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The natural unit of current is In ordinary cgs units, the critical current is then
In ordinary cg
4m) WVZH 0/ given by
(C/ 7|')( b/ )! 47"]0 ch (1—H/H02)3/2
which ensures that J=VXH in this system of units. = 2)3/2——*‘——-2— . (25)
Then the mean longitudinal current is given by ¢ A B(1=1/2¢)

(s 9N DA (2 22 S 2 The magnetization at the transition falls to two-thirds
J= G/ ¥ |Hev=24L (73 /x—H]/ 22 —1)B. (23) of its equilibrium value in the absence of current. The
We differentiate J with respect to j and set the deriva-  smallness of the change in the magnetization accounts
tive equal to zero to find the value of j for which Jisa  for the fact that a simple free-energy argument gives
maximum : very nearly the same result for the critical current.

8J /8]« k2—xkHo—37*=0 (24)
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Effects of Transverse and Axial Magnetic Fields on Gaseous Lasers*
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The effects of transverse magnetic fields on a J =1 — 0 laser transition are considered, and expressions for
the macroscopic-atomic-polarization terms are derived. The contributions from the o modes are combined,
and equations for the intensities and frequencies of the = and ¢ oscillations are deduced. Various coupling
terms occur because of the common lower level of the transition, and a quenching of the initial w-mode
oscillation with a change to the ¢ mode is indicated as the magnetic field increases from zero. With increased
field, both modes oscillate simultaneously, and a beat occurs whose frequency depends on the operating
conditions, and which may become zero again at higher magnetic fields. At line center the beat frequency
should remain zero with increasing magnetic field, representing a method of laser tuning. Similar equations
for the circularly polarized o oscillations in axial magnetic fields are deduced. Here the conditions for stable
two-frequency operation are more readily satisfied, and no such quenching is indicated. Again there are zero-
beat-frequency regions of magnetic field in which a mutual synchronization of the oscillations should occur.
Some experimental results with transverse magnetic fields on the 1.153-u He-Ne laser are given. These dis-
play the general features indicated by the theory. Thus a quenching of the initial z-mode oscillation occurs,
with more or less abrupt changes to the ¢ mode, depending on conditions. Similar single-beat-frequency
variations with magnetic field occur, together with a region near the line center where the beat frequency,
although finite, remains constant with increasing magnetic field.

1. INTRODUCTION order dispersion functions involved in the laser transi-
tion, or on the balance between frequency pulling and
pushing effects. It is thus dependent on the lifetimes of
the states involved, on the cavity tuning and Q value,
on the applied magnetic field, and on the dispersive
properties of the laser medium. When the magnetic
field is zero the beat frequency is zero and the polariza-
tion is linear with a direction determined by small
anisotropies, chiefly in the reflectors, of the laser
cavity. The beat frequency may also pass through zero
in one or more regions as the axial magnetic field in-
creases.'2 In such regions the oscillations have a natural
tendency to coalesce because of nonlinear effects and
this again, for small anisotropy, gives rise to a linear

HE effects of relatively small magnetic fields on

the operating characteristics of gaseous lasers are

quite pronounced, and provide a fertile field for the
investigation of the dispersive and nonlinear properties
of the laser medium. Thus axial magnetic fields of a
few tenths of a gauss can produce orthogonal circularly
polarized oscillations and hence beat frequencies in a
planar-type laser, which in zero magnetic field oscillated
on a single frequency and was linearly polarized.! The
beat frequency observed as the magnetic field increases
depends on the detailed shape of the first- and third-

* Supported by the Lockheed Independent Research Funds.
1'W. Culshaw and J. Kannelaud, Phys. Rev. 136, A1209 (1964).
See also Phys. Rev. 141, 228 (1966); 141, 237 (1966). #R. L. Fork and M. Sargent, III, Phys. Rev. 139, A617 (1965).



258

o

N //a
b
—_— b 0
X
A b
— c -1
o+ //)'c i -
Pag Pbd Ped
w2 wo uJ1
1/2 146} vy
Vz Vo V1

>‘d
—— d

L

F1c. 1. Transitions and parameters used to consider transverse-
magnetic-field effects in gaseous lasers.

polarization but which rotates as the magnetic field is
varied within such regions.! Various other nonlinear
oscillatory phenomena such as harmonic and subhar-
monic generation have also been observed when ac
axial magnetic fields are also applied, both in zero dc
magnetic field and in the other coherence or syn-
chronization regions between the circularly polarized
oscillations.! For transverse magnetic fields the behavior
of a short, single mode, planar type He-Ne laser,
operating on the 1.153-u transition is found experi-
mentally to be completely different in some respects
from that pertaining to an axial magnetic field. When
the magnetic field is applied along the direction of
polarization in zero field, which we designate as the =
mode, there is a more or less abrupt change in polariza-
tion depending on conditions, from the = mcde to the
o mode of oscillation as the transverse magnetic field
increases from zero. This resembles more closely a sup-
pression of its initial = mode oscillation and an enhance-
ment of the ¢ oscillation as the field increases, rather
than an actual rotation as with the axial magnetic field.
The laser thus oscillates in the = mode up to a value of
magnetic field which depends on cavity tuning, and on
the laser intensity, and then changes over into the o
mede of oscillation at a more or less specific value of
magnetic field. When the magnetic field is applied
perpendicular to the direction of polarization in zero
magnetic field no such change in the polarization with
increasing magnetic field is observed. As the magnetic
field increases beyond this region, simultaneous laser
oscillations in both = and ¢ moedes occur and the usual
beat frequency is observed between these orthogonal
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modes if an analyzer is inserted into the output
beam.

The present account is mainly concerned with the
theory involved in the interpretation of such effects of
transverse magnetic fields on gaseous lasers in which
case both Am=4-1 and Am=0 transitions are allowed.
For this purpose we apply the theory of the gasecus
optical maser as given by Lamb? to the case of a trans-
verse magnetic field acting on a J=1— 0 laser transi-
tion and develop the appropriate equations for the laser
emission.* Any agreement between the theory thus de-
rived and the observations on the more complicated
J=1—2 transition of the He-Ne laser will be sug-
gestive only that similar effects occur in other laser
transitions. In the final analysis the actual transition
involved must be considered in a way similar to that
given here. The complexity, however, increases with
the number of Zeeman levels involved.

2. THEORY FOR TRANSVERSE MAGNETIC
FIELDS

(a) Basic Equations

The results to be derived are based on Lamb’s de-
tailed account of the theory of the optical maser,? and
for further elucidation of the method, and of the pa-
rameters involved, this original work should be con-
sulted. The theory essentially neglects collision effects
and reduces the problem to a one-dimensional descrip-
tion. For an atom at position z, excited to state @ at
time ¢, the density matrix may be written as
p(a,20,t0,0,t), from which the microscopic driving force
or atomic polarization may be determined from the
average value of the appropriate operator. Macroscopic
values of atomic polarization are then determined by
Integration over appropriate values of #, and over the
atomic velocity assuming a Maxwellian distribution.
Similar contributions arise due to the excitation of the
other atomic levels involved in the laser transition in
the presence of magnetic fields, and these are summed
to give the resultant macroscopic atomic polarizations,
or source terms, for oscillations in the various photon
polarizations.

Figure 1 shows the atomic-level scheme with the
excitation rates A,, and decay constants v,, etc., to-
gether with the atomic frequencies ws, wo, and w; of the
transitions involved. We assume for the present that
the single axial mode of the laser is split by the trans-
verse magnetic field to give laser oscillations at fre-
quencies vy, vo, and »1 in the 7 and ¢ modes as shown.?

#W. E. Lamb, Jr., Phys. Rev. 134, A1429 (1964).

¢ A recent paper by C. V. Heer and R. D. Graft, Phys. Rev.
140, A1088 (1965) is also significant for these Zeeman studies,
particularly as regards arbitrary directions of magnetic field and
polarization.

® Actually the results also apply when three axial modes of a
short laser operate with well resolved Zeeman components, but we
consider throughout a single axial mode and values of magnetic
field such that the Doppler broadened Zeeman transitions overlap.
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We require the values of the off-diagonal matrix ele-
ments pqq, pod, and peq to third order in the respective
perturbations Vs, Vy, and V. Because of the common
lower atomic level d involved in these transitions, there
will be a coupling between the oscillations in the = and
o modes which will depend on the applied magnetic field.

The equation of motion for the density matrix may
be written as

where 3C is the appropriate Hamiltonian, which in the
present case is given by

wa 0 0 T
| o o 0 Vo)
=1 o 0 v |0 @

Vz* (t) V()* (t) Vl* (t) [OF)

and I' is the diagonal matrix representing the phe-
nomenological decay of the atomic states. Here the
energies of the atomic levels and the perturbations V ()
are expressed in angular-frequency units. Hence we
write

wV () =—3A7E [ z—v(t—to), t]emiCitten . (3)

where 7=2, 0, or 1 for the transitions Am==F1 and
Am=0, respectively, and Aj represents the matrix
element involved. These may be written in reduced
form as®

A2=—jl/\/7, Alzji/\/f, A0=i1, (4)

for the respective transitions, where the orthogonal
unit vectors indicate the polarization of the emitted
photons. Here k is along the laser axis, and we assume
that the magnetic field is along the 1 direction.
Equations for the various components of the density
matrix are now readily written down using Egs. (1) and
(2), and we require the values of pad, pba, and p.q given by

pad = (iw2+7ad)Pad+iV2 (paa_ pdd)
+i(V0pab+ leac) ) (5)

pra=— (1wo+v2a)pra+1Vo(pro— paa)
+i(VoppatVipss), (6)

pea=— (twr1+vca)peatiVilpce— paa)
+i(V2Pca+ VOPcb) , (7)

where we=w,— w4, Wo=wWp— wa, and W1=w,— wgq.

(b) Linear Approximation

Referring to Eq. (5) we see that p,q is not affected by
the coupling terms Vipqs and Vipe. in the first-order
approximation. This also applies for pza and p.q, and

6E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, New York, 1935), p. 63.
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the solutions for the respective macroscopic polariza-
tions in the nth axial mcde may be written down
directly® as

Poa® (t)=—3%(| A2 |/ K u)N Ese=i 2+ 7 (yy— o)
+c.c., (8)

where
Pad (t) = A2Pad+ A2*pda . (9)

Here N is the excitation density, which is assumed to
be the same for all transitions, Z is the dispersion func-
tion,® and there are analogous equations for Py® (2)
and P.gD(2).

Expressing the equation of condition for laser oscilla-
tions at frequency v, and polarization e in the form

Le[—i(2viEutvvaEn/Qn)
+En (QHQ_ Vn2) ]e_i(ynH—dm)_'— ¢.C.

=}e(1*/e) Pu()eiOnttenfcc.,  (10)

and using Eq. (8) for P,s™ (¢), and its counterpart for
Poa®(f) and Py (f), we find that the parameter a,
in the linear approximation

En:anEn) (11)
is given by
ao=3v[ (| Ao|*/ echKu)NZ;(vn—wo) — Qo] (12)
0[1:%1/{ ( I A1l2/éngu)Nl:Z¢(Vn"‘w2>
+Zi(ra—w) -0} (13)

for the = and o polarizations, where Z; represents the
imaginary part, and where, in the present instance, we
have combined the ¢ contributions for reasons given
later. The respective threshold parameters defined for
zero magnetic field are thus given by

Not= éthu/ [ A()PZz(O)QO

N1‘=€thu/2[A1l2Zi(O)Q1, (14)
and since |Ao|?=2|A;|? from Eq. (4), and we assume
that Qo is slightly greater than Q, the oscillation will
build up in this preferred direction, which we term the
7 mode when the magnetic field is also applied along
this direction.

(c) Third-Order Approximations

These are deduced from Egs. (5), (6), and (7), to-
gether with other pertinent equations derived from Eqs.
(1) and (2), following the procedure developed by
Lamb,? and adding the various third order terms. The
process may be simplified by comparing the various
equations involved, and thus deducing the appropriate
interchange of the subscripts 2, 1, and 0. It is then
found that the third-order contributions to the macro-
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Pcd(3) (t)::TlEil AlI414NE136_i(y1t+¢1)[7ad(7ad_i(wl_Vl))sead(wl—lll)'*‘ 1]
+ 35| At |2y oy aA N E1e— 00 { | A |2E2 [y i H{ (Yaa— 1 (w21 —v21) ) Lad (w21 —v21) + (Vaat1021) Laa (B21)}
+ (ya+12621) £ (2021) { (Yaat1021) Laa(B21) F (Yaa—1 (w1 — 1)) Laa(wr—r1)} ]
+ | Ao|2E[vi { (Yaa— 1 (w10—710) ) Laa(@10—v10) F+ (Yaa—1010) Laa (610) }

+ (va—12610) £4(2610){ (Yaa— 1 (w1— 1) ) Laa(w1—v1)+ (Yaa—1010) L2a(810) } 1} +c.c.

(15)

Ppa® (t) =ﬁi| Ao] 4ANE036*“”°”"4’°)[vad(vad—i(wo—Vo))oBad(w()— Vo)‘l- 1]
+ 31| Ao|2yayaA N Eoe= 0000 { | A1 2E[vd H{ (Yaa— 1 (@or—v01)) Laa (@or— v01) F (Yaat1010) Laa (810)}
+ (vat12810) L4 (2610){ (Yaat1010) Laa(810) + (Yea— 1 (@o—10) ) Laalwo—r0) } ]
+ | As|2E2[va H{ (Yaa— 1 (020—720) ) Lad (20— v20) F (Yaat1820) Laa(820) }

+ (vat12820) Lo (2820){ (Yaa— 1 (wo—10) ) Laa(wo—r0) + (Yaat1820) Laa (820)} ]} +c.c.,

where
A=m2WPyyaKu)™,
Smn=3Lwm—wn— (rm—ra) ],
Wmn= % (“’m+‘-’~’n) s
Vmn= % (Vm+ Vn) ’
£a(w) = ('Ya2+0-’2)¥1 ’
Yaa=%(Yat7a),
m,n=2,1,0.

17

The expression for Pag® (1) follows from Eq. (15) by
interchanging the subscripts 1 and 2. We assume here
that Ku, the Doppler linewidth parameter, is somewhat
larger than v.qe, which is usually the case in gaseous
lasers.

These results for the various third-order macroscopic-
polarization terms would now be substituted into Eq.
(10), together with the first-order contributions given
by Eq. (8) and similar equations, to give the steady
state intensities and frequencies of the laser oscillations
in the 7 and ¢ modes. We defer the discussion of these
results, however, in order to discuss briefly the effect
of an axial magnetic field on this same laser transition.

3. AXIAL MAGNETIC FIELD

In this case the magnetic field is along the k direction,
which is also the laser axis. The transition Am=01is not
allowed, and the transitions Am=F1 will now corre-
spond to laser oscillations in left- and right-handed
circular polarizations, respectively, provided the cavity
losses are relatively isotropic as regards the polarization
of the laser emission. This is generally so for a planar,
or internal optics laser, in contrast to the polarization
constraint imposed by Brewster angle windows in a
confocal laser.

The equations for the required off-diagonal matrix
elements pqq and peq of the density matrix are deduced
exactly as before from Eq. (1), together with the
Hamiltonian

Wa 0 0 V(0
1 0 wy 0 0

L=l 9 0 w Vi)
I_Vg*(t) 0 V(@)  wa

(18)

(16)

where the reduced matrix elements A; and A; now have
the numerical values FV2, respectively. However, the
required results may also be deduced directly from Eq.
(8) for P,a(¢) and the similar equation for P.s® (£),
together with Eq. (15) for P.® (¢¥) and the similar
equation for P,qe® (f). Here we simply put Ey=0, and
change the numerical value of the matrix elements A;
and A,. These macroscopic polarization terms are then
substituted into Eq. (10), and the equations for the
laser emission are deduced. The results are in agreement
with the equations given by Fork and Sargent for the
effect of an axial magnetic field on a J=1— 0 laser
transition.?

4. DISCUSSION OF THE RESULTS
(a) Transverse Magnetic Field

The equations governing the steady-state intensities
and frequencies of the laser oscillations for this ge-
ometry are now obtained by substituting the first- and
third-order macroscopic polarizations given by Egs. (8),
(15), and (16), and analogous equations, into Eq. (10)
and equating the imaginary and real parts, respectively.
However, we have developed these equations assuming
two o-mcde and one w-mode oscillation with frequencies
v1, v2, and o, and since it is found experimentally, at
least for the He-Ne 1.153-u laser transition, that only
one low-frequency beat actually occurs instead of the
two which this would imply, we now combine the two ¢
modes into one oscillation at the frequency »1.” This is

71t is conceivable that the two og-mode frequencies »; and »2
could be different even for a single axial mode due to frequency
pulling and pushing effects, and hence would not combine in
general even though the polarizations are in the same direction.
The experiments, however, indicate that the ¢ components do
combine when the Zeeman transitions overlap. They would not
combine, of course, when three axial modes act on well resolved
Zeeman transitions, although coupling effects are possible between
them due to the common lower level of the laser transition. See
also R. L. Fork and C. K. N. Patel, Appl. Phys. Letters 2, 180
(1963), and Ref. 2.
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done by putting Es= E; and v,=y»; into the equations
for the ¢ components and adding the results.

The resulting equations for the steady-state intensi-
ties of the two oscillations may then be written in

ar=3[FON(Zi(va—w)+Zi(ra—w1)) = 0i"],
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Bl ﬁycwi{z['yad?("ead(wZ_Vﬂ)_l—°Bad (wl—vn))+2]+27a7ad|:£ad(w0_ Vn)+£ad (5)]
+‘Ya7d£a (25) [’Ya‘Yud(cead (w2 - Vn)+£ad (wl— Vn)) ——25((w2— Vn)£ad (wz - Vn) - (wl— Vn)aead (wr— Vn))]

Il

010=35vCoNE{V Y0 2L0a(38) + Laa(w20— )+ Lad(@io— )]
+vavaLa (5) [’Ya'Yad(£ad (“’2_ va)+ Laa (wi_ Vn)) _5((‘*’2_ Vn)£ad (“)2"‘ Vn) - (‘*’1_ Vn)ff/ad (‘01— Vn)):l

Q= %V[CLNZi (Vn—wo) ‘Qo_lj ’
BO=;_2VC2N{2E7ad2£ad(w0_ vo)+17},

001 = 3—1fVC2N%{’ya7ud[2£ad (%5) + Lad (w()l - Vn) + Lad (w02"" Vn)]+ 2'Ya27d’)/ad£a (6>£ad ((UO - Vn)

where C1= | A¢|?/(etKu), Co=| A¢|*4/ €0, and we have
put dg1=06=+~H, 830=38/2=—81o, in the equations since
the differences between vo, v3, and v, will be small, and
we may replace these frequencies by », corresponding
to the eigenfrequency of the cavity for the single axial
mede considered.

The oscillations with electric field strength E, would
correspond to the = mode if this is the direction of
polarization in zero magnetic field and the field is
applied along this direction. E; would then correspend
to oscillations in the ¢ mode of orthogonal polarization.
It is apparent that either a single oscillation in 7 or in
the o mode may occur, i.e., one oscillation may suppress
the other, or both oscillations may occur simultaneously
and low-frequency beats will be observed. The behavicr
will be governed by the coefficients in the nonlinear
equaticns and by their variation with the magnetic
field.

In crder to investigate these possibilities we write
Eqs. (19) in the form

=2y (a1—Bry—O10x) = QO (,y)

26
&=2x(co— Box—0ory) = P(x,y), (26)

where x=E,? and y= E,%. The singular points (x,¥o) of
these equations are then given by Q (x0,y0) = 0= P (x0,¥0),
and we proceed to investigate the stability of these
points in the phase plane by making a Taylor expansion
around them and retaining only the linear approxima-
tion.® This gives

y=ax+by,

27

T=cx+dy, @7

8 A. A. Andronow and C. E. Chaikin, Theory of Oscillations

(Princeton University Press, Princeton, New Jersey, 1949), pp.
182-199.
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the form _
Ei=a 1= B1EP— 010 B Ey (19)
E():aOEO_'.BOEOS—HOIEIZEO; g
where
(20)
+'Ya7d[2 ('yavd—252)£a(25)£ad(5>]} ) (21)
+707d£a(6)£0d(6/2) (27a7ad—62) } ’ (22)
(23)
(24)
FYaYaLa(0)Laa(8/2) (2vavaa—8)}, (25)
where
a’:Qx(xOyy())’ b:Qy(x())yO) ) (28)

c=P(x0,¥0), d=P,(x0,90),

¥o, ¥o are the coordinates of the singular point, and
the subscripts indicate differentiation with respect to
the indicated variable. The stability at the singular
point may then be determined from the character of
the roots of the characteristic equation®

S?— (b+¢)S+bc—ad=0. (29)

For the case under consideration, and with the
condition

(b—c)*+4ad>0, (30)

we have a ncde if ad—bc <0, and the node is stable if
b+¢<0, and unstable if 6+¢>0. If ad—bc>0 we have
a saddle point.

On applying these criteria to the singular points of

_Fo 10
a

0 08
-

aq\ae
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0.2
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8 0 12 1@ 16 18 20

8/):1

F16. 2. Variation of the intensity and coupling parameters for
= and o oscillations with transverse magnetic field. Laser tuned to
line center; no=2, 71 =1.98.

9 J. J. Stoker, Nonlinear Vibrations in Mechanical and Electrical
Systems (Interscience Publishers, Inc., New York, 1950), pp.
40-44.
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F16. 3. Expanded
plot of the small
magnetic-field region
of Fig. 2 in which 8o,
and 6,0 are greater
than g;.

8/;3

Eqgs. (45) we obtain the following results:

010010>a160} Stable node at 1)
31
OL0>0 x=010/[30, y=0
Bo1c1> tg31) Stable node at
| w
a1>0 x=0, y=o11/51.

We note that, as far as these oscillations are concerned,
there is no condition on 818y as compared with 9101

3 Stable node at

B180> 010001
a1fo1— oSy
Oroao<aifBy |x=——"-
810001— B180 (33)
B0y <040,31
aofio—aiBo
ag, ;>0 e
010001— 31060

If 8180 <60101¢ there is a saddle point at the values of
x and y in Eq. (51), and no stable two frequency opera-
ticn is possible. The system reverts to a stable oscilla-
tion at x=ao/Bo or y=a1/B1 depending on conditions.
The conditions 81802 61610 are analogous to those given
by Lamb? in his discussion of the interaction between
axial modes of a gas laser, and are referred to as weak
and strong coupling respectively.

Assuming that the laser is initially tuned to the line
center, and expressing ao and «; in the form

ao=3vCIN[Zi(vu—wo)— 10 Z:(0)]

a1 = %VC]N%[Z{(Vn—w2)+Zi(Vn—wl)
—n12Z:(0) ],

(34)

where o o
‘Y]ot:N/Nol, WIZZN/Nlt

are the relative excitation parameters, curves of the
variable parts of the expressions given by Egs. (20)
through (25) are plotted in Fig. 2 against the applied
magnetic field expressed as 6/v.. The constant terms
$»C1N and $5vC.N are omitted in these plots, and the
parameters Ya=7Ya, Yaa=4Yae, Kts=10yqq together with
no:=2 and no:=1.0191, have been used. It is clear that

(35)
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the effect of the parameters o1, 010 will be greatest
within the natural line width of the transition, and that
they will be negligible at the higher values of magnetic
field. Thus, referring to Eq. (33), at the value of mag-
netic field where 610< B, and 6y1<B1, stable oscillations
in both 7 and ¢ modes are possible and beat frequencies
should occur. The situation is quite different in near
zero magnetic fields, however, since although 601, 610,
B1, and By are equal in zero field, we see that there is a
region of magnetic field in which 81<610 and ;. This is
more clearly shown in the expanded plot of this region
given in Fig. 3. Hence, for the conditions assumed here
we have ag=1.009¢; in zero magnetic field and Eq. (31)
is satisfied, and the initial oscillation is in the = mode.
However, as the field increases from zero the condition
Oo1a1>aoB1 may be satisfied in the region where 6¢1> 34,
whilst the condition 6100> 180 is no longer satisfied
due to the decrease in 61,. Hence the oscillation will
change from the = mode to the o mede as the magnetic
field increases from zero. This will occur when 6o1/8:1
>ao/a1, and hence the magnetic field required will
depend on the laser intensity, on the anisotropy in the
cavity Q, and on the cavity tuning. For 74,=1.2; or
operation closer to threshold, we have ag/a1=1.059 for
the same conditions, and a higher magnetic field will
be required to change from = to o operation due to the
larger ratio of 691/8: which is then necessary. If Eq.
(32) cannot be satisfied for some specific conditions,
then the = mode oscillation will be suppressed to some
extent at a specific value of magnetic field until the
conditions in Eq. (33) are satisfied and simultanecus
oscillations occur in both = and ¢ mcdes.

Figure 4 shows similar curves of ag, a1, B, etc., for a
cavity-tuning position of wo— v,=8vy,. The same char-
acteristics are apparent, but in addition there are some
resonance effects in 81 and in 6p; at =38y, and §=16v,,
respectively. Conclusions similar to thcse above apply
in near zero magnetic field, and a higher field will be
necessary to change from the = to the o oscillation due
to the larger value of ao/a;=1.072 which is now in-
volved. Figure 5 shows the laser intensities

E@r'2| Ay|2 a1fo1—aoBs
)
810001— 8180

and the similar equation for E:2, plotted as a functicn

(36)

Wyava

40— 1.0
4 08
2y

—0.6
-
0.2

o1 o

S e r——

0 2 4 6 8 10 12 14 16 18 20

8/)13

F1G. 4. Variation of the intensity and coupling parameters for
« and ¢ oscillations with transverse magnetic field. Laser detuning
wo—vn=8vaq; no=2, nm =1.98.
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of 8/, for (wo— v,) equal to zero and 8y, respectively.
The interaction between the oscillations and the dip in
the intensity E;* when Zeeman shift equals the cavity
detuning are apparent, as well as the fact that the o
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When simultaneous oscillation occurs in both 7 and
o modes the respective frequencies are given by

vo=vaF0o— poEo?— To1E1?

a0 . . 37
oscillation is the strongest at these values of magnetic v1=vnto1—p1E— 110E?, 37)
field. where
co=3vCiNZ.(va—w0), (38)
00=357CoN[2y44(w0o—vn) Lad(wo—rx)], 39)
T01=257CoaN3{Va[ (10— 7n) Laa(@10—vn)+ (@20— 1) Laa(@20— 1) I+ a¥a[2Va(@o—1n) €a(8) Laa(wo—rn) 1} (40)
0'1=%VCIN%[ZT(Vn_w2)+zr(1’n_’wl):|: (41)
p1=-31—2VC2N—1-{ Z‘Yad[ (w2_ Vn)oead (w2_ Vn)+ (wl'— Vn)cead (wl"‘ Vn):]
+'Ya[2 ("’0—' Vﬂ)vead(wo_ Vn):H"Ya'chea (25) [267ad(£ad (‘*’2—‘ Vn) —Lad (‘*’1'— Vn))
+'Ya((w2—' Vn)cead (‘*’2_ V’n)+ (wl_' V")"ead (wl_ Vn) ):l} ) (42)
T10=%VC2N%{‘Ya[ (wgo—" Vn)eead (CO?O_ Vn)+ (wlo_ Vn)£ad (0)10"“ Vn)]
+YavaLa (6) l:'Yada(eBad (wZ_ Vn)"' Laa (‘*’1_ Vﬂ))+7a((w2'— Vn) Lad (wZ_' Vn)+ (“’1_ Vn)£ad (wl'_' Vﬂ) )]} . (43)
It is clear from an inspection of these equations that 08 .
all these coeff}cients are zero when the laser cavity is Fie. 6. Variation gl °
tuned to the line center, and hence the beat frequency of the frequency co- - A .
v1— vo will be zero for all values of transverse magnetic efficients of therand  04f e
. . .. o modes with trans- [ 5
field and laser intensity. As the cavity is tuned from the  versemagnetic fields. * Tot
line center a beat frequency will appear, and this may Laser_sdetuning wo 0 10 <
be a reasonably §er}sitive way of tuning the laser to the "~ " N )
line center. Omitting the constant terms $»Ci.N and 87y,

#vC,N, Fig. 6 gives the variation of the parameters
given by Eqgs. (38) through (43) as a function of §/v,
for a cavity detuning (wo—v») equal to 8y,, when it is
apparent that they all now assume finite values and
that there are marked variations with magnetic field,
particularly in the value of p; at Zeeman shifts near the
cavity tuning position. This will cause a similar rapid
variation in the beat frequency given by

v1—vo=%(v/Qn) (n/Z:(0)){o1— 00
— 3% (01E2— poE?+110E*— 701 E1%)}

where Ei? and E,? are as given in Fig. 5. Equation (44)
is plotted as a function of 8/v. in Fig. 7, taking =2,
and »/Q=10°% and shows this variation, the beat fre-
quency being positive initially due to frequency pushing

(44)

10 iz 14 16 18 20
8/y.
a
FiG. 5. Intensity parameters #'2E2| Ao|2/ (#2yq4va) of the 7 and
o modes versus transverse magnetic field. Full curves—laser tuned
to line center. Dashed curves—laser detuning wo—vn=8v4. n0=2,
m= 1.98.

effects, after which it begins to decrease and would
change sign around a value of magnetic field corre-
sponding to 8/v,=30. In the region of zero beat fre-
quency at this higher value of magnetic field we may
expect phenomena such as a frequency locking of the =
and o modes together with a rotation of the polarization
with magnetic field as occurs with axial magnetic fields,!
but we shall not discuss this any further at present.

(b) Axial Magnetic Field

Using Egs. (8), (15), and (10), together with the
results of Sec. 3, the equations governing the oscillation
intensities when an axial magnetic field is applied to a
J=1— 0 laser transition, may be written as

Ei=01E1—B1E3—01.E2E;

. 45
Ey=aEs— B9Es*— 051 E2E, , ( )

where the parameters are given by
a1=%V[C{NZ,-(V,,,—wl)—Qfl:] , (46)
B1=351CoN[2(Vad®Laa(w1—va)+1)], (47
O12= '§%VC2IN{7a'Yad[£ad (WO_' Vn) + Lad (6)]

+'Ya'}’d£a (26) l:oead (6) (’Ya7ad_ 262)

+ Lad (wl_ Vn) ('Ya'Yad+ 20 (wl—_ yﬂ) )]} 3 (48)
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Fic. 7. Beat frequency variation »1—»o between = and o modes
with transverse magnetic field. Laser detuning wo—vn=8va;
n=2;v/Q=106.

where
Cy'=|A]?/ (etKu), Co'=m'2| A1 |4/ (ectyavaKu),

and |A:|? now equals 2| A|2 There are similar equa-
tions for as, Bs, and 6,1 obtained by interchanging w;
and w; etc., and by changing the sign of § in Eq. (48).
Figure 8 shows the variation of these parameters for
the case when the cavity is initially tuned to the line
center. Here the constant terms 2»Cy’N, and 55»Co'N,
have been omitted, and the same ratios of v,, v4, and
vYaa used as before.

Again the effects of the coupling constants 6s1, 82 are
greatest within the natural linewidth of the transition,
and tend to a limit of 0.25 as §/v, — «. The symmetry
which exists with axial magnetic fields is apparent, and
the conditions given by Eq. (33) for two frequency
operation, and the appearance of circularly polarized
beats, are readily satisfied as the magnetic field in-
creases from zero. Near zero magnetic field, however,
we have 019=021=81=0:, and since a1=a; in this case,
none of the conditions given by Eqgs. (31) through (33)
can be satisfied in this region. Here a mutual syn-
chronization, or a locking of the two frequencies may
occur, giving rise to linear polarization and to a rotation
of the plane of polarization as the magnetic field in-
creases from zero, until two frequency operation occurs.
Thus in near zero magnetic fields a single frequency and
polarization may be effective and the problem must be
formulated in a different way.! Figure 9 shows the varia-
tion in the parameters as, as, 81, B2, etc., for a cavity
tuning position given by wo— v, = 8y,. A resonance then
occurs in 8; when the Zeeman shift is equal to the cavity
detuning, and there are changes in all the other pa-
rameters. However, the remarks made above still apply
in near zero magnetic fields. Figure 10 shows the

4.0
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08 Fi1c. 9. Variation
of the intensity and
coupling parameters
of the ¢ modes with
axial magnetic field.

22

402 Laser detuning wo
0 1 1 | I O ’_Vn=8'}’a;'rl=2'
O 2 4 6 8 10 12 14 16 18 20

8/){1

intensity parameter E2r'/2| A;|2/ (A*yv4), given by the
equation analogous to Eq. (36), plotted as a function
of 6/v. for the cases wo—v,=0 and 8y,, respectively.
The dip in the curve for E{% analogous to the Lamb
dip, when the Zeeman shift equals the cavity detuning
should be noted.

When simultaneous oscillations occur in right and
left-handed circular polarizations, the respective fre-
quencies are again given by equations similar to Egs.
(37) where the parameters are now given by

01=%VC1'NZT(Vn—w1) , (49)
p1= 3%1/C2'N[2’Yad(w1_ Vn)oead (wl“‘ Vn):l ) (50)
T10=39VCy N {va[ (00— v1) Laa(wo— v2) — §L4a (8) ]
+’Ya’Yd£a(25) [vead (wl— Vn) (’Ya (wl— Vn) - 257ad)
—L4a(0) (20vaat6va) ]}, (51)

with similar equations for os, ps, and 741 obtained by
interchanging w; and ws and changing the sign of 8.
Figures 11 and 12 show the variation of these parameters
with magnetic field for wo— v»=0 and 8y,, respectively.
It is clear that the effects of 71, and 741 on the beat fre-
quency will be greatest at low values of magnetic field
where the transitions overlap, and that various reso-
nances in ris, p1, etc., occur, together with various
shifts in the curves due to cavity detuning. Finally,
Fig. 13 shows the beat frequency variation with mag-
netic field for these two cavity tuning positions. The
effect of the rapid variation in p; at 8/y,=8 shown in
Fig. 12, is apparent in curve 2 in Fig. 13 for the beat
frequency variation. The apparently large values of
beat frequencies shown in Fig. 13 for small values of
8/va are due to the rapid increase in the coupling pa-
rameters 712, and 7o1. The beat frequency must, how-
ever, be zero magnetic field and we indicate this by the

. . . L1 | P P N
o 2 4 6 8 10 2 14 16 18 20
-% Ya

F1c. 10. Intensity parameters #l2E2|A.|%/(#vayvs) of the o
modes versus axial magnetic field. Full curve—laser tuned to line
center. Dashed curves—laser detuning wo—vs=_8v,; 7=2.
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dashed portion of the curves. Since frequency-locking
effects occur in this region of magnetic field it must be
investigated somewhat differently, and this rapid in-
crease in beat frequency may not be observed in prac-
tice. Similar remarks as regards a locking or mutual
synchronization of the oscillations will also apply for
any other value of magnetic field at which the beat
frequency passes through zero.

5. EXPERIMENTAL RESULTS

No experimental results on the specific J=1—0
transition, to which the theory strictly applies, are
available at present. However, the effects of both axial
and transverse magnetic fields on the 1.153u (J=1—2)
He-Ne laser transition have been investigated experi-
mentally. The results for axial magnetic fields have
been given already in some detail and display the gen-
eral features of the theory derived using the simpler
energy-level schemes.! Thus the beat frequency be-
tween the circularly polarized oscillations as a function
of magnetic field displays the main characteristics
shown in Fig. 13, and the mutual synchronization of
these oscillations and the rotation of the plane of
polarization in regions of magnetic field, where the beat
frequency passes through zero, have been observed.
Such general agreement with results derived using
simpler energy levels schemes are, however, suggestive

2.0
21
1.0} o
F16. 12. Variation L P2
of the frequency co- o
efficients of the o
modes with axial 2 %
magnetic field. Laser
detuningwo—vn=8va- _,o|_ o
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F16. 13. Beat frequency variation »;—»2 between the ¢ modes
with axial magnetic field. Curve 1—Laser tuned to line center.
Curve 2—Laser detuning wo—v,=8v,=2; »/Q=108.

only that similar effects occur in this more complicated
laser transition. Any detailed comparison of these ex-
periments with theory will require the consideration of
the more complicated J=1— 2 transition in a similar
way. The results given here on the effects of transverse
magnetic fields on the 1.153 u He-Ne laser transition
did indicate that the phenomena involved were dif-
ferent from those applicable to axial magnetic fields,
especially in near zero fields, and provided the impetus
for the theory given above.

A short, planar-type laser oscillating essentially in a
single axial mode was used in the experiments, and
transverse magnetic fields were applied with a suitable
coil giving about 11.5 G/A. The uniformity of the field
was around 49, over the complete length of the dis-
charge and better than 19, up to within 1 cm from the
end of the discharge. Inadvertently, it also produced an
axial field component which in some places appeared
as high as one tenth of the transverse field. As in previ-
ous experiments the discharge and the coil were placed
inside a magnetic-shielding box.

Figure 14 shows the variation in laser intensity when
a transverse magnetic field is applied along the direc-
tion of polarization in zero magnetic field. This then
corresponds to the variation in the intensity of the =
mode of oscillation. Here an analyzer was oriented so
as to pass this direction of polarization. The constancy
of the intensity of the = mode of oscillation up to certain
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F16. 14. Variation of = mode intensity with transverse magnetic
field. Laser tuning Ajf= (wo—»a)/2w. Curve No. 1, Af~0 (in
Lamb dip). No. 2, Af=120. No. 3, Af=185. No. 4, Af=220
Mc/sec. Rf excitation 9 W. Relative laser intensity 1.9.
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F1c. 135. Variation of = mode intensity with transverse magnetic
field. Laser tuning—Curve No. 1, at line center. No. 2, Af=235
Mc/sec. rf excitation 5 W. Relative laser intensity 0.4.

values of magnetic field, depending on the cavity tuning,
is apparent. At these values of magnetic field, a more
or less abrupt change to the o mode of oscillations
occurs for some cavity tuning positions. This is the
zero intensity gap in these curves, since the analyzer
is at 90° to the o polarization. On increasing the mag-
netic further both 7 and ¢ modes begin to oscillate and
low-frequency beats appear at magnetic fields around
30 G. For the curves of Fig. 14 which do not show a
region of zero intensity there are indications that both
« and ¢ oscillations occur on the slope portions of these
curves, but which are synchronized to a single fre-
quency and give rotation effects similar to those ob-
tained with axial magnetic fields. At higher values of
magnetic field, low-frequency beats finally appear in
all cases. The effects observed thus depend on the
operating conditions, and vary with cavity tuning and
anisotropy in the cavity Q values for the two polariza-
tions, although the general features shown in Fig. 14
persist. Figure 15 shows similar curves for a lower value
of laser intensity in zero magnetic field, where it is
apparent the magnetic field at which the oscillation
changes from the = mode to the o mode is increased.
Low-frequency beats again occur at magnetic fields
around 30 G. For these results the magnetic field was
applied in the direction of polarization in zero field.
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F1c. 16. Experimental curves of beat frequency versus trans-
verse magnetic field. Curve No. 1. In Lamb dip. No. 2 Laser
detuning Af=150, No. 3, Af=200. No. 4, Af=250. No. 5, Af
=/300. No. 6, Af=340 Mc/sec. Transverse magnetic field 11.5
G/A.
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(a) (b)

Fic. 17. Beat spectra in the transition between the finite and
zero beat frequency regions with transverse magnetic fields.
(a) Top trace—Magnetic field 50 G. Bottom trace—Increased to
65 G. (b) Slightly different cavity setting. Magnetic field 39, 41,
and 50 G from top to bottom. Spectrum analyzer sweep 20 kc/
sec/cm. Zero frequency on left of all traces.

When it is applied perpendicular to this direction no
90° change in polarization, or rotation, was observed,
though low-frequency beats occurred at higher values
of magnetic field.!?

Figure 16 shows the beat frequency versus magnetic
field for the = mode of operation and for various cavity
tuning positions. In contrast to previous results with
an axial magnetic field, when the cavity is tuned on or
near line center we see that the beat frequency between
the = and ¢ modes is independent of magnetic field, at
least up to fields around 100 G. Slightly off, but near
line center, a region occurs where the beat frequency
after an initial increase, would return to zero again as
the field is increased. This zero position has been ob-
served but is not shown in the figure. Finally, a transi-
tion region with multiple beats is sometimes observed,
which is similar to that seen with axial magnetic fields.!
This is most predominant in the regions of zero beat
frequency, and is not observed when the cavity tuning
is far from line center. Figures 17(a) and 17(b) show
typical beat spectra obtained in such regions. It is to
be noted that at times the beats are not regular, or
harmonically related. As the magnetic field is increased
beyond this region, only one beat between the ¢ and =
modes is finally observed, suggesting that both o
transitions are combined by the oscillation with this
polarization, which combines with the = mode of

1 The probable reason for this different behavior is that the
oscillation is already in the o direction on applying the magnetic
field. For a J=1— 0 transition no change in polarization would
then be expected. This follows from Eq. (32), where now a1>aq.
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oscillation to give a single beat frequency, instead of the
two which would otherwise be observed.

6. CONCLUSIONS

We have developed equations which govern the in-
tensities and the frequencies of the = and ¢ modes
when a transverse magnetic field is applied to a planar-
type laser operating on the J=1— 0 transition and in
a single axial mode of the resonator. The results show
that the coupling of the transitions, due to the common
lower level, and determined by the coefficients 6o, and
610, plays an important role, particularly when the
Zeeman separation is within the natural linewidth of
the transition. Such a coupling may produce a quench-
ing of the original = mode of oscillation, i.e., magnetic
field applied along the direction of polarization in zero
field, together with a more or less abrupt change in the
polarization of the oscillation to the o direction. The
value of magnetic field at which this occurs is dependent
on the operating conditions, and theory indicates that
this value will be higher for lower levels of laser in-
tensity, and for larger values of cavity detuning from
the line center. As the magnetic field is increased the
conditions for two frequency operation are satisfied,
and since the two ¢ modes are combined in the theory,
a single beat between the v and ¢ modes with a fre-
quency dependent on the magnetic field, and on the
operating conditions, should occur.

For a given detuning of the cavity from the line
center, the beat frequency is zero in zero magnetic
field, but it may also pass through zero again at higher
values of magnetic field due to the relative balance
between frequency pushing and pulling effects. In such
regions of zero beat frequency there is a natural tend-
ency for the oscillations to synchronize due to nonlinear
effects, and the theory would need some modification
in a way similar to that recently applied to consider a
similar effect with an axial magnetic field.! The above
coupling coefficients, and also those denoted by 71 and
710 in the equations for the frequencies of separate =
and ¢ oscillations, depend on the linewidths and on the
cavity tuning, but in general they become small at
higher values of magnetic field, and may be neglected
as a first approximation in such regions. When the
cavity is tuned to the line center the beat frequency
should remain zero for all values of transverse magnetic
field, which may be useful as a means of centering the
laser frequency on the Doppler distribution. Changes
in the intensities of the = and ¢ modes at Zeeman sepa-
rations corresponding to the cavity detuning are also
indicated, as well as rapid variations in the beat fre-
quency when the third order dispersion term p; passes
through zero as shown in Figs. 6 and 7.

Similar results have been given for an axial magnetic
field acting on the J=1-— 0 transition, and somewhat
similar remarks apply. However, the conditions for
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two-frequency operation in right- and left-handed cir-
cular polarizations are more readily satisfied in this
case, and the quenching phenomena does not occur. In
zero-magnetic-field conditions are such that the oscilla-
tions should again become synchronized, and a rotation
of the resultant polarization with magnetic field should
be observed in this region, and in other regions of mag-
netic field where the beat frequency passes through
zero. No such observations on this particular laser
transition have, however, been made as yet. The same
general remarks made above on the coupling coefficients
apply, and in general their effects will be small at the
higher values of magnetic field. Sharp resonances occur,
particularly in the coefficients 712 and 791 in near zero
magnetic fields, which apparently give rise to a sharp
variation in the beat frequency, as shown in Figs. 11,
12, and 13. Such regions may be modified, however,
when the very tight coupling or synchronization between
the oscillations in such regions is considered.

The experimental results given on the effect of trans-
verse magnetic fields on the 1.153 u, J=1— 2, He-Ne
laser transition represent the only such results available
at present. Hence the theoretical results deduced here
do not strictly apply in their entirety. However, the
agreement as regards the general features of the ob-
servations is certainly suggestive that similar effects
are occurring in these experiments. Thus we see a
quenching of the initial = mode of oscillation, and a
change to the o mode of operation. As indicated by the
theory the magnetic field at which this occurs increases
with a decrease in laser intensity and with increased
cavity detuning from the line center. Similar beat-
frequency variations with magnetic field occur, and
there is a region near the line center where the beat
frequency remains constant with magnetic field. The
theory indicates a zero beat frequency at line center,
and the origin of the constant value of beat frequency
in the experiments, see Fig. 16, is not clear, although
there is some uncertainty in the exact experimental
conditions at this time. One might expect from sym-
metry conditions that the beat frequency would be
zero on line center even with this more complicated
laser transition. However, any further comparison of the
theory must await further definitive experimental ob-
servations on the particular laser transitions J=1—0
used in the present deductions, or an extension of the
theory to the more complicated J=1-—2 laser
transition.* '

U Note added in proof. Experiments on a dc excited J=1—0
laser transition at 2.65 u, using an enriched sample of Xe'S,
show that quenching effects actually occur between axial modes
acting on well resolved o components in an axial magnetic field.
There are also indications of similar quenching effects between the
o oscillations on a single mode in axial magnetic fields of a few
gauss. Such results are not predicted in the present theory. One
possible explanation is that relaxation effects on transitions be-
tween the Zeeman levels also occur due to collision effects within

the discharge. We hope to discuss these later results in a further
communication.
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Fic. 17. Beat spectra in the transition between the finite and
zero beat frequency regions with transverse magnetic fields.
(a) Top trace—Magnetic field 50 G. Bottom trace—Increased to
65 G. (b) Slightly different cavity setting. Magnetic field 39, 41,
and 50 G from top to bottom. Spectrum analyzer sweep 20 kc/
sec/cm. Zero frequency on left of all traces.



