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Application of the Cluster Variation Method to the Heisenberg Model
with Arbitrary Spin and Range of Exchange*
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The cluster variation method for the cooperative phenomena proposed by Kikuchi and reformulated and
generalized by Morita, is applied to the Heisenberg model with arbitrary spin and range of exchange. A

general expression for the two-body reduced density matrix is obtained in the approximation in which the
clusters of pairs of lattice sites are retained correctly. The constant-coupling approximation for the Heisen-
berg model of S&1 is shown to be derived by satisfying the reducibility conditions trep

's& (j,h) =p&'& (j) only

partly, requiring the consistency for the zeroth and first moments of S;, and ignoring the consistency for the
second to 2Sth moments. A natural method of extending the constant-coupling approximation for the
Heisenberg model to the cases with arbitrary spin and range of exchange is suggested.

I. INTRODUCTION

ECENTI V Strieb, Callen, and Horwitz' tried to
generalize Horwitz and Callen s' investigation on

the Ising model to the Heisenberg model and gave a
cluster expansion for the Heisenberg model. In their
expression for the free energy, a parameter S is intro-
duced in such a way that each term depends on 8 but
the entire sum does not. As soon as an approximation is
introduced, the resulting expression becomes dependent
on S. They determined S such that the approximate
expression for the free energy is a minimum. Their
lowest two approximations were shown to be equivalent
to the gneiss molecular-Geld approximation and the con-
stant-coupling approximation proposed by Kasteleijn
and Van Kranendonk. '

Callen and Callen4 generalized the constant-coupling
approximation on the basis of the analysis of Streib,
Callen, and Horwitz, to the Heisenberg ferromagnet
with first- and second-neighbor exchanges, for the
purpose of investigating the properties of europium
chalcogenides. In this case also, they started from an
identity which is valid for any value of 8 and determined
the value of 8, after an approximation was introduced,
by a stationary condition.

Quite recently and independently Fujishiro, Takano,
and Oguchi' have developed a theory which is also a
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145

generalization of the constant-coupling approximation.
Their treatment is somewhat similar to that of Callen
and Callen in that they also take the second-neighbor
interaction into account. Based on some physical intu-
itions, guided by the constant-coupling approximation,
they guess an effective Hamiltonian for two- or three-
spin cluster. This Hamiltonian contains several un-
known local-Geld parameters, and they determine these
parameters by some sort of consistency conditions. One
of the interesting conclusions obtained in FTO theory
as a result of three-spin cluster calculation is that the
two-dimensional triangular lattice cannot be ferro-
magnetic whereas the simple cubic lattice becomes
ferromagnetic in spite of the fact that both lattices have
the same number of nearest neighbors.

In order to determine an arbitrarily introduced
parameter 8, CC used a method which is different from
the method used by FTO, therefore, they obtained
different results. Neither of these methods has been
justihed from the basic principle of statistical me-

chanics. As a matter of fact, FTO state in their paper
that they cannot verify the method from the first
principle and there are some ambiguities of the method.

On the other hand, we have the cluster-variation
method for the cooperative phenomena proposed by
Kikuchi. This method is formulated in the form of a
variational principle and is known to give the Weiss
molecular-field approximation for S~—,

' and the con-
stant-coupling approximation for S=—,. Hence, it is
expected that there exists some relation between the
cluster-variation method and the CC method or the
FTO method.

It is the purpose of this paper to analyze the nature
of approximation involved in the constant-coupling ap-

R. Kikuchi, Phys. Rev. 81, 988 (1951); J. Chem. Phys. 19,
1230 (1951); M. Kurata, R. Kikuchi, and T. Watari, ibid. 21,
434 (1953).See also T. Morita, J. Phys. Soc. Japan 12, 753 (1957).
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proximation from the point of view of the cluster varia-
tion method and to find a natural generalization of the
constant-coupling approximation to the Heisenberg
model with arbitrary range of exchange interaction.

In Sec. II the cluster variation method due to one
of the present authors (T. M.)' is reviewed. In Sec. III
the application of the method to the Heisenberg model
is discussed. The constant-coupling approximation and
its generalization are discussed in Sec. IV. In Sec. V a
comparison with the previous formulations is made. In
Sec. VI the results of numerical calculations are
discussed.

II. CLUSTER VARIATION METHOD

The cluster variation method for the cooperative
phenomena was first proposed by Kikuchi' and later
reformulated and generalized by one of the present
authors (T. M.).' The method may be summarized as
follows.

It is well known that the free energy F of a system
of which the Hamiltonian is BC is calculated by the
variational principle:

over the degree of freedom of the i th spin and the trace
over all the degrees of freedom of L spins except those
of irth, , i„th spins. The tr in Eqs. (2.2) and (2.3)
means the trace over all the degrees of freedom of L spins
in the system and it will alternatively be expressed as
tr~L, ). Similarly, a notation tr;, ... ;„,which indicates the
trace over the degrees of freedom of the i~th, ~ ~, i th
spins, will be introduced.

One now introduces

r( &U)=v( &U),

r(')( j)k) =y"'(j)+y("(k)+y")(jyk) p

I'"'(j,k, i) =7"'(j)+7"'(k)+7'"(i)
+v"'(j,k)+v"'(k, i)+v"'(j,i)
+v")(j,k, i), (2.8)

p(r)(j) p(s)(j k) . . . I'(z)(1 . . . I).
y"'(j), y"'(j,k), , p(z)(1, ,I.) successively by
means of the following relations:

r .(()i ,r,i )=tr,„,... ; p~(")(i ,r,i)
&(lnp((")(ir, ,i„), (2.7)

F=min%, (2.1)

trpb ——i. (2.3)

The p& which minimizes 5 is the density matrix p in
thermal equilibrium, i.e., p= [exp—PBC7/tr[exp —PK7.

Let us consider a system which consists of I.localized
parts (e.g. , localized spin-magnetic moments, particles,
oscillators, etc.) which have some internal degree of
freedom. For convenience we may call such a localized
part a spin in the following. We then assume that the
Hamiltonian of the system is given in the form:

X=/; h(i)+Q;); h(i,j)+, (2.4)

where h(i) is the energy of the spin localized at the ith
lattice site due to an external Geld and h(i, j) is the
energy of interaction between two spins localized at
ith and jth lattice sites, and so forth.

In order to work with the variational principle (2.1)
and (2.2) for such a system, it is convenient to introduce
the trial e-lattice site reduced density matrix which is
defined by

p~ (ii)'', i )=tr(z)-'g —"—i pt)

and satisfies the recurrence relation

(2.5)

p, ("—'&(ir, . ,i„r)= tr;„p,("&(i„,i„„i„),
x=1, , I., pg(o) =1. (2.6)

Here tr;„and tr{1.);, ... ;„mean, respectively, the trace

r T. Morita, J. Phys. Soc. Japan 12, 1060 (1957).

P= trpg[X+kT lnp(7, (2.2)

where the minimum is taken with respect to the trial
density matrix p& under the normalization condition that

In practical applications, however, one introduces an
approximation where the series in Eq. (2.9) is truncated
at a point: i.e., only the first few p&")'s are included.

III. APPLICATION TO THE HEISENBERG
MODEL WITH ARBITRARY SPIN

AND RANGE OF EXCHANGE

The variational principle (2.1), (2.9), and (2.10) with
Eq. (2.6) is applied to the Heisenberg model with arbi-
trary spin and range of exchange. The Hamiltonian for
the system is

3e= —P, IIS;.—P;)s I;sS; Sg„ (3 1)

where H is the external magnetic field in a suitable unit
and J;~ is the exchange integral between jth and

The function 5: given by Eq. (2.2) is then expressed as

5'=P;tr;h"&(j)p&(')(j)+g, » tr;, sh(')(j, k)p, (')(j,k)+
+k2'(z 7"'(j)+z»Y("(j,k)+ ") (2 9)

The variational principle is now stated in terms of
)'s.

0=()f/()p~(")(ir, ,i ), n=1, 2, , I-, (2.10)

with restricting conditions (2.6).
The above formulation is rigorous and the p~("&'s

which make the expression (2.9) a minimum are the
reduced density matrices, p&")'s, in thermal equilibrium,
defined by
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kth spins. J;I, is not necessarily restricted to nearest
neighbors.

It is well known that if one retains only P;y&r&(j)
in the second line of Eq. (2.9) and approximates pi "&(j,k)

by p&
&' (j) p&

&'& (k), then one obtains the Weiss molecular-
field approximation. In this paper, we shall investigate
the approximation in which y&') is also retained. In this
approximation, the free energy is given by

F=lTllnP
~

rt= —P;H tr;5;,p, & &(j)—gz&s J;s tr& sS,"S&p&& &(j k)+kT P, tr, p&& &(j) 1np&&»(j)

+kT g;&s [tr~ &p~&2&(j,k) lnp~&s&(J&k) —tr, p~& &(j) lnp&&'&(j) —tr&p& (k) input '&(k)7. (3.2)

are replaced by

(3 3) trpb„(g)[trsp&&s&( j k) —p &r&(g)7=0
m=1, ) (25+1)'—1, (3.6)

The recurrence relations for p&") and p&&" are

tr, pg&r&( j)—1=0.

trsp~"'( j,k) —pi"'(j)=0. (3.4) and
tr; &,p &'&(j k) —1=0. (3.7)

Denoting the Lagrange multipliers for the subsidiary
conditions (3.3), (3.7), and (3.6), as

kT—kT Zs1+f(j ), kT fU) f—(k)+f—U,k)

Since the recurrence relation (3.4) is a matrix equation
it is equivalent to a set of (25+1)' scalar relations. If
one introduces a complete set of (25+1)' matrices, 1
and M„(j) [n=1, 2, , (25+1)'—1] such that any
matrix A of order 2S+1 can be expanded:

A=ap+p„a„M (j). (3.5) kT lnp&'&(j) —Xs &"&

Then the subsidiary conditions (3.4) for the variation the variational function is written as

5= —g; H trS;,p~" (j)—g» J&, tr, , iS; S&p~&' (jk)+kT p; trp&&'&(j) 1np&&'&(j)

+kT Zi» I «r, ~pi'"(S)k)»p~"'(a, k) —«Jp~"'(j)»p~"'(j) —trv i"'(k)»p~'"(k)]
—p, [kT—kT ps 1+f(j)][tr;p, & '(j)—1]—Q,» [kT f(j ) f(k)—+f(j k—)][tr;,&p&&'&(j k) —17

—Z~ Zs trj[kT»p'"(j) —l&sU)][«~p~"'(jk) —
P& (j)7 (3 8)

where

Xs(j)=p. Xs, &"&M (j). (3.9)

The Lagrange multipliers must be determined such that
p&&'&(j) and p&& &(j,k) which minimize this expression
satisfy the subsidiary conditions (3.3), (3.7), and (3.6).
It is noted that the differentiations of the expression
(3.8) with respect to f(j), f(j,k), and X&, ;&"& give the
subsidiary conditions. This implies that one can deter-
mine these Lagrange multipliers by the condition that
5 is stationary, instead of the subsidiary conditions.

As a result of the variation with respect to p~&'&(j),

' This property that the Lagrangian multipliers are determined
by the variation principle is quite general. For instance, the varia-
tional principle (2.1)—(2.3) is written as follows: The free energy
Ii is equal to the value of the functional dined by

P{p~,x) =trp, LX+kT 1np~g+& Ltrp, —1j
for the values of p& and X which make this expression simultaneously
stationary. This implies

5F{p (A),X) BFfp (X),) ) 8p (X)+ 5$fp (A),) } p
Q BPg(A.) 7, Q Q, p, (7,)

where p&(X) is the p& which makes F(p&,)) stationary for Axed X.
Consequently one can calculate F in two steps: Minimize 5'(p&,) }
with respect to p~ for Axed ), introduce the resulting p&Q) into 5',
and then calculate the stationary value of s:(p&ixl,x}with respect
to 5,

p&&s&(j,k), f(j ), and f(j,k), one obtains

p"'U) =exp&[f(j)+HS~.+Zs ~s(j)7 (3 1o)

p"'(j,k) =expP[f( j,k)+H(5;,+Ss,)+Ps.& „s& Xs.(j)
+Q,'&~;) &&,'(k)+J;sS; Ss], (3.11)

I'= Z f(j)+Z » [f(j,k)-f(j)-f(k)], (3 12)

where

exp —Pf(j) =tr; expP[HS, ,+ps &&s(j)7, (3.13)

exP —Pf(j,k) = tr;, s exPP[H(5;, +Ss,)+Ps.&»& Xs.(j)
+Q;, ;, ; (k)+J; S,"S 7, (3.14)

and Xs(j) is given by Eq. (3.9). Xs,,&"& must be deter-
mined by the consistency condition (3.7) or by

8F/BXy;&"' =0. (3.15)

From Eqs. (3.10), (3.11), and (3.4), one concludes that

l&s(j)=o and p'"(jk)=p"'(j)p"'(k) if J~s=0 (316)
The above result has been obtained without specifying

the set of M„(j)'s. The result is simplified by the follow-
ing choice' of cV„(j)'s; that is,

5;,", e= 1, 2, ~, 25
' Pote added in proof. What is essential here is to choose a set

of completely diagonal matrices and completely oQ-diagonal ma-
trices for Mn (j) s. The present choice is one of such possibilities.
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and
L(5;+)"+(5 )"75;,m, m=1, 2, , 25
[(5;+)n—(S; )"75 nm m=0, 1, , 2S—e.

has been reduced to
28

Xp(j)= p &I, &"&5 "
n=l

(3»)

Now the subsidiary conditions (3.6) read

tr; &5 "p~"(j k) —tr~S;,"p"&(j)=0,
g= 1, 2, , 25, (3.17)

tr~..HS~') "+(Sr)"75~ p"'(i k)
—t;L-(5,+)-~(5,-)-75,,;& &(j)=0

v=1, 2, , 25; m=0, 1, , 2S—e. (3.17a)

Equation (3.9) reads

28'

(j)—Q g (n&5 . np .g &,(+n, m&t (5,+)n+. (5 —)n75. m

n=l fL y m

+p &
(—n, m&L(5+)n (S.—)n75 n

The Lagrangian multipliers, Xl, ;(") and Xq;&+"* ), must
be determined to secure the consistency conditions given
by Eqs. (3.17) and (3.17a). Now X& +n ' are set equal
to zero, because then both terms in Eq. (3.17a) become
individually zero and the consistency conditions given
by Eq. (3.17a) are automatically secured. Hence, X&(j)

where XI, ,'"' must be determined by the conditions
given by Eq. (3.17)."The implication of the fact that
both terms in Eq. (3.17a) are individually zero will be
discussed in the following paragraph.

In our present problem of the Heisenberg ferromag-
net, the total Hamiltonian commutes with the total
magnetization and hence the average value of an oper-
ator, which does not conserve the total magnetization,
such as 5;—,S, 5;„(S—;—)'S,„S;5~„5; (SI+)'5&... etc. ,
is zero. It follows that p"&(j), p"&(j,k), , commute
with 5,„5,,+Sq„,respectively. It is noted here that
the po&(j) and p&'&(j,k) determined in the present ap-
proximation, where p&'&( j,k) is taken account of, satisfy
these properties automatically.

IV. CONSTANT-COUPLING APPROXIMATION
AND ITS GENERALIZATION

Let us introduce an approximation where the con-
sistency relations (3.17) for e= 2, , 2S are neglected.
Hence the Lagrangian multipliers A.I, ;&'), , and
X~;('~' for these conditions are dropped. As a result,
Eqs. (3.10)—(3.15) reduce to

where

»»(j) =expPLf(j)+(H+Z. &, ,
~ )5;.7,

&I&"&(j,k) =e pPLf(j, k)+(H+P ~, 4, ")5;.+(H+Q; (,; »;, "&)5,+J; S; S 7,
~=K f(j)+Z )~ LfU, k) —f(j)—f(k)7,

exp —pf(j) = tr; expp(H+p&, »&, ,;"&)5;.

exp —Pf(j k) = tr;, & expPt (H+P& «&& Xz, ;&'&)5,,+(H+Pp&»& &I, &, &'&)5&,+J&S; S»7

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

and X&,
&'& must be determined by tr;5;,Ltr&,p~'&(jk) —p&'&( j)7=0 or by

BIi/H. y,
"'=0

For the Heisenberg ferromagnet where

J,~=J if j and k are nearest neighbors,
=0 otherwise,

one finds

(4.6)

~"&(j)="pPLf +(H+s~)5.7, (4.7)

p&'&(jk) =p„„~'&(jk) = expP( f&+ LH+ (s—1)»7(5;,+5&„)+JS; Sz) when j and k are nearest neighbors, (48a)
=p&'&(j)p&'&(k), otherwise. (4.8b)

~/I = (1/2)sf2 —(s—1)fi, (4.9)

where s is the number of nearest-neighbor lattice sites and

exp —Pfq= tr; expP(H+sX)5;„

exp —pf2= tr; &, expp(LH+ (s—1)».7(5;,+5&„)+JS; S&,),
(4.10)

(4.11)
"In fact, Xk(j) given by Eq. (3.18) and the set of Eqs. (3.10)—(3.15) and Kq. (3.17) are noticed to be the result of the variation,

when the subsidiary conditions given by Eq. (3.17a) are ignored and only those given by Eq. (3.17) are considered. In general, the
free energy given by the variation in which some of subsidiary conditions are ignored is a lower bound to the free energy which
would be obtained when all the subsidiary conditions were considered. Since p(')(j) and p(')(j, k) thus obtained satisfy all the
ignored subsidiary conditions as mentioned above and give the lower bound for the free energy, they must be the p(»(j) and
p(2)(j,k) which mak. e the free energy a minimum and satisfy all the subsidiary conditions.
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and ) must be determined either by the consistency condition

or
tl,Sjz"'= trjk+, j.pen"'(g, k),

B(F/L)/H. =0

(4.12)

(4.13)

This set is seen to be equivalent to the constant-coupling approximation proposed by Kasteleijn and Van Kranen-
donk, in their original form, where Eq. (4.12) is used to determine X or in the form derived by Strieb, Callen, and
Horwitz, where Eq. (4.13) is used to determine X. In the above we have neglected the subsidiary conditions (3.17)
for v=2, -, 2S, which is exact for S=—,. For this reason, Kasteleijn and Van Kranendonk found that their con-

stant-coupling approximation had the same result as the one by Kikuchi" who considered the Heisenberg ferro-

magnet only of S=-,'.
The above formulation has been set forth without restricting the range of exchange and hence it is applicable

to the ferromagnets with 6rst- and second-neighbor exchanges:

J;&——J if j and k are nearest neighbors,
=J' if j and k are next-nearest neighbors,
=0 otherwise.

For this case, one has

p~'~(j) = expP[f, +(H+sX+s'X')5;, 7, (4.14)

p'"(j k) =p &''(j k) = expP{f2+[H+(s—1)X+sÃ$(5;,+Sg,)+JS; Sg),
when j and k are nearest neighbors; (4.15a)

=p„„„&'&(jk) =expP( f2'+[H+A+(s' —1)X'j(5;,+5~,)+J'S; Si),
when j and k are next-nearest neighbors; (4.15b)

=p~i~(j)p~ ~(k), otherwise, and

F/L= ,sf2+ss'fs' -(s+s' —1)f—i,

(4.15c)

(4.16)

where s and s' are the numbers of nearest- and next-
nearest-neighbor lattice sites, respectively, and

exp —Pfr= tr, expP(H+sX+s'X')5;„

exp Pf2 tr;, ~—expP[——(H+(s—1)X+sV)
X (5;,+Sg,)+JS; Sij, (4.18a)

exp —Pf2' ——tr;, q expP[(H+s'A+ (s'—1)V)
X (5;,+Sp,)+J'S; SI,j. (4.18b)

The conditions determining X and P
' are either

tr,S;,p&'&(j)= tr;, &5;,p„„&"(j,k) (4.19a)

(4.17)

and

01

and

tr;5;,p~'~( j)= tr; &5;,p»„&"(j,k)

8(F/L)/W, =0

8(F/L)/BX'= 0.

(4.19b)

(4.20a)

(4.20b)

V. COMPARISON WITH PREVIOUS
FORMULATIONS

One can now examine the Callen-Callen formulation
and the Fujishiro-Takano-Oguchi formulation under the
light of the cluster variation method. For de6niteness
the comparison is limited to the two-spin cluster ap-
proximations for the ferromagnetic case with two ex-
change integrals J and J'.

"R.Kikuchi, Ann. Phys. (N. Y.)4, 1 (4958).

The CC formulation is equivalent to setting

~=SS, ~'=X'S (5.1)

in Eqs. (4.16), (4.17), (4.18a), and (4.18b). The param-
eter S is then determined by minimizing the free energy
(4.16); this results in the condition [cf. Eq. (25) in
Ref. 4$.

tr;5;.p"'(j)=w tr;, ~5;.p» (g)k)
+(1—~) tr', ~S~.p--'"(j,k), (5 2)

where

~= [(s—1)»+ss'J'j/(s+s' —1)(sJ+s'J'). (5.3)

One can see here that neither of the consistency con-
ditions (4.19a) and (4.19b) are satisfied. Equation (5.2)
is a weighted average of two consistency conditions with
the weight (5.3).

In the FTO formulation they assume the effective
Hamiltonians as follows:

K&'& (j)=—[H+sJ+s'J']SS;., (5.4)

K&'&(j,k) = —[H+(s—1)J+s'J'j
X8(5;.ys„)—ZS; S„(5.5)

for the nearest neighbors only. This is again equivalent
to setting

x'=J'S

in p&'&(j) and p „&@(jk) given by Eqs. (4.14) and
(4.15a). In the FTO theory, however, there is no pre-
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scription given to Gnd the free energy. In order to
determine the parameter 8, the consistency condition
(4.19a) for the first moment is employed.

First of all, one should remember the fact that, in the
case of either the CC or FTO theory, there exists an
assumption which should be questioned: Why must S
be determined by minimizing the truncated free energy
in the CC theory? %hy must the effective Hamiltonians
be given by Eqs. (5.4) and (5.5) for p "&(j) and p &'&(j,k)
in the FTO theory' Why must p„„„&sl(j,k) not play any
role in the FTO theory?

Secondly, Eq. (5.1) may be the most natural choice
of the relation between X and X', if one has to introduce
it with just the aid of intuition. If we accept Eq. (5.1),
our equations reduce to their equations in some sense.
However, the choice (5.1) results in an ambiguity for the
condition determining S; FTO used Eq. (4.19a); CC
used a weighted average of Eqs. (4.19a) and (4.19b).
Different weighted averages of Eqs. (4.19a) and (4.19b)
would also be possible. Moreover, there appears another
inconsistency in the CC theory. Sould the magnetization
be given by Eq. (5.2) or should it be given as the
derivative of the free energy with respect to the external
magnetic Geld? CC used the latter form, which is found
to be another weighted average of Eqs. (4.19a) and
(4.19b).

One can now say that the CC and FTO formulations
are justiGed, in some sense, from the cluster variation
method, and one can understand the nature of approxi-
mations in these formulations. However, the justiGca-
tion is just for the pair approximation combined with
the consistency condition for the Grst moment. "

The cluster variation method is free from all these
inconsistencies. The minimization condition for the free
energy and the consistency condition for the first
moment are completely identical as stated in Sec. III.
Furthermore, it is possible to introduce many more
local-Geld parameters depending upon the desired degree
of accuracy of the treatment.

VL NUMEMCAL CALCULATION FOR EuS

It is not attempted to carry out extensive numerical
calculations in this paper for the following reasons. First
of all the two-spin cluster approximation would still not

be satisfactory to treat cooperative phenomena like
ferromagnetic phase transitions, although it is a one-
step improvement over the molecular-Geld approxima-
tion which does not take two-spin correlations into
account at all. This unsatisfactoriness becomes promi-
nent especially when there exists a nonzero antiferro-
magnetic exchange integral between next-neighbor
pairs in addition to the nearest-neighbor ferromagnetic
exchange integral. Secondly, even with an improvement
in the present formulation which is a significant im-
provement from statistical mechanics theory point of
view, over the CC and the FTO theories, the behavior
of the spontaneous magnetication near the Curie tem-
perature may not be modified very much compared with
the previous calculations. Nevertheless the numerical
calculations are discussed in this section simply because
the procedures by which various physical quantities
are calculated are slightly diferent from those in the
previous treatments.

Following Callen and Callen, we shall calculate the
dependence of the Curie temperature on the ratio of the
nearest-neighbor and next-nearest-neighbor exchange
integrals for a face-centered lattice of S=-,' and -', and
then calculate the temperature dependence of the spon-
taneous magnetization for a special ratio of J'/J= —0.4.
for a face-centered-cubic lattice of S= and S=-,'. This
ratio is the one which has been estimated for EuS by
Charap and Boyd,"who gave

J/k =0.20'K, J'/k = —0.08'K.

Callen and Callen used these values in their investiga-
tion of EuS.

In Sec. IV, the free energy is given as a sum of three
terms as

F/L= ,'zfs+ ', z'fs' -(z+s-' 1)—fr. —(6.1)

The f& is given by Eq. (4.1) and is easily calculated in
the representation in which S;, is diagonal. The result is

exp —pf r = sinhL(2S+ 1)pHr/2j/sinhtpHr/2], (6.2)

where
Hr= H+zX+z'X'. (6.3)

The fs is given by Eq. (4.11) and is calculated in the
representation where (S;+Ss)'=SP+S~'+2S,"S~ and
S,,+Ss, are diagonal. The result is

2S

P sinhL(2S+1)PHs/2j expLP JS(S+1)/2j
/=0

exp( —pfs) =
sinh+Hs/2 j (6.4)

"Note added ea proof. Recently papers (O. Nasai, J. Phys. Soc. Japan 18, 310 (1963), and a subsequent private communication)
came to the authors' attention in which a two-sublattice antiferromagnet and also a Heisenberg ferromagnet are treated in the
two-spin cluster approximation. In these papers effective one-spin and two-spin Hamiltonians are introduced based on some intuitive
considerations but without any attempt to derive them. These Hamiltonians are exactly the ones which would be obtained if the
method of the present paper is applied to the problem in the approximation in which the two-spin cluster is included and the erst
moment of the magnetization is determined consistently as is done in this section. In Nagai's papers the local Geld parameters are also
determined by the same self-consistency conditions. Therefore, the method used in these papers is completely justi6ed from the point
of view of the cluster variation. method within the specified approximations. Nagai calculated the Curie temperature for the Heisenberg
ferromagnet of spin —,. This result is identical to the corresponding part given in the next section."S.H. Charap and E. L. Boyd, Phys. Rev. 133, A811 (1964).
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where
Hp= H+sX+s'X' —X. (6.5)

The f2 which is given by Eq. (4.18b) is similarly calculated as

2S

P sinh[(2$+1)PHp'/2] exp[8J'$($+1)/2]
g=0

exp( —Pfp') =
sinh+Hp'/2]

—PJ'S(S+1)8 (6.6)

where
Hp' H+——8+st Y. — (6.7)

The equations to determine X and X are obtained by the variation (4.20a), (4.20b) or the self-consistency con-
ditions (4.19a), (4.19b). This means that X and X' must be determined such that all of three values:

~(-e )
2m' ——2(5;,)~=—2 = (2S+1)coth[(25+1)PHp/27 —coth[PH~/27, (6 8)

and

2S

P (2$+1) cosh[(2$+1)PHp/2] exp[PJ$($+1)/2]
8( Pfp) 1—$=o

2m2= (5;,+Sp.)2=—

8(PH) 2 ss
P sinh[(2$+1)PHp/2] exp[PJ$($+1)/27

2S

—coth[PH2/27 ~, (6.9)

P (2$+1) cosh[(2$+ 1)PHp'/2] exp[PJ'$($+ 1)/2]
8( /f2') —1 $=o

2mp' ——(5,,+Sg,)p'=—

B(PH) 2
P sinh[(2$+1)PH2'/27 exp[PJ'$($+1)/2]

—coth[PHp'/27 . (6.10)

are equal to each other.
As the erst step, the relation between the Curie tem-

perature and the value of the ratio J'/J will be discussed.
Just below the Curie temperature, the magnetization

in the absence of the external field is very small. Since
the local fields, X and A.', are the Lagrangian multipliers
for the consistency conditions for the magnetization,
X and X' should vanish in the limit as the magentization

RL 7e /Jl(g~I)

IO

my =P(sX+sV)-,'[(5+-')'—(-')'7

m =P( X+s'X'—X)-,')&—C (PJ),

(6.11)

(6.12a)

where

m2'= p(8+st —V) 3 X SC's(pJ'), (6.12b)

2S

P (2$+1)' exp[PJ$($+1)/27
/=0

C'8(N) = (6.13)
2S

(2$+ 1) exp[PJ$($+1)/27
/=0

One can write the conditions m ~
——mp ——mp' ——0, as P —+ P„

as follows:

vanishes. Therefore in Eqs. (6.3), (6.5), (6.7), (6.8),
(6.9), and (6.10) H is set equal to zero and X and X' are
regarded as very small parameters. Expanding the
hyperbolic functions in Eqs. (6.8), (6.9), and (6.10) in
powers of PH&, PH&, and PH&', respectively, and retain-
in the leading terms, one obtains

I. 0 - 0,4' - O. 0 -0.4 -O.R 0.0 O, P 0.4
where

C'8(p.J)=2[(25+1)'—1]/(1—t), (6.14a)

C's(P.J') = 2[(25+1)'—1]/(1—t'), (6.14b)

PxG. 1, Curie temperature as a function of exchange constants
for spin values ~ (the lower curve) and ~7 (the upper curve). The
molecular-field result, the Callen-Callen result, and the I'ujishiro-
Takano-oguchi result are also shorn.

and
t'= V/(sX+s'X') = t(V/X) . (6.15b)

t= X/(sr+ s'X') = 1/[s+ s'(V/Z)], (6.15a)
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Fro. 2. (a) Magnetization as a function of temperature for spin —', and J'/J= —0.4. (b) Magnetization as a function of temperature
for spin s and j/J= —0.4. A detailed behavior near the anti-Curie temperature is also shown.

Set P,J to an arbitrary value, and then calculate
C's(PcJ) by Eq. (6.13). This value of CB(P,J) is sub-
stituted into Eq. (6.14a) and (V/X )will be calculated
(s = 12, s' =6 for fcc). With these t and (X'/X), t' is found

by Eq. (6.15b), and then from the numerical table of
C s(PJ) the value of P,J' is found. In this way the relation
between P,J and J'/J is found and that is plotted in
Fig. 1 for S=-,' and S=-,'. One sees in Fig. 1 that the
two-spin-cluster approximation gives an - unphysical
anti-Curie point for negative values of J /J. The origin
of the anti-Curie point is easily traced back to the
general form of the density matrix for the second-
nearest-neighbor pair. As long as J is negative, S=O is
the only contribution to the sununations in Eq. (6.10)
at P= ~. Hence m'=0 is the only possible value at
P = ~ . If the magnetization is determined consistently,
then m&= m2= m2'=0 is found to be the only possibility
at P= ~. In Fig. 1, the results of FTO and CC are also
included. In their results the unphysical anti-Curie
point does not appear. This is because in FTO theory
the density matrix for the second-neighbor pair does not
play any role at all. In the CC theory, the magnetization
is calculated as a weighted average of magnetizations for
the nearest-neighbor pair and for the second-neighbor
pair as given by Eq. (5.2). Hence, even if the magneti-
zation vanishes for the second-neighbor pair, the
weighted magnetization does not become zero and the
anti-Curie point does not appear. The CC curves go to
zero very rapidly as J'/J becomes more negative than
a certain value, as reported in their paper. We found,
however, that their curves actually extend much
further to negative J'/J values.

As the second step, the temperature dependence of
the spontaneous magnetization will be discussed. In the

following calculation, the value of J'/J is Gxed to be—0.4.
We choose a temperature lower than the Curie tem-

perature. This means, then, that the values of PJ and
PJ' are Gxed. Plot 2mr, 2ms, and 2ms' as functions of
PH&, PHs, and PHs', respectively. In this way, three
curves are obtained. Those curves are now looked at as
giving PHt, PHs, and PHs' as functions of 2m. From
these curves PX=PHt PHs, PX'=PH—t PHs', and—
PH=PH& —(sPX+z'PV) are evaluated as functions of
2m and then the value of 2m for which PH=O is calcu-
lated. This 2m is the consistent magnetization in the
absence of the external Geld for the temperature PJ.

The spontaneous magnetization computed in this way
as a function of temperature is plotted in Fig. 2 for
S= 2 and S=~.

For the case of S=-,', the anti-Curie point is found
to be 0.113T,. The spontaneous magnetization ap-
proaches the saturation value very closely at low tem-
peratures. The curve overshoots the anti-Curie point,
reaches maximum value of 6.998/2 at 0.091T„and then
suddenly drops to zero at about 0.028T,.

This appearance of the anti-Curie point for a system
in which the second-neighbor interaction is antiferro-
magnetic is a characteristic of the two-spin-cluster
approximation. This suggests strongly that at least the
three-spin correlation should be taken into account.
Application of the cluster variation method to this case
will be a subject of future consideration.
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