown in Fig. 12 with an equivalent exposure
time (accounting for film speed) roughly a thousand

E m= 0.055

FxG. 12. Photograph as in Fig.
11(d} but with an effective ex-
posure (taking into account 6lm
speed) about 1000 times longer.
This reveals a series of uniformly
spaced fringes on the dim side of
the edge. In this photograph,
chosen from many taken at dif-
ferent exposures, the Grst few
dim-side fringes are overexposed.

'.e

': .e
t

~::.e

-1.0 0.5 0 0,5 1.0

Fio. 14. Harmonic power (solid curve) recorded with no slit
while the crystal (ADP) was rotated at a uniform rate on its motor
driven stage. Crystal angle in degrees relative to the optimum
orientation is given by scale at the top. The scale at the bottom,
needed for comparison with theory, is laid out according to (9.19).
Crosses are calculated values of F(e)/F for p =1.95 according to
(8.15).
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SLIT

Fxo. 15. Fundamental and har-
monic intensity distributions for
the crystal orientations u, ~ ~ ., g
indicated in Fig. 14. The diGerent
harmonic curves are plotted to the
same intensity scale. The dashed
line shows how the position of the
edge was defined by extrapolation
to the base line.
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Fro. 16. Displacement (circles) of the edge from the beam axis
as a function of crystal angle for the data of Fig. 15. Dashed line
is a best linear fit to the data. Solid line is calculated from (9.20)
with no adjustable parameters.

times longer than Fig. 11(d).A series of uniformly spaced
straight fringes is seen on the dim side of the pattern
beyond the edge. On the bright side and overlapping on
the dim-side fringes we see evidence of some swirling
fringes. These have been traced to the presence of the
focusing lens by watching the displacement of the
swirling fringes as the focusing lens is moved relative
to the fundamental beam.

The fringe positions from Figs. 11 and 12 are plotted
(circles) in Fig. 13.

In the above measurements the nonlinear crystal was
always adjusted for maximum harmonic power, which
we call the optimum phase-matching condition. In the
following we describe what happens to the harmonic

power and the spatial distribution of the harmonic
intensity as the crystal angle is varied about the opti-
mum phase matching direction. In Fig. 14 we see a
recorder tracing (solid curve) of the harmonic power as
the crystal is rotated by the motor-driven stage. The
optimum phase-matching angle is designated as 0
degrees. At each of the 7 points (a, ,g) indicated by
solid dots on Fig. 14 the harmonic intensity distribu-
tion was measured. The crosses are theoretical points
which will be explained in Sec. 9. The intensity dis-
tributions are shown in Fig. 15. Pronounced displace-
ments of the harmonic relative to the fundamental are
apparent. In Fig. 16 we plot the displacement of the
harmonic edge from the beam axis as a function of the
orientation of the crystal in degrees. The edge was
estimated by extrapolating the steep portion of the
edge back to the base line as shown in Fig. 15. The
fundamental intensity distribution observed in this
experiment was nearly Gaussian but slightly asym-
metric. No prism was used in the laser.

The data presented in this section will be reviewed
again in Sec. 9 where the detailed comparison of theory
and experiment will be made. The reader primarily
interested in a survey of the various eBects observed
may now proceed immediately to Sec. 9.

3. GENERAL THEORY

3.1 Fourier Rejpresentation

The underlying ideas of the general theory will not be
discussed here, since they have been developed in de-
tail in BADE and in Ref. 3. As in BADE we shall con-
sider the arrangement shown in Fig. 17. A laser beam is
incident normally on the plane surface of a negative
uniaxial crystal. Ke shall at Grst assume the crystal is
arbitrarily long; later we shall consider the second-
harmonic beam in the region beyond the exit surface of a
6nite crystal. Inside the crystal the laser beam is very
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nearly a plane wave (ordinary wave) exp(ikt r) with

kr, the nontinai wave vector of the beam, along the sur-
face normal vector N. We choose Cartesian coordinates
such that z is measured along N, the surface is the
plane a=0, and the optic axis lies in the xs plane. The
laser beam sets up a polarization wave which is very
nearly a plane wave exp(2ikt r) at the second-harmonic
frequency co. More generally the polarization can be ex-
panded in terms of its Fourier components in the form

g+INCIDE

P(r) = e—"' Prre*'K'dK, (3 1)

LASER
BEAM

(ORDIN ARY
WAVE )

and we assume that Pz is nonvanishing only for K
within a small neighborhood of 2kr, the nominal wave
vector of the polarization beam.

In addition to the waves exp(iK r), we have to con-
sider the free waves (light waves) in the crystal which
have the form (extraordinary waves)

Uer{ia/c)iiss r
7 (3 2)

with U a unit vector giving the allowed polarization of
the wave, s a unit vector giving its phase propagation
direction, and n2 the refractive index for the extra-
ordinary wave. It is convenient to define the vectors

rf = (c/{o)K, rfr ——(c/ro)2kr, rfs ——n,s. (3.3)

The vectors g2 are constrained to lie on the index sur-
face of the crystal. Index matching occurs when q=q2.
We shall first assume as in BADE that the nominal
wave vector 2kt of the polarization beam is matched.
Optimum matching for focused beams will be considered
later in Sec. 8. In Fig. 3.7 we show the index surface
for the extraordinary wave with g& normal to the crystal
surface and falling on the index surface. The mismatch
of a general Fourier component of polarization is meas-
ured by p' defined by the vector relation

q'N=rf —rfs. (3.4)

The double refr{rction angle p is the angle between rfr and
the normal to the index surface. When absorption is
present mismatch is measured by a complex mismatch
function p deFined by

{pN= rf —res+i(c/ro) nN,

where n is an effective absorption coefficient

Fro. 17. Index surface and the vector mismatch relation (3.4)
for the nominal matching case with the laser beam normal to the
incident surface of the crystal.

It was shown in BADE that the second harmonic
electric field Es(r) is given by Lsee (5.38) of BADE)

where

Es(r) =se '* y Prrg(2igrr)e' 'dK,

2lt rr = ({d/c) q s = ( roc/) q 's+i{rs,

(3.9)

(3.10)

g(x) = (1—e )/x= dpe *r, (3.11)

For computational purposes it is often convenient to
write (3.9) in the form

and y is the dyadic

y= 2m i(c0/cn)UU. (3.12)

Here n is the matched index n=nt=(c/co)2kr=ns(N).
To the second order in the components of K—2kt in
the eomieal mu/chimg case

K,'+K„'
2/re ——(K, 2kr+ pK, )z+ — s+ins . (3.13)

k

n= aq —~o.2,1 (3.6) Es(r) =se dp y Prre "r«e'I'dK (3.14).

with n~ and o.2 the absorption coefficients for the laser
and second harmonic, respectively. The solution of
(3.5) is

(3.7)

In (3.9) and (3.14) it is assumed that r lies inside the

crystal.
The Fourier components Prc of the polarization are

obtained by inverting (3.1)
where {p' is defined by (3.4) and

to"= (c/co)a. (3.8)
Pa=(2rr) ' P(r)Nae ' 'dr (3.15)
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E,(r) =e—' i* Eye'~'dk. (3.17)

It is then most convenient to obtain Pir from

Px —— (d. E) Ex i)dk, (3.18)

which explicitly exhibits the mixing property of the
second-order polarization. Whether Pz. is calculated by
(3.15) or (3.18) it includes these mixing effects.

Having shown how fir and Pry aredetermined as
functions of K, it only remains to carry out the integra-
tion over K in (3.9) or (3.14) to obtain the second har-
monic field E2(r). Although we deal explicitly with the
case of a negative uniaxial crystal and a beam at nor-
mal incidence, it would not be diS.cult to generalize
the treatment to an arbitrary biaxial crystal and an
arbitrary beam direction. The necessary refinements
could all be included in a more general expression for
)err than we have given in (3.13).For a more general dis-
cussion of the linear part of the mismatch function the
reader may consult Ref. 3. From the physical point of
view, our most important assumption is that all the
Fourier components of P(r) are close to index matching
conditions. This assumption enables us to use the
simple formula (3.9) based on the nearly matching
approximation of Ref. 3, to retain only one of the index
surfaces of the medium, and to terminate the expansion
of )pz at terms second order in K—2ki. The theory may
break down for very strongly focused beams having a
diBraction angle 80&0.1 rad.

3.2 Interior Green's Function

One aim of the general theory should be to relate the
second harinonic field E2(r) to its source P(r) as simply
and directly as possible. This will be done by means of a
Green's function formulation of the theory. A theory of
this type has previously been described' for isotropic
media in which E2(r) is obtained in the form

E2(r)=((o'/c') (I—ss) P(r')C(~r —r'~)dr', (3.19)

where P(r) N~ is the polarization with no absorption. We
may obtain PK in two equivalent ways. If the laser is
operated in a definite mode the laser field with no
absorption Ei(r)N~ can be described by convenient
analytical expressions given by Boyd and Gordon. ~ We
then have

P(r)N)( = d Ei(r)N&E)(r)N~, (3.16)

where d is the second order polarization tensor, and Px
is obtained from (3.15). Note that d relates the (time-
independent) Fourier amplitudes and not the in-
stantaneous values of the polarization and electric
6eld. On the other hand, the laser beam might be
specified by its Fourier components E),

where

E2(r) = y. P(r')G(r, r')dr', (3.21)

G(r, r') =se~'(" * (2') 3 g(2i)P)r)e'I'(' ")dK (3.22)

is the Green's function for SHG under nominal matching
conditions in an anisotropic medium. For a negative
uniaxial crystal and normal incidence of the beam )Px is
given by (3.13), and (3.22) can be written

1

G(r r )=se"i(z *)(2)r) dp ev

0

~
—i y z(Kg-2'I(;I+PK~)

X ipez(x +K 2)/4kzzze K ~ (r—zr') (3 23)

The integration over E, gives the factor

2irb(z —s' —ps), (3.24)

which shows that G(r, r') vanishes unless s' lies in the
region

0&x'&s. (3.25)

We may regard (3.21) as an integration over source
points r' to give the Geld at an observer point r. Thus
(3.25) says that the Geld at x, y, s is entirely due to

where s is a unit vector in the direction of r—r and

C(lr —r'I) = Ir r'I 'e'(" Iz)" (-"'( (3.20)

is the Green's function. The dyadic (I—ss) is a pro-
jection operator which selects the transverse part of
P(r). Since the medium is assumed isotropic n is a
constant and the two transverse components are equival-
ent. A small amount of anisotropy can be introduced
into this theory in a natural way by treating the two
transverse components separately (e.g. , the ordinary
and extraordinary waves in a uniaxial crystal) with an
appropriate Green's function for each in which e de-
pends on the direction s. Such a theory would apply
to SHG by focused beams under eoensutchieg coediHoes,
where qi of (3.3) and Fig. 17 does not fall on an index
surface, and the Fourier components of P(r) have (nor-
malized) wave vectors g falling about as close to one
index surface as to the other. In this section we are
concerned with SHG under vomica/ usa/ching coeditioes,
by which we mean that g& falls on an index surface, and
the Fourier components rg all fall close to this (extra-
ordinary) index surface and relatively far from the
other (ordinary) index surface. It is then permissible to
neglect the unmatched waves, so that only a single
component of P(r) appears in our result.

If in (3.9) we substitute (3.15) and interchange the
order of integration we obtain
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sources lying between z and the crystal surface z=0.
The condition z'&0 is a consequence of using an ap-
proximation in which E2(x,y, 0) =0, which implies that
z=0 is the incident surface. The condition z'&z is a
causal relation which couples the observer point only
with source points which are "upstream. " In this sense
we may always regard the z surface as the exit surface
of the crystal as far as SHG is.concerned.

Carrying out the integration over p in (3.23) gives

G(r r~) e mar—(z z')—e2isl(z z')—(2~)
—2

z-zI

gi Kx (x—s')+ixy (y—y')—i P J2./ (z—z')

X eif(Kg+Tv ) 4/4](z —z') (3 26)

This integral can be evaluated with the aid of the
formula

(~)1/2
e iszi—sÃd-x (—

[

eis2/45
( sb)

The result can be written

x-xI

Fro. 18. Outgoing wavelet (3.35) is shown by curve labeled R,
vertical tangent represents resultant wavefront from all sources
on the plane s', and point of tangency locates the energy radiated
from (x',y', 2').

(o&ri) 1
G(r r/)

~ ~

e fasze2ikg—z+isr(x2+Y2) /z (3 28)a
(2wic/ Z

where

X= (x—pz) —(x'—pz'),

Z= z—z'&0.
(3.29)

If we assume that the important region is

X'+ F2«Z2 (3.30)

where

Z—'~R-'
2Z+ (X2+F2)/Z~2R,

R (X2+P'2+Z2)1/2

(3.31)

(3.32)

Then (3.28) becomes

f (0N

G(r, r')~~ ~e
&"z4 (R)

&2wzc&
(3.33)

where C'(R) is the Green's function (3.20) with
~
r—r'~

replaced by R. The validity of (3.30) depends upon
P(r') being nearly a plane wave in the vicinity of each
point r, which is consistent with our previous assump-
tion that the Fourier components of P(r) are confined
to a small neighborhood of K space.

From (3.12) and (3.33) we have

gG(r, r') (o)'/c') e-&"zC (R)UU, (3.34)

in the spirit of the paraxial approximation we can
write

which is very similar to the quantity (o)2/c2)(I —ss)
&&I (~r—r'~) in (3.19).The dyadic UU selects only one
of the transverse components of P(r') corresponding to
our assumption that one of the transverse components
is matched and the other can be neglected. As we would
expect G(r—r') depends on the absorption n2 of the
second harmonic but not on the absorption 0.~ of the
fundamental. The anisotropy of the medium enters 8
through p in the definition of X. Replacing ~r—r

~
in

the Green's function by E. is equivalent to replacing
the constant refractive index 22 in (3.20) by the correct
direction dependent 22(s) for the medium with s in
the direction of r—r'. Thus our detailed derivation
shows that the straightforward generalization of (3.19)
and (3.20) to absorbing anisotropic media does in fact
give the correct result.

The physical interpretation of the Green's function
may be explained in the same way as in isotropic
media. Consider that the polarization at the point
x', y', z' in Fig. 18 is the source of an outgoing wavelet

~i(o)/c) nR

E
(3.35)

E=const. (3.36)

One of these is represented by the curve labeled E. in
Fig. 18. Thus the role played by the distance ~r—r'~ in
isotropic media is now taken over by R. Suppose
P(x,y,z) is nearly a plane wave in the z direction, and
consider the resultant radiation from all sources on the

where e is the matched refractive index defined by
2kr ——(o)/c)n The surf. aces of constant phase of the
wavelet are specified by
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s' plane. Evidently the wavelets will produce nearly a
plane wave whose approximate planes of constant phase
at any instant are envelopes of the wavelets and there-
fore tangent to the wavelets. The vertical tangent indi-
cated in Fig. 18 represents the second harmonic wave-
front. The points of tangency 'satisfy

x—x'= p(» —s'), (3.37)

which is the equation of the p line'::through x', y', s'. All
parts of the wavelet which are not very close to the
point of tangency destructively interfere and produce no
resultant field. Thus all the energy radiated at the
source point x', y, ', s' Qows along the p line. This ex-
plains why energy is transported at the angle p to the
direction of phase propagation and compliments the
completely formal proof given in the Appendix of
BADE.

3.3 Exterior Green's Function

Up to this point we have regarded all points s&0 as
lying in the nonlinear medium. In practice the crystal
will have a fi2ii te te/2gth 'which we shall denote by t. Thus
(3.9) and (3.21) apply to the region within the slab

0&8&i, (3.38)

and in particular to the exit surface z=t where R2 is
accessible to measurement. Outside of the crystal P(r)
vanishes identically, so that the region of integration in
(3.21) is confined to the slab. At the exit surface the
reBection and transmission coe%cients for the second
harmonic will be essentially the same as for an un-
bounded plane wave. If the medium beyond the exit
surface is air (considered equivalent to vacuum) the
Geld in the air at the exit surface is given by

We can write (3.40) in the form

E,(r) = y P(r')G, (r,r')dr', (3.42)

where G,(r,r') is the exter/tat Greerl's fgtictio/2 which re-
places G(r, r') when r lies outside the crystal. From
(3.21), (3.39), and (3.40)

G,(r,r') =
22+ 1 22ric z t—

G(r",r')e'("/'»dx"dy" (3 43)

(x—x")' (y —y")'
2P 2(s—t)+ +

3—l s—l
(3.44)

which is equivalent to (3.31). With the aid of formula
(3.27) the integrations of (3.43) can be carried out to
obtain

2ri (~/2)
G.(r,r') =

e+1&2~ic)

t—s'+22(z —t)
e 'e—)ng(l —z') i (o)/c) fn(l—z')+z—l]

~e f(x—x' —p(t —z'))'+(y —y')')
&&exp i — . (3.45)*

2c t—s'+N(s —t)

where we have taken P ' outside the integral and set it
equal to (s—t) '. In the exponent we write

The field in air E2(x,y, s) given by (3.40), or the in-

tensity proportional to
~
E2

~

', is in principle accessible
to experimental measurement. In practice it is usually
convenient to employ an optical system, which we shall
call simply a lees, to form an image of the desired field
distribution having a suitable size and location for meas-
urement. Let us place a thin lens at distance L~ from s
in the plane s+Li, and consider the field a distance L2
from the lens in the plane s+Li-)/-L2, where Li and L2
satisfy the object-image equation of geometrical optics

1/Li+1/L2= 1/L, (3.46)

lim E2(x,y,s)= lim E2(x,y,s),
z~l+ ri+1 z~l

(3.39)

with L the focal length of the lens. By application of
(3.40) we could obtain the field at s+Li in terms of the
field E2(x,y,s). The effect of the lens is to introduce a
phase factor expLi((c/2cL)(x2+y2)), and we could then

apply (3.40) again to obtain the field at s+Li+L2. This
calculation has been carried out by Kogelnik, '4 who has
shown that if Li, L2 satisfy (3.46)

~i(a)/c) p

R,(x",y",t) d*"dy", (3.40)E2(x,y,s) =-
27i c

where E2(x",y",t) is the field in air at the surface and P
is here an abbreviation for the function

where t+ signifies that s ~ t on the air side, t signifies-
s ~ t on the crystal side. The right side of (3.39) may be
obtained from (3.9) or (3.21) with s=t; our problem is
then to determine the Geld at an arbitrary point in the
air beyond the exit surface. We shall neglect the second
harmonic reRected at the surface and the polarization
produced by the rejected laser beam.

From the Geld in air at the surface we can obtain the
field at an arbitrary point by means of diffraction
theory~3

P —L(x x~~) 2+ (y y~~) 2+ (z t)2)1/2 (3 41)
"M. Born and E. Wolf, Princi p/es of Optics (Pergamon Press,

London, 1959), Sec. 8.3.

E),„,(x, y, s+Li+L2) =r/2 'E2(r/2 'x, rN 'y, s)
)(ei(a&/c)(L1+L2)ei(&a/2cLrn)(z+2 ) (3 47)

'4 H. Kogelnik, Bell System Tech. J. 44, 455 (1965).
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where the magnification rn is defined by

m= —L2/L, i. (3.48)

For a more general optical system (3.47) is still valid if
L~, L~ are measured from the principal planes. We have
written Ei,»(x, y, s+Li+L2) in (3.47) to avoid con-
fusing this field with E2(x, y, s+Li+L2), which would
have been the field in the s+Li+L2 plane without a
lens. It is inadvisable to attempt to apply (3.47) to a
case where the object plane lies inside the crystal.

b=mp'kg) (4.1)

where ki is the wave vector of the beam. Near the axis
the beam behaves much like the plane wave exp(iki r)
as assumed in the previous section.

It is convenient to measure distances from the focus
by the dimensionless coordinate

&=2(s f)/b. — (4 2)

Here f may have either sign. We shall also write
$=(2/b)(l —f) later on, since s=/ is the surface of ex-
perimental interest. The electric field Ei(x,y, s) of a
Gaussian beam can be written

x'+y'1
Ei(x,y,s) = Ep ei2&* exp — . (4.3)

1+if wp2(1+i')

The nominal wave vector of the beam is ki=kiN. In
the near field $«1, however, where the beam is con-
Gned to a narrow waist, the effective wave vector de-
scribing the propagation of phase along the axis is
ki —(2/b) because of the factor (1+i)) ' This show. s
why the familiar index matching condition, " which
gives the maximum SHG for plane waves, is not the

4. GAUSSIAN BEAMS

4.1 Fundamental Field

A Gaussian beam is an approximate solution of
Maxwell's equations which is sharply concentrated
along some axis of propagation and has a Gaussian
distribution of Geld strength in the direction per-
pendicular to the axis at all points along the axis. As
shown by Boyd and Gordon' the lowest or fundamental
mode of a confocal resonator consists of Gaussian beams
properly related in phase and propagating in opposite
directions along the mirror axis. For the nonconfocal
resonator, or the resonator employing one spherical and
one plane mirror, it can be shown' that there always
exists a hypothetical confocal resonator having the
same modes. The spacing of the mirrors in this hypo-
thetical equivalent confocal resonator is called the
confocal parameter b. We shall assume the axis of the
beam is the s axis and the position of the focus is 2 =f.
At the focus the beam has its smallest spread measured
by the parameter wp called the rninimgnt spot sise
According to theory

optimum matching condition for focused beams. This
problem will be fully treated in Sec. 8, but meanwhile it
is convenient to assume the nominal matching condi-
tion. The spot size may be de6ned as the radial dis-
tance from the axis m at which the amplitude of the
field falls to 1/e of its axial value. From (4.3) we have

(1+$2)1l2 (4.4)

The quantity

w —+ gawp
——(2wp/b)(s —f) .

bp = 2wp/b = 2/wpki

(4.6)

(4.7)

giving half the total angular spread of the beam is called
the digraction angle. Gaussian beams only exist in the
paraxial approximation

(4.8)

This is equivalent to our assumption in the previous
section that the laser beam is nearly a plane wave.

Figure 2 shows a Gaussian beam entering the crystal
at s =0, coming to a focus at f and diverging with the
diffraction angle bp. The field strength according to
(4.3) is shown dashed on the right at some depth s as a
function of transverse position. The dashed lines at
angle p and the variable s, and the points N~, 0, N~, will
be explained in the next section. The SHG curve rep-
resents the second harmonic field strength neglecting
fine structure according to (5.28).

4.2 Interior Harmonic Field

We imagine that the crystal is a slab extending from
the incident surface a=0 to the exit surface s=/. The
laser electric field with no absorption is given by (4.3)
in the slab 0&x&3, and the polarization beam with
no absorption is given by

P(r)N~=Pp e" &* exp
(1+'~)'

where

2(x'+y')
It( ), (4 9)

wp'(1+i))

a(.) =1 0&s&t
=0 a&0, s& l. (4.10)

In the presence of absorption the polarization beam is

P(1')=e "*P(r)N~. (4.11)

We first consider the field E2(r) within the slab 0&s&l.
We have the choice of using either the Fourier method
(3.14) or the Green's-function method (3.21), both of
which will be briefly outlined.

If we substitute (4.9) into the definition (3.15) of the
Fourier components Px, we find that the integrations
over x and y can be carried out with the aid of the
formula (3.27), but we are left with an integral over s

At large distances from the focus, called the far field,

(4.5)
we have



352 KLE I N M AN, ASH KIN, AN D BOYD

which cannot be expressed in a convenient closed form.
This is no great disadvantage, however, since the
integral expression for Pic can be substituted into
(3.14), and the integrations over K can be carried out
in closed form. A closed-form expression for Pic can be
obtained if we omit the slab function B(s) from (4.9).
This will still lead to the same E2(r) for points s within
the slab. The reason for this has already been brought
out in (3.25); it is permissible to alter P(r') in the
regions s'&0 and s')s since E2(r) depends only on
P(r') within 0&s'&s. If we omit B(s) in (4.9), we
obtain

where $'=2(s' —f)/b. We can integrate over x' and y'
using the expansions

X2=x"—2x'(x —pZ)+ (x—pZ)',
I"=y"—2y'y+y',

(4.18)

and formula (3.27) to obtain the field within, the crystal

Z
tp

QZ

E (r) —~.P e
—zzazze2ikiz

1+i)J () 1+i)
2L(x—pZ)'+y'3

Xexp ~— ds'. (4.19)*
w p2(1+i&)'NO 6

P —P ei(2l'z& Xz) fe—&)zi+( &—l2) irz

16m

=0
where the cuto6 wave vector is

E 2+E„2
E,=2kg—

This becomes identical with (4.14) if s' is replaced by
the variable p=Z/s=1 —(s'/s). Thus we have shown
the equivalence of the Green's function and Fourier
methods in the case of a Gaussian beam. They are, of
course, formally equivalent in general, although in some

(4 13) cases one method may be more convenient than the
other.

We have displayed this explicit expression for Pic in
order to make the discussion of the Fourier method
more concrete. It should be emphasized again that
(4.12) describes a beam which for SHG is equivalent to
but not identical to the more precise description (4.9).
It is now somewhat tedious but elementary to evaluate
(3.14) and obtain (0&s&l)

4.3 Exterior Harmonic Field

We have obtained an expression (4.14) or (4.19) for
the field E2(r) valid at any point within the crystal. In
particular the 6eld in air at the exit surface s=/ is ob-
tained by multiplying (4.19) by the transmission co-
efFicient 2n/(n+1) and setting s=l. This field may be
observed experimentally with the aid of an optical
system focused on the exit surface. It is also useful to
have an expression for the field E2(r) in air beyond the
exit surface. This can be obtained using the external
Green's function (3.45). The integrals over x', y' can
again be evaluated using (3.27) and the result for the
field outside the crystu/ is

E2(*,y,s) =sy Ppe—&*

gpcrz

Xe2i)ziz dp
1+ig p 1—i(2f/b)+i(2s/b) (1—p)

2((x—pps)'+y'j
&&exp (4.14)

wo (1+2()

We cannot carry out the final integration over p ex- n+1
cept in certain limiting cases. For the near field

$«1,
we consider the limit b ~ p() in (4.14) and obtain

(4.15) )(&2iIt'1[l+ (z—l) n ]

1+i), p 1+i)'

1

S~.p e aize2ikiz —
dp eyaze —2[(z—ypz) +2 ]izzz (4 16)

where

2$(x—p(l—s'))2+y2]
Xexp — ds', (4.20)*

wp2(1+i), )

E (r) ~.P e ,'azze2ii'ziz-
2x'Lc

e—*'B(s')

Z(1+it') '

I'+ F2 2(x"+y")l
Xexp iki — ' dx'dy'ds', (4.17)

Z w p'(1+i&') I

which agrees with Eq. (5.55) of BADK for a parallel
beam. The case of the far 6eld will be considered in the
next section. The case p=0 will be treated in Sec. 8.

Now let us substitute (4.9), (4.11), and the Green's
function (3.28) into (3.21).

2
$l f+n(s l)—$— —

6
(4.21)

now replaces the $ of (4.19). In the limit s ~ t+(4.20)
reduces to (4.19) multiplied by the transmission coeffici-
ent 2n/(n+1) of the exit surface. We might have de-
duced (4.20) from (4.19) by the following elementary
arguments: (a) the transmission coeff(cient converts
(4.19) to a field in air; (b) exp( ——2'nps) becomes
exp( ——2(22l) since there is no absorption in the air;
(c) in the phase-propagation factor exp(2ikis) we re-
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place s by the equivalent optical path in the medium
t+(s—l)ri '; (d) in the spreading factor (1+i/) ' we
replace s by t+ri(s —t) which is the distance in the
medium for an equivalent spreading; (e) the double-
refraction angle p should be multiplied by / —z' rather
than s—s since there is no double refraction in air.
Notice that two different replacements of s are re-
quired to convert (4.19) into (4.20), the more important
of which is the equivalent spreading distance which
takes into account the fact that the beam spreads more
rapidly in air than it would have spread in the medium
because of refraction at the exit surface.

Associated with a given axis, focus, and parameters
k~, b, and zoo there exists a complete set of modes of the
electromagnetic 6eld. The simplest of these modes are
the Gaussian beams considered in this section. Analyti-
cal expressions for the higher modes have been given by
Boyd and Gordon. ' Although the mathematics is more
complicated, higher modes in the paraxial approxima-
tion (4.8) can be handled by the methods of this sec-
tion, since they all have the form of Gaussians multi-
plited by polynomials in x and y.

There should be no confusion with P in (3.41) for which
we have no further use. The point s= t=O speci6es the
p line through the focus, while the beam axis x=y=O is
specified by s= —p, t=0. We also define the constants

q=P/$, ui= —P, up=Pf/(s f)—. (5 6)

The point s=g~, t=O denotes the beam axis while
s=l2, t=0 is the p line through the origin x=y=s=O as
shown in Fig. 2.

By (4.2) and (4.7) we have

(1 if+ ' ')
wp'(1+~&) b p'(s f)—'

neglecting terms of order f p or smaller compared with
unity. The factor (1+i)) ' outside the integral (4.19)
can be replaced by (i&) '. With these approximations
(4.19) becomes in the far field

b
E (r) —~.p C a(f zza—p(z —f)C2i(zgzC —2( (1—i$)—

2$

S. FAR-FIELD INTENSITY DISTRIBUTION

5.1 Far-Field Approximation
where

dl
cpip(z —a)&cczz-p(z-zz)& (5 7)

ai u+pq

We come now to our main purpose in this paper which
is to discuss SHG in the limit of the far field,

(5.1)

where g is defined by (4.2). Our discussion will be
limited to Gaussian beams, but similar methods can
also be applied to higher order modes. For simplicity
we shall Grst assume that the point of observation x, y, s
is inside the crystal or on its surface (just inside), so that
(4.19) applies without the modifications in (4.20) re-
quired to represent the Geld at a point outside the
crystal. We also assume the focus f lies inside the
crystal well removed from the incident surface

(pl&) 8— (s.9)

In the angle variables s, t the polarization beam (4.9)
is described by expt —2tP —2(s—ui)'j; therefore we in-
terpret the Gaussian factor expt —2(s—u)P1 in the
integral of (5.7) as arising from the Gaussian shape of
the polarization beam. The factor exp(cu) represents
absorption. We interpret the pole function (u+iq) ' as
representing the focus. The remaining factor in the
integral.

(5.S)

and the new integration variable u is related to P' of
(4.19) as follows

f»b. (s.2) e2ig(u —s)2 (5.10)
Finally, we assume

pWO. (5.3)

(5.4)

The case p=O will be treated in Sec. 8.
Since the laser beam diverges in the far 6eld at a

constant angle bp given in (4.7) it is convenient to
describe the second harmonic field in terms of angle
variables relative to bo. In place of x, y we denote
points in the beam by the variables

is a rapidly oscillating phase factor. In the far Geld
limit (5.1) the absorption and Gaussian factors are
slowly varying functions of I compared to the phase
factor (5.10). It is this fact which enables us to deduce
the nature of the Geld in the far-Geld limit.

Let us write the field inside the crystal (5.7) approxi-
mately in the form

b
Ep(r) p. pp r a(f zzap(z f)—— —

2t
)&e"~"e"&"e '("+")I(s,(), (5.11)

P= p/BpWO. (5.5)

In practice the plane s will ordinarily be the exit sur-
face s=/. The double refraction angle will be speci-
fied by

where I(s,t) is the integral

&2ig(u—e)&

u+ zq

(5.12)
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containing the pole and rapidly oscillating factor of the
integral in (5.7). A slightly more general form will be
used in the next section which makes (5.11) identical
with (5.7). The slowly varying factors in the integral
have here been taken outside the integral and given
values corresponding to u =0. The validity of this
choice will be discussed later. The factor $

' and the
absorption factor in (5.11) have the form to be expected
if the SHG occurs very near the focal point f. The
effects of the spatial extent of the focus are contained
in the integral I(s,)) The intensity as a function of s, t

can be written

S(s,t)=(ne/8 )~E(r)~'

5.2 Dominant Term in the Interior Field

We now consider the far-field limit in which the
focus moves far from the incident surface at the same
time the point of observation moves far from the focus.
Mathematically' the limit may be specified by

f~~, s f~—~, f/(s f)——+const, (5.17)

which implies an infinite crystaL This limit isolates the
focus from both the incident surface s= 0 and the sur-
face of observation s (which might be considered the
exit surface). Therefore we would not expect the sur-
faces to influence the SHG in the limit (5.17). Let us
write (5.12) in the form

b'rsc—
~

p. Po~
2 e—2~if—~a(~—f)
32~('

Xe '" 4" iI(s, ))i'. (5.13)
I(s ()=e2+e& &

—4i e v+2i (v&/$)

)%41 ~+tP
(5.18)

From (5.6) we have in this limitFor quantitative considerations it is useful to eliminate

~ y Po' and express S(s,t) in terins of the laser power
P&, the intensity i esi de the crysta/ may be written

Pui ———P(2/b)(s —f) -+ —m,
z—f~~

pu2
——p(2/b) f ~ ~,

(5.19)

E Pg'kg'
g(s t) — e

—~if—~R( —f)e—('+') ~I(s () ~
(5 14)+

p

327) Go

sin 8
(nc)'

(5.15)
(5.20)b~0,

providing P~O, so that the integration limits of (5.18)
the constant defined in (3 29) ()f QADI f()r become infinite. Much the same eGect is achieved by

allowing the confocal parameter b to approach zero in a
finite crysta/with f and s fixed

The value'"" in AD»s &—&.SX&0-" es«or the
1.15-p laser. It is clear that for any uniaxial crystal a
constant E in (5.14) could be defined in terms of the
appropriate components of the second-order polariza-
tion tensor d.

The validity of treating exp(cu) as slowly varying
compared to the phase factor exp[2i)(u —s)'j at u=O
depends on the condition

which corresponds to the use of lenses of shorter and
shorter focal length to produce the focus. From (4.1)
and (4.7)

50= 2/(bki)"' (s.21)

Since the theory of Gaussian beams is only valid in the
paraxial approximation it must be understood in (5.20)
that b must not become so small that 8, —+1 in (5.21).
From (5.6) and (5.21) we have in the limit (5.20)

which reduces to

c(( —2&(u—s)'
Zu u=p

&ui ———(ki/b)"'p(s —f) —+ —~,
$~p

&u2 ——(ki/b)'('p f ~ ~,
Q-+p

(s.22)

~s)» b/8P. (5.16)

It is reasonable to assume that this condition holds out-
side of a neighborhood about s=O which is small com-
pared to the domain of principal interest u~&s(u2. We
shall proceed to investigate the behavior of I(s,g) as a
function of s without regard to the restriction (5.16),
but it should be kept in mind that absorption could
obscure soine of the structure in I(s,)) near s=O and
render it unobservable experimentally. A more speci6c
criterion will be given in (6.70) and it will be shown that
in a typical case absorption can be neglected.

I(,~) I.(,~), (5.23)

where

(s() e2i)s~ e
—4isv (5.24)

which is equivalent to (5.19). It should be emphasized
that we are not considering the simple limit s —+~, which
will be considered in Sec. 7.

In the limit $~~ by (5.17) or (5.20) we can write
(s.18)

"R. C. Miller, D. A. Kleinman, and A. Savage, Pcs. Rev. The integral can be evaluated by contour integration in
Letters 11, 146 (1963). the complex e plane. If s&0, the contour must be com-
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pleted in the upper half-plane where the integrand is
analytic. If s)0, the contour can be completed in the
lower half plane containing the pole v= —iP and the
integral has the value —22r2 exp( —4ps). Thus we
obtain

8EAM AXl5() -P

p —L(NE

Is(s, &) = 22rv—e24& "e 4tt'0(—s), (s.25)'

where 8(s) is the step futtction

8(s) = 1, s)0
1
2 )

=0
s=0
s&0.

(5.26)

We return to the approximation (5.11) and the ques-
tion of why the slowly varying factors taken outside
the integral should be evaluated at n=0. This is be-
cause the main contribution to (5.24) comes from the
part of the contour passing near the pole. Since the
contour is closest to the pole at N=O this is the appro-
priate value to use in evaluating the slowly varying
factors. In the next section, however, we shall find it
necessary to reopen this question and to modify (5.11)
when we consider small contributions to (5.7) from
other parts of the contour.

It is clear that the discontinuity in Id(s, () is to be
associated with the sharp edge observed experimentally
in far field intensity patterns; the region s(0 may be
called the dim region and the region s)0 the bright
region as suggested by photographs of the beam. If, in
(5.11), we make the approximation

we obtain

(5.27)

xb
E2(r)=y PS—e ~'r l"'z r'

i$

)(52itiz+2tst( +t )Css2[2ss+t +2—Ps]e(2) (5 2g)

Fro. 19. Contours of intensity for the nominal matching case
neglecting fine structure according to (5.29). The contours are
arcs of circles centered on the beam axis s = —p, k=0 together with
the line s=0. The p line through the focus shown in Fig. 2 inter-
sects the s, 3 plane in the dot at s=t =0.

The beam axis is indicated by the open circle. The con-
tours of intensity according to (5.29) are arcs of circles
drawn with their centers at the beam axis; all of the
contours are closed by a segment of the line s=0 at
which the intensity is (approximately) discontinuous.
The shape of the SHG pattern observed photographi-
cally will depend upon exposure; relatively long ex-
posures will show the more distant (weaker) contours
which tend to approach a semicircular shape; short
exposures will show the near (stronger) contours which
are very much elongated along the line s=0. It should
also be mentioned that long exposures tend to bring
out the fine structure which is not given by (5.29).

5.3 Exterior Field

We turn now to the case where the field is observed
outside the crystal. The external far f'field condition is

(5.30)$Q)1,
The field strength according to (5.28) is shown sche-
matically on the right in Fig. 2 by the curve labelled where $, has been defined in (4.21). We can write
SHG. The plot shows the sharp edge at s=O on the
p line through the focus. The corresponding intensity
according to (5.14) is

~12~12
S(s l) 42' e 2"r "'~r'e 'l"+"+2~'0(~). (5.29)*

We shall regard Id(s, )) as the dom2224ttst term in I(s,p)
since it becomes exact in the limit (5.17) and predicts
the dominant feature seen in photographs of the beam.
Features which are neglected in the approximation
(5.27) we shall call Pne structure.

Figure 19 shows the contours of equal intensity for
the nominal matching case as observed in the st plane
looking down the beam axis. The origin s=t=O indi-
cated by the solid dot is the p line through the focus.

(5.31)

where P here denotes the value of $ defined in (4.2) at
the crystal surface s=l. Two rather different cases are
included in (5.30) depending on whether or not
satisfies the far field condition (5.1). We postpone until
Sec. 7 the case in which (5.30) is satisfied by having
s —+so. Here we consider the limit (5.20) which insures
that $))1 as well as $,))1.The field (4.20) can be cast
into the form (5.7) providing somewhat more general
definitions are given for the angle variables s, f and the
parameters c, q, N1, N2. Retaining for convenience the
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same notation we define

x —p(L —f)s= t—
bp[L—f+22(s—L)]

(5.32)
~p[L—f+u(.—L))

The center of the arcs of constant intensity is again
s= —P. In view of the new definition (5.35) for s,
however, this no longer coincides with the beam axis
@=0located at

c= (nL/2P)~. ,

which satisles

saxis =
L f+—22(s L)—

P&saxis& 0

(5.39)

L f+—N(z L)—

(5.33) saxis ~ 0 (s.40)

X e2(te(s ee)sec —2(ees—ee)2 (5 34)
u+ 2(L

Removing the slowly varying absorption and Gaussian
factors as in (5.11) gives the field outside the crystaL

' 2s
E (r) —+.P e-eeif—kc'2(i—f)

2$, n+1
)(e2i&ei[)+(z—)) i)eeepit'ei e 2(s2+22)7-(S $ ) (5 35)

where I(s,$,) is defined by (5.12).Later in (6.1) we shall
define I(s,$,) more precisely so as to make (5.35) identi-
cal with (5.34).

The intensity olts~de the crystu/ may be written in
the form (5.14)

+ ~12/12 4g
5'(S t) e 2eel f u2(l f)—— —

(r)+1)'
Xe '("+"&

~
I(s,fe) ~

' (5.36)*

where 4N/(2)+1)2 is the transmission coefficient of the
exit surface of the crystal. In the limit (5.20) we have

( Its.) I ( ts.), (5.37)

where Ie(s, g,) is given by (5.25). The intensity without
fine structure outside the crystal is therefore

~12/12
S(s,t) = 42' e—2c If—~S(&—f)

P.2 (u+1)2
&(e '("+"+'t)e)8(s) (5.38)~

in the nominal matching case.

L f+—I(s L)—

Treating (4.20) exactly as we did (4.19) at the beginning
of this section we obtain for the external far f)eLd

L& t 222

E2(r)=y Pp
~

~e
2f ) '-(' f&

2p, EN+1)

ge2ikI[l+(z —l)n &] —2t2(1—if')

5.4 Summary

In this section we have obtained the limiting be-
havior of the second harmonic intensity distribution for
a well localized focus in a crystal very long (or thick)
compared to the confocal parameter, i.e., l))b. The
limit may be taken either by allowing l —+~ while the
focus remains near the center of the crystal and b is
axed, or by allowing 0 —+ 0 with Gxed /. The result is a
very simple representation of the pattern which has a
discontinuous edge at the p line through the focus
(s=0) as shown in Fig. 2. On the bright side the intensity
decays to zero like a Gaussian centered on the beam
axis. This result represents the sharp edge and the
gross intensity distribution of the pattern, mentioned
in the Introduction as objectives (1) and (2) of the
theory. Both the discontinuity and the absence of 6ne
structure are the result of the limiting process. For
simplicity in presentation we have restricted the dis-
cussion to the nominal matching case. It will be shown
in Sec. 8. that the edge can be moved relative to the p
line by a slight rotation of the crystal or any other pro-
cedure which mismatches the nominal wave vector of
the laser beam. Thus in practice the edge will ordi-
narily not fall exactly at s=0.

0. WELL-DEVELOPED EDGE STRUCTURE

Although the dominant term (5.25) and the associated
electric Geld (5.28) and intensity (5.29) describe the
general nature of the SHG by nominally matched
focused beams in the far field, the approximation
(5.2'I) is unsatisfactory in three respects: (a) Ie(s, )) is
discontinuous at s=0, (b) Ie(s, f) predicts zero field in
the dim region, and (c) Iq(s, )) contains no Gne struc-
ture. In this section we shall obtain a continuous
analytical approximation to I(s,)) for the case in which
the edge is very pronounced and the associated fine
structure is primarily characteristic of a focus in an
inGnite medium and the speciGc effects of the surfaces
of the crystal are very weak. %e shall call this the case
of weLL deveLoped edge st-ructure. In the next section we
shall consider partiaLLy deveLoped edge structure which is
important in many practical cases where the crystal
is finite and we may have p&(1, or else the pattern is
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where

dQ
I(s,g) = e'*'&("—')'f(u, s),

u+if
(6 1)*

f(u s) —ecQe4QB 2Q (6.2)

is the slowly varying factor and c is defined in (5.8).
With I(s,$) defined by (6.1) and (6.2) we see that (5.11)
is identical with (5.7). We now decompose I(s,)) as
follows:

where
I(s,k) =I-(s,h)+Ii(s, k)+I2(s, k), (6.3)

observed outside the crystal. The well-developed edge
structure has a fine structure arising mainly from the
term 2iv'/P in the exponent of (5.18) Lor 2ifu2 in
(5.12)j, whereas in the partially developed edge struc-
ture this term is negligible but there is a fine structure
arising from the finite limits of integration. If P/0 and
if $ can be increased indefinitely within the medium,
then it is always possible to achieve a well developed
edge structure, which is the subject of this section.

Since we are now interested in a higher approxima-
tion we must generalize the definition (5.12) of I(s,)) so
as to include the slowly varying terms. We shall assume
that r lies ie the crystal and continue to write E2(r) as
in (5.11) but (5.12) will be replaced by

I„(~—)=0.
From (6.2) we can write the last term of (6.8)

(6.9)

due"&'" ')'f(u, s)
00 u+if

In the far field we have

(6.10)

[ 4u/(u+ig) [ &4«4$, (6.11)

showing that the third term is negligible compared to
the second term of (6.8). Thus we write

=4ig(s+ig)I„—4ig
ds

du e"&&
—"f(u,s) . (6.12)

Since f(u, s) is slowly varying compared to the phase
factor, except in the region u s, we may take f(u, s)
outside the integral

dI~
=4i$(s+iq)I„4i$f(s—,s) du e"«"-". (6.13)

considering I„(s,))=I„(s)as a function of s with $ a
parameter. The solution of (6.8) is made unique by
requiring

I„(s,t) = e2ig(u s)&f(u s)—
„u+iq

Ii(s, ~ )=- e2is(u s)if(u s—)
~ u+vg

By (3.27)
(6.4)

(6.5)
so that (6.13) becomes

etu e2iS(u-e)~ —
[ [

eiw/4

E2g)
(6.14)

I2(s, ~)=- e2~«e a)1f(u s)—
~g u+'ig

(6.6)
dI~

=4ig(s+iq)I„—(8v$)'I'e" ~~'f(-s, s) . '(6.15)

I-(,t) I (,5). (6.7)

Note that f(u, s) is well behaved as u-+ &~. We shall
find that I2(s, () and Ii(s, g) contribute fine structure
associated with the incident and exit surfaces, re-
spectively, while I„(s,$) contains fine structure associ-
ated with the sharp edge at s= 0. It is clear from (5.24)
that dIoo=4i )(s+iq)I„. (6.16)

We first consider the relationship of I„(s,)) to
Ie(s,g). If s/0 and I„WO,the leading term on the right
of (6.15) is 4igsI„.Let us neglect the second term com-
pletely and consider the approximate equation

I„(s,))=0,
I„(s,f)=He"t" e 4e',6.1 Edge Fine Structure

We shall now develoP the theory of I(s,$) on the assumP- For s&0 the solutions of (6.16) are
tion that I„(s,t) is the most important term.

(6.17)

It follows readily from (6.4) that I„(s,g) satisfies the
differential equation

dI„=4i P(s+i q)I„4i$—due"«"-')' f(u s)

du Bf
g2ig(u —a)&

7

—~ u+zg 8$

where A is a constant. Neither of the solutions (6.1'7) is
satisfactory by itself; the solutions must be joined dis-
continuously at a suitable point to make a physically
interesting solution. Evidently the only point at which a
discontinuity can be allowed is s=O where (6.16) is not
valid. Thus we are led to a solution of the form Ie(s, g)

(6 8) given by (5.25), although these arguments do not de-
termine the constant in (6.17). The inhomogeneous
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7r
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where
C(G) =J(s,k) =e ""J.(s,k).

The dominant term
'

rm in J(s,&) is

(6.2o)S = 22rie 4e—'S(S) .

setting J(s,g)= Je(s, &) on the rig
' . s
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s

(6.19)
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Z 7r
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'
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ds

2

J(S,$),(p = —(82r&) "'e'"/'

and for s&0,

i 1—e 'e')J(s,&),)p= 22ri —e

e
—2x s"&"f(s',s')ds', (6.21) 1s 1

(6.28)

-(8 ~)'/""-/' e
—2igs &"&'"f(s', s')ds' (6.22.) 1+i 2

F(s) =
z

4(z/2) z2+. . .——e'
ire

g() i/2)—
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From (3.5) we see that q is of order g' so AJ(s, f) is of
order ( 'I' and will be neglected compared to the
second term of (6.31). For s=0 (6.32) is not valid, but
then it is easy to show that AJ(0, $) is of order $

't'
compared to J(0,$) = 7ri. F—urthermore, (6.32) cannot
cause additional structure because it is identical with
the second term of (6.31) multiplied by (iq/! s!). This
justifies the approximation (6.30), which we now write
in the form

BEAM g p L(Nr
AXIS

e-4(S-~~ &

e-4S&
I

EDGE
~ - FRINGES

82
)

E =253

/3 = 0.3l 8

SURFACE
FRINGES (LJpj

x10

( 4p i/2)
X 1—(1+i)F*! ! s! —

! ! e"&"f(s,s) . (6.33)*

This approximation neglects terms of order ] 't' in the
asymptotic forin and of order (—'t' at s=O. The second
term of (6.33) represents the edge fine structure associ-
ated with the sharp edge at s=0 in the dominant term
Id(s, ]).

We shall show later that I„(s,)) is principally re-
sponsible for the observed SHG by focused beams if $
is sufficiently large. Therefore, we proceed immediately
to consider the ieteesity ignoring for the present the
terms Ii(s, t) and Is(s, rc) in (6.3). The intensity is given
by (4.13) with I(s,)) now defined by (6.1) and for the
present approximated by I„(s,)).We are interested pri-
marily in the dependence of S(s,t) on s which is governed
by the function e 4"!I(s,f)!'. From (6.33) and (6.26),

!I„(s,))!'=47r'{B(s)e 'e" B(s)e 4e—'f(s, s)(1 C S)——
+-'f(s, s)'[(C—-')'+(S—-')'7l (6 35)*

where the argument of C, S is !s!(4$/ir)'t'. For the
case of no absorption (u=O) (6.2) gives

f(s,s) =e'"',

and the s dependence of the intensity is given by

(6.36)

(27r) 'e "'!I„(s,g)! '= B(s)e
—'"—B(s)e—"(1—C—S)

+-,
' L(C——') '+ (S——') '7, (6.37)

where
h =2s'+4Ps. (6.38)

The first term of (6.35) is the dominant term squared

!Iq(s, f)!', the second term is the interference between
Id(s, f) and the edge fine structure, the third term is the
square of the edge fine structure. This is the only term
of (6.35) which gives intensity on the dim side s(0. As
s~0, this term approaches the correct value m' for

!I„(0,$)!s while the first two terms of (6.35) cancel. On
the bright side, s)0, the third term rapidly becomes
negligible compared with the second term. The asympto-

The asymptotic form (6.31) valid for !s!)(s/4$)'t'
becomes

f(s,s)
I„(s,&) =Ig(s, ))+!—!

e' " —+ . (6.34)*
&2(i s

tic form of (6.35) valid for !s!)(7r/4f)'t' is

(2s.) I„(s,&)'=B(s)e 'e'

sin(2&s' —rr/4)
+B(s)e 4~'f(s, s)

s(2s-$) ils

+ f(s,s)'+ . (6.39)*
8rr)s'

The second and third terms of (6.39) arise froin the
second and third terms of (6.35), respectively. We see in
(6.39) that the second term is oscillatory and produces a
series of maxima and minima of decreasing amplitude
as s increases. We shall refer to the maxima as edge
fringes. The locations of the edge fringes are cor-
rectly given by the asymptotic form (6.39) even for
the first fringe; the locations relative to the edge are
approximately

s~' =(2$) 't L(3'/4)+27r(j —1)7'ts

j=1,2, 3, . (6.40)*

Here we are neglecting the effects of s ' as well as the
exponential factors e "', e 4«', and f(s,s) on the edge
fringes. For analyzing experimental data it is useful to
work with the fringe spacing ratio defined by

s(j)—s(')
E(j)—=

s(') —s(')

((j—1)+0.375)'"—(0.375)"'
(1.375)'"—(0.375)"' (6.41)*

Uq 0
4 s s&il llllllti

SURFACE
FRINGES (Qq)

x50

FIG. 20. Intensity distribution in a typical well-developed edge
is shown by solid curve for the nominal matching case according to
(6.37) and (6.44). Surface structure according to (6.69) is indicated
by the positions of the fringes, but is too weak to show directly
on the continuous curve. The dominant term in the intensity is
shown lightly and its (imaginary) extension to form a Gaussian
centered on the beam axis is shown dashed. The 6rst two terms of
(6.39) are shown dashed on the right of s =0 and the third term of
(6.39) is shown dashed on the left of s=0 where these asymptotic
approximations deviate from the true curve.
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SECOND HARMONIC SCREEN
I LLUMI N AT ION

(EXTRAORDINARY
WAVE)

The focus would then have the parameters

mo=2. 6&10 4 cm,
b=5.5&10 ' cm,

~0=0.094 rad.
(6.46)

INTENSITY

FIG. 21. Diffraction of second-harmonic light by a real straight-
edged opaque screen to produce a pattern closely related to that
produced in SHG by a laser beam focused at the position of the
screen. The edge intensity pattern (6.48) is indicated on the right,
and the imaginary laser beam is suggested by dashed lines crossing
at the screen edge.

This is a universal function of the fringe number j. A
less convenient but more accurate expression for R(j)
may be obtained by taking into account to lowest order
the effects of the exponential factors; the result may be
written

&(j)= (27r/$) '/'(P+s'&') expL —4Ps'&/ —2s 0&'j (6.43)

depends upon P and $ as well as j.
Figure 20 shows the intensity as a function of the

angle va, riable s defined in (5.4) for a well developed
edge in the absence of absorption. The solid curve is
calculated from (6.37) for the case

P =0.318,
)=253,

f/s= 10/17,

0,=0.

(6.44)

These conditions, except for the complete absence of
absorption, could be realized experimentally as fol-
lows:

Crystal:

Beam:
Lens:

ADP (p=0.03 rad) oriented for the
nominal matching case having length
/=1.7 cm.
X~——1.153 p, , spot size=0. 17 cm;
focal length L=1.2 cm, placed so as
to focus the beam at a depth f= 1.0
cm in the crystal.

(6.45)

((j—1)+0.375—8(j))'/' —(0.375—B(1))"'
~(j)=

(1.375—6(2))"'—(0.375—h (1))'/'

(6.42)*
where

The pattern at the exit surface of the crystal z=l,
$= (2/b)(l —f) is then characterized by the parameters
(6.44). It will be shown in the next section that the
neglect of absorption in this example is completely justi-
fied. The dominant term e 4"

~
I&

~

' defined by (5.25) is
shown as a light solid curve in Fig. 20, the extension of
the dominant term to form the Gaussian profile of the
polarization beam proportional to exp[ —4(s—Ni)'] is
shown dashed, and the asymptotic forms from (6.39)
where they depart seriously from the exact curve are
also shown dashed. The curve extends only to n& on
the dim side s&0, and the edge fringes extend only to
us on the bright side s)0 as required by (6.61) to be
derived shortly. Structure in the intensity due to I&(s, /c)

and Is(s, c) is indicated by the lines called "Ni surface
fringes" and "u2 surface fringes, " respectively.

6.2 DiGraction by a Straight Edge

We now consider an interesting analogy between the
edge fringes in SHG and the diffraction pattern pro-
duced by a real straight edge. Mathematically the analogy
may be developed immediately from (6.35) by making
the approximations

e 4"=1, e 's'=1, e ~"=1, f(s,s)=1. (6.47)

Then the intensity is proportional to

( (4( 1/s) 1- s

[I„(s,() f'=2' Cl ~]
— I+-

)

( 4$ 1/2) ] —2

+ 5( s — ~+—,(6.48)

where s in the argument can now have either sign. This
function is familiar from the theory of Fresnel diffrac-
tion by a straight edge. "Figure 21 shows schematically
the arrangement to produce the edge diffraction pattern
(6.48) with a real straight edge. The laser beam of Fig. 2

is indicated by light dotted lines crossing at the focus f
where the opaque screen is placed having a straight
edge normal to the plane of the figure. The laser beam is
only indicated for reference; the intensity pattern
plotted on the right is produced by diBraction of the
second harmonic plane extraordinary wave incident
from the left in the s direction. This analogy completely
justifies our referring to the maxima in ~I„(s,() ~

as
edge fringes.

6.3 Surface Fine Structure

We must now consider the integrals Ir (s,]) and Is(s, $)
in (6.3) which have so far been neglected. We may ex-
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pect that these integrals contain structure associated
with the finite limits of integration in (6.1), which in
turn are associated with the crystal surfaces. We have
previously emphasized in the discussion of (3.25) that
any surface s within the crystal is like an exit surface,
since the region outside of s has no eBect on the pattern
at s and could be cut away. We see from Fig. 2 that the
point N~ corresponds to the s or exit surface, while the
point m=0 is connected by a p line with the focus and
therefore corresponds to the focus, and N~ corresponds
to the incident surface. The integrals Ii(s, )) and Iz(s, (),
in addition to causing exit (ui) and incident (uz)
surface fzrze structure respectively, also contribute in a
very important way to the edge structure. We begin
by writing (6.5) in the form

in the approximate form

(6.53)f'(u, s) = —f(u, s)/u'.

Therefore, f'(s, s) may be neglected in the first term of
(6.52) if

4)sz»1, (6.54)

which is essentially the condition for the validity of the
asymptotic form (6.34) of I„(s,g). To determine the
conditions for neglecting f'(ui, s) we write (6.52) in
asymptotic form

1(~q '('
Ii(s, &) =——

I

—
I

e' I'f(s,s)8(ui s)—
s &2()

f(zii s)ezi)(ul —s)z f~(uz s) ezig(ui —s)z

(6.55)' du(u —s) 1
4z(ui(ui —s)I (s,k)=- 4z) 4zgs(ui s)

s+iq u —s u+iq
retaining f'(ui, s) but neglecting f'(s, s), which is valid

Xf(u, s)e"&(" ')' (6.49) if (6.54) and also

Retaining the erst term and integrating the second
term by parts gives

Ii(s, &) = — du f(u, s)e"&(" ')'
s+'iq

f(ui s)e»k(w —8)z ]

4i((s+iq) (ui+iq) 4i&(s+iq)

4&(uz —s) '&)1 (6.56)

are satisfied. Again using (6.53) we see that f'(ui, s)
may be neglected in (6.55) if

I 4(u,s I))1. (6.57)

A completely similar treatment of Iz(s, g) gives

1(zrq'('
Iz(s, ))= ——

I

— e' Iif(s,s)8(s uz)—
s E2()

where

X du f'(u, s)e"&( —')', (6.50) f(uz s)ezi$(ug —s) f (uz s)eziS(ug —s)z

4'i(uz(uz —s) 4zfs(uz —s)
(6.58)

d f(u, s))
f'(u, s)=-

ilu u+zq)
(6.51) valid if (6.54) and also

(6.59)

(6.60)

6.4 Conditions for a Well-Develoyed Edge

4&(u,—s)'&)1
It will now be shown that the third term of (6.50) is not
of interest. We may neglect iq in all the denominators are satisfied. Here '

uz, s may be neglected if

and treat f(u, s) and f'(u, s) as slowly varying functions
I 4(uzs I))1.

after the manner of (6.21) and (6.22).
Thus, (6.50) becomes

1 ( zr )"' f'(s, s)
Ii(s, &) =—-I —

I
e' (' f(s,s)+ 8(ui —s)

s(2() 4ip

1/ zr ')' 1+z )t' /4b ')')+-I—
s(4$ 2 E (zr) )

f'(ui, s) ~

X f(ui, s)+ L8(ui —s)—8(s—ui) $
4i$

f(u~ s)e»k(~i-~)z

+ . (6.52)
4z(uis

This expression is actually continuous at s= n& despite
the presence of the step functions. We may write (5.51)

The contributions of Ii(s, )) and Iz(s, $) to the edge
structure are given by the first terms of (6.55) and
(6.58), respectively. These terms exactly cancel the
edge term in the asymptotic approximation (6.34). It
follows that there exists a de6nite edge-structure region

Q]($(N2. (6.61)*

The second terms of (6.55) and (6.58) give the exit (ui)
and incident (uz) surface fine structure, respectively.
The third terms of these expressions will be neglected,
which means that we are completely neglecting the
third term of (6.50). As we have shown, this is an
asymptotic approximation requiring for its validity
the conditions (6.54), (6.57), and (6.60). It should not
be inferred from this that anything mysterious happens
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to the surface fine structure near s=0. In the next
section we shall investigate it more thoroughly under
conditions in which it is the dominant structure. In the
spirit of the far-field limit (5.17) it is of interest to con-
sider the order of magnitude with regard to $ of the
terms retained and neglected in (6.55). We retain the
edge and surface terms of (6.55) which are of order j "'
and ( ', respectively. We have neglected a term of
order ( 31' when we neglected iq in the edge term and
another term of order $ 't' when we neglected f'(s, s).
Terms of order $

' are neglected when we neglect iq
in the surface term and f'(ui, s). Thus we have con-
sistently retained terms in I(s,() of order ] 't' and $ '.
This shows that as the limit (5.17) is taken for any
given s/0 our approximations will ultimately become
valid and constitute the logical next approximation to
the dominant term (5.25). In this sense the edge struc-
ture is of a larger order of magnitude ($ 't') than the
surface structure ($ '). Adding (6.34), (6.55), and
(6.58) [neglecting f(u, s)] gives our final asymptotic
expression for I(s, $) according to (6.3)

I(s,))=Ie(s,f)+[8(s—u, )—8(s—u2)]

f(s,s) vr '" f(ui, s)
ei 7r j4 g»$(&1 8)

s 2$ 4$$ui(ui —s)

f(u2, s)
e»s(~a—4)4+. . . . (6 62)4C

44 fu2 (u2 —s)

~
4(uis

~

& ir,
~
4(u2s

~
& ir . (6.64)

The three conditions (6.63), which are more explicit
forms of (6.54), (6.56), and (6.59), insure the validity of
of using asymptotic forms for the Fresnel integrals.
The two conditions (6.64) are more explicit forms of

(6.57) and (6.60); we shall see in the next section that

The conditions for vah duty of 'this expression we now
bring together and write in the form

~
s~ & (7r/4$)"',

~
ui —s~ )(~/4$)"'

(
u —s

~

) (7r/4() "' (6.63)

(6.66)

since (m/4) 't'= 1. If the far field limit is taken by (5.17)
the left side increases indefinitely and well developed
edge structure must ultimately be obtained. This limit,
however, requires an infinite crystal, and it may not be
possible to satisfy (6.66) in a given crystal. According to
(5.21) the condition can be written in the alternative
form

p(ki(s —f)/2)"'& 1

p(kif/2) "'&((& f)/f)"—' (6.67)

which does not contain b. Therefore the limit (5.20)
does not insure that a well-developed edge will be ob-
tained in a given crystal. From (6.67) we can deduce a
convenient criterion for the possibility of observing well-

developed edge structure in a given crystal at a given
laser frequency

(6.68)p) (2/kit)"',

where / is the crystal thickness. This is a more explicit
form of our previous assumption (5.3).

We now compute the intensityincluding fine structure

proportional to e 4"~I(s, $) ~' according to (5.14). In
squaring (6.62) we shall retain only the leading fine-

structure terms; on the bright side s)0 we neglect pro-
ducts of surface terms and products of the edge term
with surface terms; on the dim side s&0 we neglect pro-
ducts of surface terms. Thus we obtain

these conditions are related to the use of asymptotic
forms for sine and cosine integral functions.

In this section we are concerned not only with the
validity of the expression (6.62), but also with the
conditions for well developed edge structure. The basic
condition can be stated very simply: The characteristic
scale of the edge structure, which we see from (6.48)
may be taken to be (~/4j)'t', must be much smaller
than the edge structure region

ui( a (m/4P) '"(u2. (6.65)

This is actually two conditions which may be written

t'7r 't' f(s,s)
~
I(s,&) ~

'= 4m'e 'e'8(s)+ [8(s)—8(s—u~)]4ir~ — e 4e' sin(2)s' —ir/4)
k2P s

f(s,s)' f(u, ,s) 7r

+[8(s—u, )—8(s—u2)] — +8(s)— —e 'e' cos(2jui' —4$sui)
2$ s ui(s —By)

f(ug, s) '" f(s,s)f(ui, s)
+8(s) —e 4e' cos(2(uP 4gu~s)+—[8(s ui) 8(s)—] —— sin[2$(ui s)' 7r/4—]-

up(ue s) 2( 2jui(s ui)s

't' f(s,s)f(u2, s)
+[8(s—ui) —8(s)]~ — sin[2'(ui —s)' —ir/4]+ . (6.69)*

(2' 2 )u2(ug s)s—
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This relation contains the principal results of this sec-
tion. The first three terms of (6.69) give the edge pc/ttern.
The fourth and fifth terms give the surface fringes on the
bright side, while the sixth and seventh terms give the
surface fringes on the dim side. The terms retained
give no intensity for s(u&, as shown in Fig. 20 by the
termination of the curve. In locating the surface
fringes near u~ or u2 the rule should be followed that
there are no u2 fnnges closer than (7r/4()'/2 to u2, and
similarly no ui fringes lie closer than (x/4$)'/' to ui.
In Fig. 20 are shown the u~ fringes near u2 and the u~

fringes extending from uy past s=0. The fringe which
violates (6.64) has been omitted. Both surface fringe
systems are too weak to plot directly in the continuous
curve representing the intensity. According to (6.69)
the spacing of the surface fringes is constant on the
bright side s)0 but variable on the dim sides s(0.
Notice also the gap in the u~ fringes at s= u2,. within this
gap the edge fringes die out and are invisible on the
far side s) u2.

We have treated absorption in this section in an
approximate way by including it in the slowly varying
factor f(u, s). The criterion (5.16) for the validity of this
procedure can now be made more explicit by replacing

~

s
~

on the left with (~/4$) '/'

(~/4q) '/') ~b/Sp. (6.70)

This can be written in a form which is independent of
the focal parameters ~0, b, 80

L(s—f)fiji/2(a/2~pui/2) ( 1 (6.71)

where X~ is the laser wavelength in air. For ADP the
values n=0. 139 cm ', p=0.03 rad, m=1.5 may be ob-
tained from BADE, we may take X&=1.153)&10 ' cm
and s f=5 cm as —typical values, and then the left
side of (6.71) becomes =0.1. It follows that (6.71) can
readily be satisfied in ADP when the criterion (6.66)
for the well developed edge is also satisfied. The value
of the constant c in (6.2) for the conditions (6.45) is
c=0.3, which justifies the complete neglect of absorp-
tion in Fig. 20. The greatest affect of absorption would
be on the strength of the surface fine structure. It is
easy to see physically, or from (6.69), that n) 0 favors
the incident surface (u2) structure while n(0 favors the
exit surface (ui) structure. These effects will be clearly
discussed in the next section where surface structure
becomes very prominent.

We turn now to the pattern outside the crystal. The
field is given by (5.35), which is in the same form as
(5.11) except that f, replaces $ and the variables and
parameters are defined by (5.32) and (5.33). We write
I(s,),) in the form (6.1) for consideration of the fine
structure. Our principal result (6.69) still holds in the
new variables with P, replacing f The criterion fo.r the
well developed edge structure, in addition to (5.30), is
that the limits ui, u2 now given by (5.33) must be large
compared to the characteristic scale (n./4P, )'/2 of the

edge structure. This requirement Inay be written

P$,'/') (b/2f) P,)Lb/2(i —f)j~.,
(6.72)

which differs from (6.66), and cannot be satisfmd for
arbitrarily large $,. As $, increases a well-developed
edge eventually changes into a partially developed edge
to be described in the next section.

I(s,(,e) = &2i«u —si~&—4ifeuf(u &) (6 73)
u+ 'Lg

where e specifies the matching conditions and &=0
corresponds to nominal matching. This can be written

1(~ ( ~)
—c—2ife&—4i(es

X
du

e"«" ' "f(u s+e)e "" —(674)
u+ z/i

which is very similar to I(s+e, f), the difference con-
sisting of a phase factor of magnitude unity and a
slightly different slowly varying factor inside the in-
tegral. A simple prescription sufFices to generalize our
principal result (6.69) to the case of arbitrary e:

The second argument s in f(u, s) remains simply s,
while every other s is replaced by

$ ~$+6. (6.75)

The Gaussian factor e 4" in the intensity remains
unchanged.

The eGect of e upon the intensity pattern can be
appreciated quite simply from the dominant term in
the intensity, (5.29) modified according to (6.75), which
is proportional to

c 4s2 SPe 8//eo (~—+~)— — (6.76)

This function is shown in Fig. 22 for P=0.318 and
e= 0.6, 0.25, 0, and —0.4. The curve for e= 0 is identi-
cal with the dominant term shown in Fig. 20. By con-
sulting Fig. 20 we can imagine how the edge structure
might appear for each case shown in Fig. 22. The dotted
curve is the locus of edge heights exp( —4s'). It will be
seen that the heights and widths vary considerably as

6.5 Position of Pattern

As will be shown in Sec. 9 the edge structure derived
in this section is in agreement with experiment. In
practice, however, it is not possible to set up with any
degree of certainty the nominal matching case we have
assumed, and the position of the edge is sensitive to
extremely small deviations of the crystal orientation
from nominal matching. Fortunately the edge structure
and surface structure are essentially independent of
the position of the edge. It will be shown in Sec. 8 that
the necessary generalization of the theory is to replace
(6.1) by
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-0.6 -0.4 -0.2 0.2 0.4 0.6 0.8

Fro. 22. The dominant term in the intensity according to (6.76)
for four phase matching conditions specified by &=0.6, &=0.25,
e =0 the nominal matching case, and e = —0.4. For the definition
of e see (8.9).

the pattern moves. The case ~=0.25 corresponds to the
maximum power to be discussed in Sec. 8.

'7. PARTIALLY DEVELOPED EDGE
STRUCTURE

'7.1 External Region

We shall now discuss the SHG pattern in a limit
which is very accessible experimentally and much
simpler mathematically than the limits (5.17) or
(5.20) which lead to the well-developed edge structure.
Let us suppose we have a 6nite crystal of length l and a
given laser beam focused at f with confocal parameter
b; we then ask for the field E&(x, sy) outside the crystal
in the limit

s —+m b, f, /fixed. (7.1)

6.6 Summary

In this section we have obtained corrections to the
limiting result of Sec. 5 which give two additional terms
in the field which we have called edge fine structure
and surface Qne structure. Inclusion of the edge fine
structure gives a continuous intensity which is very
steep at s=0 and has maxima and minima on the
bright side s&0. The surface 6ne structure causes addi-
tional very weak intensity modulations. The edge
structure is very closely related to the diGraction pat-
tern of a physical straight-edged screen. This edge
pattern is limited to a definite region. The general
criterion for well developed edge structure is that this
region must be large enough to contain fringes. It is
shown that absorption will ordinarily have no effect
on edge structure but may affect surface structure. It is
shown that well-developed edge structure can be ob-
served outside the crystal, but not in the limit of
infinite distance from the crystal.

We have already observed in (6.72) that the criterion
for a well developed edge ceases to be satisled in this
limit. The theory of the pattern in this limit is quite
simple regardless of the length of the crystal. A pattern
is obtained which is independent of s when expressed
in the angle variables s, t of (5.32). The pattern may be
regarded as the Froutrhofer digructior4 pattern pro-
duced by the Geld pattern on the exit surface of the
crystal. The well developed edge structure, on the
other hand, corresponds to Fres44et digroctioe. We shall
call the pattern in the limit (7.1) the portiolly de-

veloped edge structure, since the edge reinains very dis-
tinct separating the pattern into bright and dim regions,
but the structure characteristic of Fresnel diffraction
by an edge disappears, and its place is taken by greatly
enhanced surface structure. Actually the theory applies
to a wide gamut of conditions giving patterns which
range from extremely sharp edges to extremely small
asymmetry about s=0. The parameters which de-
termine the pattern are P of (5.5), a of (7.32), and

(7.2)

This is not really a new deGnition of c but merely the
maximum value, and the most relevant value, which
(4.2) assumes within the crystal.

The Geld outside the crystal is given by (5.35) and
the intensity by (5.36) with I(s,$,) defined by (6.1).
In I(s,g,) we may omit the phase factor e xp(2i), s)

and write

where

I(s P ) = e"&6"' "&""f(us)
u+4g

f(u s) —eccce4B$ 2Q

(7.3)

(7.4)

and g, is defined by (4.21) and c, g, ui, u2 by (5.33).
Prom (4.21) and (5.33) it follows

2$.u '=2P'P($ ~ 0
z ~oo

2),uP=2P'l2/$. —+ 0.
(7.6)

(7.5)

Notice that (7.5) is constant and unaffected by the
limit (7.1). This sets the present case apart from that
treated previously which satsiGed (5.19) or (5.22) as
limits were taken according respectively to (5.17) or
(5.20). The limit (7.1) does not cause I(s,g,) to approach
arbitrarily closely to the discontinuous dominant term
Iq(s, g,) as in (5.37). The sharpness of the edge is de-
termined by (7.5) and is independent of s. We shall
see, however, that if a well developed edge is produced
at l and a partially developed edge at s, the partially
developed edge is always shorper in the angle variable s
than the well developed edge. From (7.5) we have
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dl a =0, $&)1, f'&)1. (7.15)
1(s,t,) = CQ—4'brea'lje„,u+iq

(7.7)
(7.13) as the sum of an gn ed e termAs in (6.3) we write

=0)ms when~=and Gne structure term

E.& 2PY k.& 2P't' (7.8)

(7.7) absorption is treated
of t11 di

ldd i th lo 1

nlike the theory o e

A convenient criterion for t e va i
'

1 dT
gso'T

2sr g 1+ir

dr
&i ar

„1+ir

(7.16)

(7.1/)

—e'$0'T

Qo(7.9)s'")
~

se& ~, s'")N2,

we can write (7.17) in the approximate
o

' h' s a sweePing away Inviewof (715)
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&sar

s when 2i),N' ss neg ec
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8 8
P'5', —E.& P— ' sinT

dT= ——
0 T'

SlnT
d7

s—l) (P'/I) (l'/0) l/2rs— (7.11)

'
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'
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i hl absorbing crys a sy" 'g y

7. )invenjent to writeexperiments it is conv
of a single condition on s—

7t' S COSS

2[s[ s
~ ~ ~

Ci(s) =— cosT
d7=—

sins
+isre( —s)+

* (1—cosr)
d7

+lns+0. 5772

(7.19)

obtained by setting g=|.
Let us write (7.7) in the form

I(s ~~ )= 2rriH(4Ps, ,'nb, f,g), ——IS, , =—71-

where the function

s

roximu/e analytic representation,Thus we obtain the appronrrsu e an
valid for the case (7.15),

(7.12)

(7.13)*
~ ~

7.20)+—Lsi(ot)+i Ci o.' C'( t)+»( k) —i C ( k)7 ( .
2'

1 corn utation. Byt form for numericais in a convenien or
mde Tables of FNNelsoms (Dovover Publica-7E. Jahnke and F. Kmde, a es

, I . New York, 1945), Sec.tions, Inc. , ew
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which, despite the step funct:ions 8(o) and 8(—o), is
actually continuous at 0=0. The asymptotic form of
(7.20) is

TABLE II. Parameters used in the calculation of Figs. 23-29.
Last row gives the relative peak intensities of Figs. 23—26 if they
were to be plotted on the same intensity scale.

coso(+i sino. $
H(o,0,g, &) = e '8(o)- Fig. 23 26 27 29

cosof —i sinot +. .

P

(7.21)
inten-
sity

0.318 0.318 0.318 0.318
253 253 253 253
361 361 361 361

0 0.004 —0.01 —0.02
1 0.3 0.015 0.0017

0.318 0.318 0.0197
614 9.5 253

0 9 5 253
0 0 0

The third and fourth terms represent surface f422e struc
t'Nre associated with the exit and incident surfaces, re-
spectively, like the fourth and fifth terms of (6.69).
The last term gives a structure visible on the dim side
0-&0 which depends on the crystal thickness l but not
on the focal position f. We inay expect the structure on
the bright side o-&0 to be rather complex except in the
symmetric case $= t

The conditions for the validity of (7.22) are, in
addition to (7.15),

(7.23)

which are equivalent to (6.64). When (7.23) is not
satisfied near 0.=0 the pattern can be obtained by
squaring (7.20).

In the presence of absorption the method based on
(7.16) and (7.17) cannot be applied. Let us assume

(7 24)

and write (7.13) in three parts

+ + i (7.25)

where f', $' are as yet unspecified and will drop out of
our Anal result. We only require that

$'&)1, |'&)1
(7.26)

It is then appropriate to replace the second term of
(7.25) with Hz(o) defined in (7.14). We can completely
neglect the first term of (7.25) if «(0 or the third term
if ~&0. We suppose z&0 and write approximately

d7-

1+2r

ettt' —i rJf

if'(—z+Zo)
(7.27)

The result of greatest interest is the asymptotic form
of [H['

1 (1 1)
IH(~0, t 6) I'=c '8(o)+

[

—+—
[

4~2~2 (|.2 (2)

coso.$ cosot—e
—'8(o) —e-'8(o.)

rrot

cos (t+f')
(7.22)*

22r2o'1 $

It then follows that for z) 0 and (7.24) valid

H(rr « t $) I

2= e "8(o)+ e2tt f
42r2(o2+«2) f2

«sino/ —o. cosot
+e 8(o)e"r (7.28)

2' (a'+ «')

Similarly for «&0 and (7.24) valid

H(o. «t j)[2=e '8(o)+ e
—2 th)

42r2(o 2+«2) (2

«sino. j+o. coso $—e '8(o.)e "& (7.29)
2r &(a'+ «')

We see that absorption tends to accentuate the struc-
ture associated with one or the other of the surfaces
on the bright side and suppress the structure on the
dim side. Further details on H(o, «,f,)) are g. iven in
the Appendix. We shall frequently use the parameters

a =4ps, «=-2'nb (7.30)

as well as those of (7.2) in discussing the intensity
pattern.

According to (5.36) and (7.12) the irttertsity in the
external far field (7.8) is given by

Ei'ki' 4e
S(s,t) = 4rrK e

—2nI f—a2(l—f)
(22+1)'

Xe 4&"+"&[H(4Ps;2inb, f, () [' (7.31)*

In the remainder of this section we shall illustrate
partially developed edge structure by means of numeri-
cally computed curves of the intensity as a function of s
in Figs. 23—29. The curves were computed by the
methods explained in the Appendix except for Fig. 29
which was computed from (7.20). For each calculation
the parameters P, (, t, «are specified in Table II. The
dimensionless variable s is related to the transverse
distance x from the beam axis and the distance s—l
of the observer from the crystal surface by (5.32).

We take as our first example the experimental arrange-
ment (6.45) which gives rise at the exit surface of the
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f =253
f ~361
P ~ 0,318

= -0,02

-0,03 0.05

Fze. 26. Partially developed edge with strong absorption of the
second harmonic. At this level of absorption the width of the
central maximum is determined by ~s(, and the:dominant term
is insignificant.

as well as

4P)) 2x, 4' )2x.

$&)1, i &)1,

(7.33)

(7.34)

coefficient for the second harmonic n2 14.6 cm ' if
e& may be neglected.

The partially developed edge structure depends upon
the position of the focus in the crystal. If the focus were
adjusted exactly in the center of the crystal (again
neglecting absorption) the bright-side structure would
become regular and the minima of the dim-side struc-
ture would go to zero in Fig. 23. Another interesting
case is that in which the focus lies at the incident sur-
face as in Fig. 27. Lines indicate the positions of the
dim-side peaks of Fig. 23. Ke see that the dim-side
structure is still detectable, although very weak, and is
approximately refiected on the bright side. The asym-
metry of the pattern has nearly disappeared. The same
pattern is obtained by focusing on the exit surface.

The appearance of a pronounced edge requires

In this case there is no well-developed edge associated
with the partially de@eloped edge.

2(uis(&1, 2)ms'((1. (7.36)

This condition is essentially the opposite of (6.66). In
the external far field the corresponding conditions (7.6)
are automatically satisfied, as we have seen, regardless
of P and P in the limit (7.1). In the interior in the far
field (7.36) will not be satisfied unless

(7.37)

Even then (7.36) will ultiinately break down in the far
field limit (5.18), (6.66) will become valid, and the well
developed edge will be obtained. For a given crystal,
however, the far field limit must be taken by (5.20)
which has no effect on either (6.66) or (7.36). Let us
suppose that p is so small that (6.68) breaks down

(7.38)

It follows that at least one of the conditions (6.66)
breaks down so we assume at least one of the conditions
(7.36) is satisfied, regardless of what lens is used or
where the focus is located. This condition was nearly
achieved in the example of Fig. 28 (l=0.052 cm) for

'7.2 Internal Region

As the preceding example shows it may not always
be necessary to go to the external far field to satisfy
the conditions for a partially developed edge. Under
certain conditions the partially developed edge can be
observed right on the exit surface of the crystal. Let us
consider the far field (5.1) inside the crystal where the
field is given by (5.11), the intensity by (5.14), and
I(s,$) by (6.1). No assumption need be made, as in
(5.2), about the position f of the focus. From our dis-
cussion of (7.3) it is clear that the partially developed
edge in the interior of the crystal corresponds to ne-
glecting 2icu in the exponent of (6.1), which is valid if

although the theory remains valid even when these
conditions are not satisfied. As an illustration of the
pattern produced by smaller values of P, i we present
Fig. 28. We imagine the crystal of (6.45) to be re-
placed by a much thinner one having l= 0.052 cm, and
the focus is adjusted to the center of the crystal. The
pattern has the usual dim side structure shown by the
magnified ()&100) curve. The structure on the bright
side consists of very slight oscillations above and below
the curve e " @"representing the dominant term. The
pattern is nearly symmetrical in appearance but the
peak is shifted toward the bright side. The line indi-
cates the maximum of —cosa.$. The criterion for the par-
tially developed edge structure (7.8) is satisfied in this
case very close to the exit surface

1

-0.05
t 1 i i I

0.05

s—l& 0.016 cm. (7.35)
Fro. 27. Partially developed edge with no absorption and the

focus at the incident surface.
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and (6.2) can be written

e,s =e'",

(7.39)

(7.40)

X IOO

-0.4 0.2 0.2 0.4 O.B 0.8 ).0
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dQ

ecu—4igsu

ZC+ lg

2m.iH(4—Ps;2(xb, ),$) . (7.41)*
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I(s,() = —27rie'*r" 'e'
(8)u2) 4z$Ãgs

+

e2ig (&2 g) 2'

f(s,s)
~i vr/4

s 2$) 4i/N2s
+ (7 44)

We have put f(u2, s) =1 but retained f(s,s), and put
N2 —s= —s in the denominator of the N2 term. It now
follows immediately that the bright-side structure is
given by (except for the factor e "')

cosof
(2m.) 2~I(s, )) ~' = e "—e ' + (7.45)

7nrf'

where 0.=4Ps. This is identical with the partially de-
veloped edge structure (7.22) in the approximation

]—+~, which corresponds to our dropping the ni term
in (6.62). On the dim side the structure is due to inter-
ference between the edge term and the N2 term which
leads again to the seventh term of (6.69) just as in well

developed edge structure; in the present case, however,
the @2 term is larger than the edge term so we cannot
neglect its square as was done in (6.69). Thus we

obtain

(2~)
—'~I(s, () ~' =

t 2m 'i' f(s,s) ir'$
sin Of +—. —. —(7.46)

of 2P' 4

The first, term appears also in (7.22), and shows that the
average intensity level on the dim side is characteristic
of partially developed edge structure, but the second
term giving the location of peaks appears in (6.69) and
is characteristic of well-developed edge structure. For
the external region there is a condition completely
analogous to (7.43) which does not require a separate
discussion.

We can also have the other mixed condition

2$ui'«1, 2fug'»1 (7.47)

bright side and well developed on the dim side. The
pattern may be deduced from (6.62) which is valid in
the domains specified by (6.63) and (6.64). We may
ignore the region

~
s~ ((vr/4$)'i' which includes u2

since we know it contains at most only a very weak I&
structure. For simplicity we neglect the insignificant I&
term and write (6.62) in the form

e'2i)(u2 —a)2

may be neglected if, as we now assume,

(8~tui') 'i'((1
) (7.49)

which is consistent with (7.47) but somewhat stronger.
Thus (6.62) reduces to

e2ig(u1—S)2

I(s, t) = 2~ie"—&" 4e'+-
(s)0)

+'''
4i(uis

~2i)(u1—s) 2 ~2i)(u2 —s) 2

+i'~"» 4i&u, s 41(B2s
(7.50)

We have neglected the weak u2 term on the bright side
but retained it on the dim side since the first two terms
of (6.62) vanish. Finally we have on the bright side

cos~$
(2m)

—'~I(s, t) ~' = e "—e'
~op

(7.51)

which agrees with (7.22) in the limit |—+~. The dim
side also agrees with (7.22) in as much as we have re-
tained the two surface terms in (7.50). Actually there
would be a weak edge structure superposed on the
bright-side surface structure, but the first few fringes
would be missing because of the proximity of the cut
off ui which takes effect over a range of order (7r/4&)'i'.
We have not included a term to describe these fringes
in (7.51) because it is difficult to treat the effect of the
cut off within the frame work of our asymptotic ap-
proximations. Obviously there is a condition for the
external region analogous to (7.47).

7.4 Summary

In this section we have described four kinds of par-
tially developed edge structure associated with the
conditions (7.8), (7.36), (7.43), and (7.47). Of these the
third and fourth are actually Inixed types in which the
pattern retains some features of well-developed edge
structure. We have found that partially developed edge
structure is always observed outside the crystal at a
sufficient distance specified by (7.11). It may also be
observed inside the crystal or at the exit surface if the
double-refraction angle p measured by P=p/8, is
sufficiently small. Partially developed edge structure is
surface fine structure; the absence of edge one struc-
ture may be ascribed to the shrinkage of the edge-
structure region (6.61) until it cannot contain any edge
fringes. We have presented a detailed study of the
effects of absorption on the pattern. This completes
our discussion of fine structure, which is objective (3)
mentioned in the introduction.

f» l f—7.48
8. POWER AND OPTIMUM INDEX MATCHING

We continue to assume (7.15). There is now plenty of
room for edge fringes on the bright side, but it is no
longer true that the edge term (order $ 'i') in (6.62)
is larger than the ui term (order $ '). The edge term

8.1 Generalization of Theory

We have so far assumed that the laser beam is
nominally index matched, which means that the index
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vector 21, defined in (3.3) and representing the nominal
wave vector 2ki of the polarization beam falls on the
index surface as shown in Fig. 17. More generally let us
define

2k)Y ——((/sc)Nn2(N), (8.1)

where n2(N) is the index in the direction N. By defini-
tion 2k)Y is matched. We can rewrite (3.13) using hk
instead of k 1

K,'+K„'
2/x= (K, 2h~+p—K,)s+ s+ins. (8.2)

4k
We shall call

We have already discussed the implications of (8.8) in
regard to the pattern. In (6.74) we have shown that the
edge and the fine structure are shifted along the s axis a
distance —e. The aff ects of this on the pattern can b e
appreciated from Fig. 22 showing the dominant term
in the intensity e 4"

~
Iq(s, p, e)

~

' for several values of 8.

8.2 Power when y& 0

There is a very practical connection between the ad-
justment and the power. We shall show that the power

Ak =2k i—2k)Y (8.3) dxdyS(s, Z, 8) = & '(s f)' —dsdkS(s, Z, 8) (8.1 1)

where we have replaced k& by k 1 in the quadratic term
on the assumption that Ak(&2k 1. We see that the ad-
justment can be included formally in our previous
theory based upon (3.13) simply by defining {2 to be
complex

n ~ n —i~k (8.5)

This substitution in the Green's function (3.23) gives

((s)n) 1
G(r «)

~ ~
&

sz&2ikziz+ikz(—3+Y ) /z (8 6).
(2micl Z

The second harmonic field inside the crystal (4.19)
becomes

~.P C
——s'aszs24ksz z C

az'+skkz'—
E,(r) = ds'

1+i/ 1+i('

2L (x—pZ) '+y')
Xexp —— . (8.7)*

w '(1+2&)

The far-field approximation (5.11) is still valid pro-
viding I(s,t) given previously by (5.12) and then (6.1)
is further generalized to include the adjustment

dN

I(s,g, 8) = e "&'"e"&'" "f(zz,s), (8.—8)*
I+z(t

where

2 =beak/8P= w()&k/4p (8.9)

measures the adjustment and f(N, s) is still given by
(6.2) with the ordinary real (L The dominant term is
obtained by dropping 2i/242 and replacing Ni, 242 with
infinite limits as explained in (5.17) to (5.25)

Iz($ t 8) = 22rz&2irs c 4P(s+s)e(~+—8) (8 10)*

the adjgs/meet. Since we limit ourselves to beams nor-
mal to the surface the adjustment is always in the nor-
mal direction and is measured by a scalar quantity Ak.
We write (8.2) in the form

K 2+K 2

2P = (K,—2h, +pK.)s+ s+ins+aks, (8.4)
4k 1

as a function of ~ assumes its maximum value for some
value of e&0. The physical reason for this has been
pointed out following (4.3). In practice there is usually
no way of knowing ~ due to the fact that it depends very
sensitively on the orientation of the crystal. However, e

can be fixed by adjusting the crystal orientation for
maximum power, a logical procedure that an experi-
menter would want to do anyway. The value of ~ can
then be deduced from (8.11). We shall call this the
optimum (zdj ustment and the corresponding value of 8

will be written c . In this section we shall discuss I 2(e)
for the case in which the SH6 pattern has a pronounced
edge. For consideration of the power the fine structure
can then be ignored and I(s,g, 8) approximated by
(8.10). In this approximation there is no distinction be-
tween a well developed and a partially developed edge.
It is sufficient to consider the intensity at the exit sur-
face of the crystal which according to (5.14) and (8.10)
is given by (p/0)

~12k12

S(g Z 8)~42rK c—2usf—cn(l—f)

f-
either gp2)) Or 4' ))2)r .

(8.13)

This includes the well-developed edge and the three
types of partially developed edge which can occur
within the crystal. The power relation I 2(8) which we
shall obtain is that which an experimenter would ob-
serve by adjusting the orientation of his crystal. Our
results are not adequate to discuss the optimization of
power in a crystal of given length with respect to choice
of lens or position of focus, which will be discussed
elsewhere.

Xc 4(ss+4 +2Ps)c 8P—sg(++&) (—8 12)8'

with $ defined by (7.2). The conditions required to pro
duce a sharp edge inay be deduced from (6.66), (7.33),
(7.43), and (7.47); they may be presented compactly
as follows:

either )p2)) 1 or 4p)))22r
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significant. We see that the peak value of F(e) de-
creases rnonotonically with increasing p. For p(&1
(8.17) is valid in the vicinity of the peak but for P) rs

it is definitely not valid. The peak always occurs for
e)0. The complete absence of structure in (8.15) and
in I'ig. 30 is due to the dominant-term approxima-
tion (8.12).

The maximum F =F(e ) at the position e satisfies

e
—«m2

F-(P)=
4s'"p

(8.19)

0
For p& 1 we may expect e «1 so we obtain

From (5.21), (8.11), and (8.12) the power can be
written (P/0)

4Z2
F =+P se serif ~2ii —f) .F(—e P)

2
(8.14)*

The dependence on e is contained in the function

pro. 30. Function F(e) defined by (8.15) for three values of P.
The dashed curves on the left show the asymptotic approximation
(8.18). Dashed curves on the right show the exponential first
term of (8.17) as well as the whole expression. Note how t(e)
for p((1 has the appearance of a "rounded off" step function with
exponential tail.

F-(P)= (8.20)

(P& 1),
8

(8.21)

which justifies the assumption in (8.20) that e ((1,
special solution of (8.19) is

For p& 1 we may expect (8.18) to become valid in the
vicinity of the peak. The maximum of (8.18) falls
approximately at

with
F(e,P) =-', L1—erf(2P —2e) je~" se', (8.15) e~=P= =0.282,

2+or (8.22)

erf(x) =
x

e
—"dr=

~

1—
fx[& It follows that

The asymptotic behavior of F(e,p) is given by
—4e2

F(e,P)=e4e e—p&-', , (8.17)
4s'"(e—p)

(8.23)

j l l i I I l J !

F„)0.364, e )p (p&0.282)

F„&0.364, e &P (P&0.282).

e
—4P

p—e& —,'. (8.18)

0.8

We have indicated (P/0) in (8.14) since P=O would
violate the essential conditions (8.13) for an edge. We
shall later consider the case P=O separately to show

that as far as power is concerned it joins on satis-
factorily to (8.14).

Figure 30 shows F(e) for three values of P, P=0.5,
0.05, 0.005. The dotted curves on the left show the
asymptotic form (8.18) where it deviates from the true
curves. On the right are shown both the exponential
first term of (8.17) and the sum of the two terms. It will

be seen that F(e) has a single maximum which serves to
define an optimum adjustment for the production of
rnaxirnum total power. It is evident that for P«1 this
optimum adjustlnent is very important and gives
approximately twice the power of the nominal adjust-
ment e= 0. For P) sr the optimum adjustment is far less

0.6

0.4

0.2

0 0.05 030 ]0 o
/3

]8

FIG. 31. Maximum value of F(e) as a function of P. Dashed curve
on left is (8.27), that on right is (8.20).
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)0

0.8
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Figure 31 shows the optimized power represented by
F„asa function of P from 0&P&0.1 and of 1/P from
10&1/P&0. Dotted curves indicate asymptotic formu-
las (8.27) on the left and (8.20) on the right. Figure 32
shows the optimum adjustment e as a function of P
with asymptotic formulas (8.25) and (8.21) on the left
and right, respectively.

8.3 Large Double Refraction p)&Gp

0.4

-' 0.2

I I I I 0
0 0,02 0.04 0.06 0.08 0.10 10 8 6 4 2 0

P 1/P

The case P))1 makes contact with the work re-
ported in BADK, where unfocused laser beams were
used and P ranged from 91 to 213. This case applies to
the typical experimental situation. We see from Fig. 30
that for such large values of P the distinction between
nominal and optimum matching, which was not dis-
cussed in BADE, becomes immaterial. We found in
BADK that double refraction reduces the power for
parallel beams of finite aperture, especially when

FIG. 32. Optimum adjustment as a function of P, de6ning the
optimum matching case. For deiinition of e see (8.9).

For P«1 we may write (8.17) in the form

where the aperture length is defined by

~.= (~)'"(~o/p) .

(8.31)

(8.32)

p(e p) —e
—spa

e—4q2
In the case of focused beams with b« / we may expect
that (8.31) should be replaced by

(8.33)

SPOg~~ g 44srs +4Q
)

Figure 30 shows that the peak F lies very close to the
curve e ' ' for p(1/20. From (8.19) it then follows It follows from (4.7) and (8.32) that (5.3) and (8.9)
that can be written in terms of l,

(8.2s)

where a is defined by

g4a-
4P+s.

p +7r b

8p 2 l,
(s.34)

It follows that 4e„'—8Pe„—4a=0, which gives

e„=a"' (P(1/20) .

Now F may be obtained from (8.24)
(8.35)

P~(P) =exp( —8Pa'~') —Pa 'I' (P&1/20) . (8.27)

(8 26) Thus when (8.33) is satis6ed P„is given by (8.20) which
can be written

Although e defined by (8.26) diverges as P ~0 The complete expression for the power (8.14) neglecting
absorption can be written

(s.2s)

for all practical purposes one may take

e =1 (P(1/200) (8 29)
where we de6ne

/fig
Ps= KPis (l,(lg),

ZVp

ly=mb/2.

(8.36)

(8.37)

F- —~1
P~p

F -0,
P-woo

0&P„(1.
(8.30)

(s.3s)I'2 ——EI'j'
Ãp

since E(e) can increase at the most only 0.23% by
This relation has a very simple interpretation in the
light of Eqs. (3.32) and (3.39) of BADE which in the
aperture e6ect limit l ((l reduce to
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Thus (8.36) is the power that would be generated by a
parallel beam of spot size zo in a crystal of length tf
providing tf))/, W.e may regard lt as the effective length
of the focus. Although the concept of an equivalent
parallel beam acting over an effective length reasonably
accounts for the power, it does not predict the correct
pattern for a focused beam.

8.4 No Double Refraction p=0

The case P«1 is of great interest because the power
proportional to F monotonically increases with 1/P
according to Fig. 31. Here we are regarding the beam,
and hence 80, as fixed while p is reduced to zero

We see from (7.21) that H contains structure associ-
ated with the finite values of f', $. If we let t = $ —+~
this structure can be neglected and H can be written
simply Hz(o)defi. ned by (7.14). Thus in (8.44) we may
put

(8.45)

We now make contact with F(e) by noting that F(e)
has the appearance of a "rounded off" step function with
exponential tail when P«1. The rounding occurs over
a region ~e~(1, which in the parameter o=4Pe be-
comes vanishingly small in the limit P —+ 0. Thus
(8.17) and (8.18) become

p —+P. (8.39)
F(e) =F(o/4P) —~ e

—"8(o) . (8.46)

This process can actually be carried out in LiNb03 by
changing the temperature. "The maximum power ac-
cording to (8.14) obtained in the limit (neglecting
absorption) is

maxP2 —— lim P~ EPi'(47r——'/bo2)
p -+0

at =a2 =0

=EPi'(4/f'/~o') (8.40)

o =-,'bled =4Pe (8.42)

measures the adjustment. There should be no con-

fusion with our previous use of o. in (7.30). We see that

by means of the H function the case p=0 can be evalu-

ated for arbitrary f', t without the need for a far field

or near field approximation. In the far field (8.42)
takes the form (5.11) with the substitution

I(s,],e) ~ 27rie"&"H(a, ,'o—b,g, &) . . —(8.43)

The power according to (5.14), (8.11), and (8.43) can
now be written

(8.44) +

which agrees in form with (8.14) except that the hk
dependence is now contained in

~
H

~

' instead of F(e).
This same result can be obtained directly from (8.41)
without the far field approximation, and therefore is

valid also in the near field.

There may be some question regarding the validity of
this result, however, because in the limit (8.39) the
criterion (8.13) for the validity of (8.14) breaks down.
We must, therefore, consider separately the case P =0.
In (8.7) we set p=O and obtain

F (r) —~ .P e ~if tan(i f—)e2tki—i

~b 2(x'+y')
X exp-

1+i$ ioo'(1+i/)

where H is the function defined by (7.12) and now

It may easily be verified that (8.45) and (8.46) give the
correct values for the nominal matching case o-=0

(8.47)

'I'his shows that a consideration of the power limited to
the case cT =0, aside from being experimentally meaning-
less, does not behave properly in the limit P —+ 0. When
we consider the case of optimum matching, however, the
maxima of (8.45) and (8.46) are equal

which assures the validity of (8.40).

8.5 SuxMQary

In this section we have generalized our previous
results to remove the assumption of nominal matching
conditions. The phase matching is specified by Ak
called the adjustment, or by dimensionless quantities
e=bLB/8P and o= i2bhk. It is -shown that the power
P2(e) is a function of e having a single maximum which
serves to define the optimum adjustment e . The opti-
mum power is then proportional to F (P) shown in
Fig. 31. It is shown that the case P))1 makes contact
with the case studied by BADE. The behavior of
F (P) in this case is governed by the double-refraction
(aperture) effect for parallel beams, and the SHG takes
place over an effective length of the focus which re-
places the crystal length in the theory of BADE. The
case P«1 gives the maximum power. Special considera-
tion is given to the case P=O. A general expression is
obtained for the intensity valid at any distance from
the focus. In the far field with fine structure neglected
this expression agrees with the general theory (PWO)
except at exact nominal matching Ah=0. For the
optimum power the general theory in the limit P —+ 0
agrees with the theory for P=O. The optimum adjust-
ment e is the phase matching condition obtained ex-
perimentally when the crystal orientation is adjusted
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for maximum power. It is shown that the distinction
between nominal matching &=0 and optimum matching

is immaterial for the case considered by BADE.

9. COMPARISON OF THEORY AND
EXPERIMENT

The nature of the experimental results has already
been reviewed qualitatively and the data has been pre-
sented in Sec. 2. In this section we shall present a quanti-
tative comparison of theory and experiment. As an aid
in understanding the results which we shall draw from
the theory we give a glossary of all the theoretical
symbols that will appear in this section.

K'0

b

&o

M
P

P= plop
Qj)Q2

e =beak/8P;
&rn

s

coordinates of the observer, see Fig. 17;
crystal length (t) and distance of focus

(f) from incident surface;
spot size (radius) of laser beam at focus;
confocal parameter, see (4.1);
far-iield diffraction (half) angle in the
crystal, see (4.7) and (5.21);
see (7.2);
double-refraction angle, see Fig. 17;

see (5.33);
see (4.21);
refractive index;
second-harmonic angular frequency;
measures departure from nominal match-
ing see (8.3);

optimum value of e for maximum power;
a dimensionless coordinate used to de-
scribe the SHG pattern in the x direc-
tion, see (5.32);
an ordinal number 1, 2, 3, used to desig-
nate fringes;
the s coordinate of the edge fringes, see
(6.40);
fringe-spacing ratio, see (6.41);
focal length of a lens, see (3.46);
magnification, see (3.48).

) i(air) = 1.153&&10 ' wavelength,

B(air) =2.08&&10 4 (diffraction angle),

m(air) =0.177(spot radius),

b(air) = 1706(confocal parameter),

(all lengths in cm).

(9.1)

9.1 Position of Edge

We begin with the position of the edge relative to the

p line through the focus under optimum matching con-
ditions. The experimental arrangement is shown in Fig.
1, the experimental constants are given in Table I,
and we consider Fig. 6. The unfocused laser beam is de-
scribed by the parameters'

Since b(air) is extremely small it can be neglected in de-
termining the effect of the focusing lens; the lens
focuses the beam at its focal point a distance L=3.2
from its second principal plane. The lens used was
quite thin and it can be assumed that both principal
planes coincide with the lens rim. Before reaching the
focal point of the lens the beam enters the crystal after
traveling a distance a2=0.2. The position of the focus
in the crystal relative to the incident surface and exit
surface is given by

f=n(L ap) =—4.5,
t f= 10—.4—4.5=5.9.

The parameters of the focus in the crystal are

bp= w(air)/(nL) =0.0362 rad,

imp=) i(air)/(nbpir) =6.75&(10 ',
b = 27' p/b p

=0.0373.

(9.2)

(9 3)

Note that zo is the same in the crystal or in air. With
no slit and no imaging lens the second harmonic power
P2 could be measured. The crystal orientation was ad-
justed for inaximum I'&, thereby establishing optinturn

ma/chug coeditioes. With the imaging lens in place, the
exit surface of the crystal is imaged onto the plane of
the traveling slit with a magnification

(»g. 6). (9.4)

~= (2/b)(t —f)=316,
P= p/bp=0. 83.

(9.6)

The laser and second harmonic intensity distributions as
measured with the traveling slit are shown in Fig. 6.
Two edge fringes are well resolved in the SHG pat-
tern. The beam axis can be located in Fig. 6 by esti-
mating the center of the laser intensity distribution. The
p line can be located by measuring from the beam axis
the distance

(beam axis) —(p line) = ~rn
~
p(l —f) =0.29. (9.5)

It so happens that the p line falls on the second edge

fringe for the particular conditions of this experiment.
This result was checked by another experiment (Fig.

5) in which the imaging lens was removed and the slit
placed as close as possible to the exit surface. The light
passing through the slit was collected and conducted to
the detector by a Lucite light pipe. The second edge
fringe could just barely be resolved. Although it gave
lower resolution this experiment had the advantage of
avoiding any dependence on the optical magni6cation
(9.4) in calculating the position of the p line. The re-
sults, however, were in agreement with those obtained
with the lens.

We compare this result with theory by computing
the position of the second edge fringe relative to the
edge, and the position of the edge relative to the p line.
For this purpose we need
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Evidently the condition (6.66) is strongly satisfied. It Thus we have
now follows from (6.40) that the jth edge fringe is
located relative to the edge at

2$.uP = 220))1,
2).ug'=0 19.((1, (9.14)

s ~'~ =0.1L(j—1)+0.375$'~2

and in particular
s&'& =0.12.

(9.7)

(9 8)

which satisfies the conditions (7.43) for a particular
kind of partially developed edge structure. A considera-
tion of the criteria for a pronounced edge (7.33) and
(7.34)

In the same variable s the edge relative to the p line
(s=0) is located at

4Pf =23)2'
/=2.9)1

(9.15)

s(edge) = —e (p) (9.9)

according to (8.12) for optimum matching conditions
e= e (P). From Fig. 32

e (P) = e„(0.83)=0.12. (9.10)

We have extracted (9.7) from the theory of well de-
veloped edge structure in Sec. 6 and (9.9) from the
theory of optirnurn matching in Sec. 8. Combining
these theories leads to the prediction that the p line
should fall on the second edge fringe in agreement with
experiment.

leads us to expect a recognizable edge in the pattern
but not an extremely abrupt edge. The beam axis can
be located from the laser pattern, and the edges can be
located by extrapolating the steep sides of the SHG
patterns to the abscissa. The displacement x of the
edge from the beam axis is plotted as a function of
crystal angle 0 in Fig. 16.The angle 0=0 is the optimum
matching case which gives maximum P2. The dashed
line is the best linear 6t to the data.

To compare these results with theory, we deduce the
relationship between the adjustment Dk and a rotation
60 of the crystal; from Fig. 17 it follows that

9.2 Movement of the Edge
Dk = (40/c) ph8+ const. (9.16)

The edge can be moved relative to the beam axis by
very small rotations of the crystal on the rotatable
stage. This eRect is shown in Fig. 15. The patterns
labelled (c, g) correspond to the crystal orientations
so labeled in Fig. 14. In these experiments the power P2
could be measured by removing the slit, and crystal
orientations were selected giving ~, —,', ~, 1, 4, 2, and 4
times the maximum power. The focus was located close
to the incident surface and the pattern was measured
with a traveling slit in the air beyond the exit surface;
the relevant dimensions are

f=0 3,

If we measure 8 from the optimum matching condition,
(8.9) becomes

From Fig. 32
e= (M/c)(b/8P) p8+e„

e (P) = e (1.95)=0.055,

(9.17)

(9.18)

so that (9.17) becomes

e= 0.768'+0.055, (Fig. 14), (9.19)

where 8' is in degrees. It now follows from (5.32) and
(9.9) that the x coordinate of the edge is given by

l f= 10.1, —
s—l= 15.8,

(9.11) x=p(l —f)—e80/l —f+rs(s —l)j
=0.30—0.52&

=0.27—0.398' (Fig. 16) . (9.20)
and the parameters of the focus are

bp=0.0150 rad,

KIp=16X10 ',
6=0.21.

(9.12)

$,=327,

f= 96,

i =2.9,
P= 1.95,

up= —0.58,
u2 ——0.017.

(9.13)

The parameters in the theory of partially developed
edge structure outside the crystal are

The last relation is the solid line of Fig. 16. We see that
the slope of the theoretical line is in excellent agreement
with experiment. In the absolute position of the theoreti-
cal line there is a discrepancy with the data of about
0.08 cm. In view of the agreement between theory and
experiment in Fig. 6 for the position of the edge, we
attribute the discrepancy in absolute position in Fig.
16 to low resolution and the lack of an abrupt edge in
the pattern.

9.3 We11-Develoyed Edge Structure

We now consider Fig. 7. In order to obtain better reso-
lution than in Fig. 6 the exit surface of the crystal was
focused onto the plane of the slit with a rnagnihcation

~m( =a4/ac=13/2. 8=4.65 (Fig. 7). (9.21)
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const&&e "' '&' '&'8(s+e) (9.23)

and determine the constant by fitting (9.23) to the
measured curve in the neighborhood of s+e=0.2 as
shown in Fig. 7. The result is shown by the dashed
curve. We see that it 6ts the measured curve very well,
in much the same way as the dominant term fits the
calculated curve of Fig. 20.

We now consider in much greater detail the fringe
positions in the well developed edge pattern. Photo-
graphs were taken of the SHG by replacing the slit of
Fig. 1 with a photographic film. Again (9.1), (9.2), (9.3)
apply, but the magnification was

~

m
~

=6.85 (Figs. 8, 9) . (9.24)

The photographic pattern is shown in Fig. 8. At least
22 fringes can be seen in the original film. According to
the theory of well developed edge structure the fringe
spacing ratio E(j) should obey a universal relation which
is independent of m or the parameters (9.6). Therefore
we define an experimental E(j) analogous to (6.41)

X(j)—X(1)
&(j)=

X(2)—X(1)
(9.25)

The other conditions (9.1), (9.2), and (9.3) still apply.
The crystal was adjusted for optimum matching condi-
tions. The relation between slit motion hX and As is

~X= Iml So(l f)—~s= ~s (9 22)

The intensity measured with the traveling slit is shown
in Fig. 7 plotted on an s scale according to (9.22), (9.9),
and (9.10). Except for improved inagnification and
resolution the pattern is the same as the one in Fig. 6.
We have already seen that the second edge fringe falls
on the p line. The positions of the 6rst eight edge
fringes according to (9.7) are indicated by vertical
lines. We see that the six fringes which are resolved in
the measured curve are in good agreement with the cal-
culated positions. We shall study the fringe positions
much more carefully later with the aid of photographs
of the SHG. In addition to the fringe positions the
general appearance of the pattern is in very good agree-
ment with the expected shape for well developed edge
structure shown in Fig. 20.

We now consider the gross intensity distribution in
the pattern of Fig. 7. In the theory this is represented
by the dominant term in the intensity first derived in
(5.29) and generalized to include the adjustment in
(8.12). In the theory of well developed edge structure,
Sec. 6, the dominant term is the erst term of (6.69)
and all other terms represent fine structure. Similarly
in the theory of partially developed edge structure,
Sec. 7, the dominant term is the first term of (7.22). In
view of the central role which we have given the domi-
nant term in the theory, it is important that we de-
termine how well it fits the measured pattern. We
write (8.12) in the form

9.4 Partially Develoyed Edge Structure

Photographs of the harmonic beam taken far from
the crystal by direct exposure without an imaging
lens are shown in Figs. 11, 12. The focused laser beam is
again described by (9.3), and the important theoretical
dimensions of the experiment are

j'= 0.61,
l—f=0.61,
s—k= 18.

(9.27)

The focus was placed in the center of the crystal in order
to give a simple structure on the bright side as dis-
cussed following (7.22). The bright-side structure is
shown in the photograph Fig. 11.Because of the great
difference of intensity between the bright and dim
sides, it was not possible to observe both bright- and
dim-side fringes in the same photograph. The dim-side
structure is shown in the photograph Fig. 12. By study-
ing a number of photographs of different exposure it
was deduced that the dim-side fringes that could be re-
solved were the second through the tenth. The first dim-
side fringe could not be resolved from the edge in any of
the photographs taken. The positions of the fringes are
shown by the points in Fig. 13. On the dim side the
second fringe was placed arbitrarily on the figure, and
the other fringes were then plotted relative to the
second fringe. On the bright side the fringes are plotted
relative to the 6rst fringe. We see that the fringes fall
to an excellent approximation on straight lines, which

where X(j) is the measured position of the jth fringe on
the film. The measured R(j) is shown by the circles in
Fig. 10 and the universal function (6.41) is shown by the
solid curve. The agreement is quite satisfactory and in-
sures that we are dealing with well developed edge
structure. Nevertheless there is a systematic dis-
crepancy outside of experimental error. To explain this,
we turn to the more accurate formula for R(j) (6.42)
which depends upon the parameters (9.6). The result is
indicated by the dashed curve, which actually passes
through the circles, but to avoid confusing the figure
only its extension has been drawn.

The fringe positions X(j) relative to the first fringe
are shown by the circles in Fig. 9. The theoretical fringe
positions are given by

X(j)—X(1)
= nzbo(l —f) (s &» —s &'&)

= 1.46(s &&'& —s &'&) (Fig. 9)
=0.146f L(j—1)+03751'&'—(0.375)"') (9.26)

according to (9.2), (9.3), (9.7), and (9.24). This is
plotted as the solid curve of Fig. 9. The agreement be-
tween theory and experiment is satisfactory. The syste-
matic discrepancy is of the same kind already found
and explained in Fig. 10.
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P=0.775,

)=33, (9.29)

The relation between Ax measured on the film and
hs is

(9.30)hx= 8ogl f+e(s—l) jets=—As.

Thus relative to the edge the bright-side fringes are
located on the film at

z(j)= (~/4Pt) L1+2(j—1)7 0'ig 13)
= (0.031)L1+2(j—1)j j=1, 2, . (9.31)

Similarly, the dim-side fringes are approximately at the
maxima of cos20 P= cos8P&s. Denoting the bright side by
x)0 and j= 1, 2, and the dim side by x&0 and
j=—1, —2, , we have for the dim side (Fig. 13)

x(j)= (0.031)j j=—1, —2, (9.32)

The linear relations (9.31) and (9.32) are shown by the
lines in Fig. 13. The first bright-side fringe and the
second dim-side fringe have been placed on the lines
arbitrarily. That the other fringes also fall on the lines
indicates excellent agreement between theory and
experiment.

9.5 Power and Crystal Orientation

The power as a function of crystal angle is shown as a
continuous recorder tracing of the photomultiplier
output (no slit) in Fig. 14. Horizontal lines indicate the
levels ~~, —,', 4 and 1 times the maximum power, and
heavy dots denote the angles used to observe the pat-
terns of Fig. 15. The angle scale at the top and the e

scale at the bottom are constructed according to (9.19).
According to (8.14) F2 is proportional to the function
F(e,P) defined in (8.15). We have calculated F(~) for
P=1.95 as given in (9.13) and plotted F(e)/F in Fig.
14 by means of crosses. The agreement with the meas-
ured curve is satisfactory, especially for e)0. There is
a noticeable discrepancy for e(0. We attribute this
discrepancy, like that in Fig. 16, to the lack of an
abrupt edge in the pattern which has been assumed in
the theory.

shows that we are dealing with partially developed
edge structure. The criterion (7.11) is "barely" but not
strongly satisfied, since

(p'/I) (l'/b) —l/2m= 16, (9.28)

which is near the value of s—l. Increasing s—l to satisfy
the criterion more strongly proved unnecessary and
would have had the disadvantage of reducing the in-
tensity at the film.

We now compare the fringe positions with theory.
According to (7.22) the bright-side fringes occur ap-
proximately at the maxima of —coso.g= —cos4P(s.
The parameters governing the pattern are

9.6 Conclusions

The over-all agreement between theory and experi-
ment we consider very satisfactory. We have observed
both well developed and partially developed edge
structure under conditions in which each would be ex-
pected. The position of the edge and the spacings of the
fringes have been observed in agreement with theory,
as well as the gross intensity distribution. The de-
pendence of power upon crystal angle is also in agree-
ment with theory. The pattern has been observed both
on the exit surface of the crystal and in the air far from
the crystal, in each case with the expected results. It
seems fair to conclude that SHG by focused beams in
the presence of double refraction is quite well under-
stood. The experiments have not revealed any significant
disagreements with theory. Nevertheless, there are
several points in the theory which have not been tested
by the experiments reported here: (a) the existence of
the edge-fringe region (6.61), (b) the presence of sur-
face fine structure in a well-developed edge, (c) the
effect of absorption on partially developed edge struc-
ture, (d) internal partially developed edge structure
arising from small p, (e) partially developed edge struc-
ture arising from placing the focus near one crystal sur-
face, and (f) SHG in the absence of double refraction.
These points are primarily of academic interest except
for (f), which will be treated in another paper dealing
with the second-harmonic power and its optimization.
From a purely theoretical standpoint, and apart from
any comparison with experiment, the formal theory
seems to be in a satisfactory state. The far-field approxi-
mations giving the edge, the gross intensity distribu-
tion, and the fine structure follow in a straightforward
way from the rigorous integral representations for
the second-harmonic field. From the experimental
standpoint the results given here constitute a rather
comprehensive survey of SHG by focused beams in the
presence of double refraction.

To evaluate the function II(a,z,f,)) defined in (7..13)
the real and imaginary parts must be evaluated separ-
ately. Let

27rH= R+iI. (A1)
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Then

R(o,z.,f,&) = cosa.v- r sino-7 e ",
r 1+"

(A2)

from the Cauchy-Riemann equations

BI BI BE.

BO BK BO
(A4)

d7-

(sinor —r cosar)e "'.
1+T

The best way to plot E, I as functions of one of the
variables is to integrate the appropriate differential
equations in that variable with other variables as
axed parameters. It follows from (A2) that

e«t'

(a cosof+r sino/)
o'+z'

e
—«$

+ (a sino] —a cosa.$),
0'+K

BI e&
+I= —(o. cosa& csin—of)

clo' 0'+K

(a cosa&+~ sino. &).
0'+K

for 2~H as a function of the complex variable o+I
Equations in P and $ follow immediately from (A2)
and will not be given here. For a='=0 (A2) can be
integrated in closed form

R(0,0,g, g) = tan-'(+tan-'g

(1+)')
1(o,o,g, g) =-,' inl

(1+A)

(A5)

All integrations will ordinarily start from (A5). The
numerical integration can be checked by comparing two
or more paths of integration from o=0, '=0 fo $p 'to

the desired 0, z, f, $. The system (A3) is stable when
integrating in the positive 0 direction. Our program
based on Hamming's predictor corrector method"
gives agreement to three or four significant figures for
different paths of integration, and can be operated in
the negative 0- direction in the range 0&0.& —3. The
range in the positive 0- direction is unlimited.

"R. W. Hamming, J. Assoc. Computing Machinery 6, 37
Similar equations in the variable A: may be obtained (&~59).












