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The natural unit of current is

(c/4sr) (V2H, p/) ),
which ensures that J= VXH in this system of units.
Then the mean longitudinal current is given by

&= (j/K)(~+~')..= 2jL'(»' —j')/a —&p$/(2a' —1)P. (23)

Ke differentiate J with respect to j and set the deriva-
tive equal to zero to find the value of j for which J is a
maximum:

8J/8 j~ tt' —AH p —3j'= 0
or

In ordinary cgs units, the critical current is then
given by

4trJ. H, p (1—II/H, s)'t'—(s)8/2
c )i P (1—1/2'')

(25)
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The eGects of transverse magnetic fields on a J= 1 —+ 0 laser transition are considered, and expressions for
the macroscopic-atomic-polarization terms are derived. The contributions from the cr modes are combined,
and equations for the intensities and frequencies of the x and a. oscillations are deduced. Various coupling
terms occur because of the common lower level of the transition, and a quenching of the initial ~-mode
oscillation with a change to the 0 mode is indicated as the magnetic field increases from zero. With increased
Geld, both modes oscillate simultaneously, and a beat occurs whose frequency depends on the operating
conditions, and which may become zero again at higher magnetic fields. At line center the beat frequency
should remain zero with increasing magnetic Geld, representing a method of laser tuning. Similar equations
for the circularly polarized 0- oscillations in axial magnetic Gelds are deduced. Here the conditions for stable
two-frequency operation are more readily satisfied, and no such quenching is indicated. Again there are zero-
beat-frequency regions of magnetic Geld in which a mutual synchronization of the oscillations should occur.
Some experimental results with transverse magnetic Gelds on the 1.153-p He-Ne laser are given. These dis-
play the general features indicated by the theory. Thus a quenching of the initial m.-mode oscillation occurs,
with more or less abrupt changes to the 0- mode, depending on conditions. Similar single-beat-frequency
variations with magnetic Geld occur, together with a region near the line center where the beat frequency,
although Gnite, remains constant with increasing magnetic Geld.

1. INTRODUCTION

HE effects of relatively small magnetic fields on
the operating characteristics of gaseous lasers are

quite pronounced, and provide a fertile field for the
investigation of the dispersive and nonlinear properties
of the laser medium. Thus axial magnetic fields of a
few tenths of a gauss can produce orthogonal circularly
polarized oscillations and hence beat frequencies in a
planar-type laser, which in zero magnetic field oscillated
on a single frequency and was linearly polarized. ' The
beat frequency observed as the magnetic fieM increases
depends on the detailed shape of the erst- and third-

*Supported by the Lockheed Independent Research Funds.
' W. Culshaw and J. Kannelaud, Phys. Rev. 136, A1209 (1964).

See also Phys. Rev. 141, 228 (1966};141, 237 {1966).

order dispersion functions involved in the laser transi-
tion, or on the balance between frequency pulling and
pushing effects. It is thus dependent on the lifetimes of
the states involved, on the cavity tuning and Q value,
on the applied magnetic field, and on the dispersive
properties of the laser medium. When the magnetic
field is zero the beat frequency is zero and the polariza-
tion is linear with a direction determined by small
anisotropies, chieAy in the reflectors, of the laser
cavity. The beat frequency may also pass through zero
in one or more regions as the axial magnetic field in-
creases."In such regions the oscillations have a natural
tendency to coalesce because of nonlinear effects and
this again, for small anisotropy, gives rise to a linear

2 R. L. Fork and M. Sargent, III, Phys. Rev. 139, A617 (1965).
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modes if an analyzer is inserted into the output
beam.

The present account is mainly concerned with the
theory involved in the interpretation of such effects of
transverse magnetic fields on gaseous lasers in which
case both Am= &1 and Ant= 0 transitions are allowed.
For this purpose we apply the theory of the gaseous
optical maser as given by Lamb' to the case of a trans-
verse magnetic 6eld acting on a J= 1 —+ 0 laser transi-
tion and develop the appropriate equations for the laser
emission. ' Any agreement between the theory thus de-
rived and the observations on the more complicatedJ=1~2 transition of the He-Ne laser will be sug-
gestive only that similar effects occur in other laser
transitions. In the 6nal analysis the actual transition
involved must be considered in a way similar to that
given here. The complexity, however, increases with
the number of Zeeman levels involved.

FIG. 1. Transitions and parameters used to consider transverse-
magnetic-Geld effects in gaseous lasers.

polarization but which rotates as the magnetic field is
varied within such regions. ' Various other nonlinear
oscillatory phenomena such as harmonic and subhar-
monic generation have also been observed when ac
axial magnetic fields are also applied, both in zero dc
magnetic field and in the other coherence or syn-
chronization regions between the circularly polarized
oscillations. ' For transverse magnetic fields the behavior
of a short, single mode, planar type He-Ne laser,
operating on the 1.153-p, transition is found experi-
mentally to be completely different in some respects
from that pertaining to an axial magnetic field. When
the magnetic field is applied along the direction of
polarization in zero field, which we designate as the z
mode, there is a more or less abrupt change in polariza-
tion depending on conditions, from the m mode to the
0- mode of oscillation as the transverse magnetic field
increases from zero. This resembles more closely a sup-
pression of its initial x mode oscillation and an enhance-
ment of the 0- oscillation as the field increases, rather
than an actual rotation as with the axial magnetic field.
The laser thus oscillates in the m mode up to a value of
magnetic 6eld which depends on cavity tuning, and on
the laser intensity, and then changes over into the a
mode of oscillation at a more or less speci6c value of
magnetic field. When the magnetic field is applied
perpendicular to the direction of polarization in zero
magnetic field no such change in the polarization with
increasing magnetic 6eld is observed. As the magnetic
field increases beyond this region, simultaneous laser
oscillations in both x and 0- modes occur and the usual
beat frequency is observed between these orthogonal

2. THEORY FOR TRANSVERSE MAGNETIC
FIELDS

(a) Basic Equations

The results to be derived are based on Lamb's de-
tailed account of the theory of the optical maser, ' and
for further elucidation of the method, and of the pa-
rameters involved, this original work should be con-
sulted. The theory essentially neglects collision effects
and reduces the problem to a one-dimensional descrip-
tion. For an atom at position so excited to state a at
time to, the density matrix may be written as
p(a, so, fo, v, t), from which the microscopic driving force
or atomic polarization may be determined from the
average value of the appropriate operator. Macroscopic
values of atomic polarization are then determined by
integration over appropriate values of to, and over the
atomic velocity assuming a Maxwellian distribution,
Similar contributions arise due to the excitation of the
other atomic levels involved in the laser transition in
the presence of magnetic fields, and these are summed
to give the resultant macroscopic atomic polarizations,
or source terms, for oscillations in the various photon
polarizations.

Figure 1 shows the atomic-level scheme with the
excitation rates X„and decay constants p, etc. , to-
gether with the atomic frequencies co2, coo, and cv& of the
transitions involved. Ke assume for the present that
the single axial mode of the laser is split by the trans-
verse magnetic field to give laser oscillations at fre-
quencies v2, vo, and v~ in the x and 0- modes as shown. '

' W. K. Lamb, Jr. , Phys. Rev. 134, A1429 (1964).'A recent paper by C. V. Beer and R. D. Graft, Phys. Rev.
140, A1088 (1965) is also significant for these Zeeman studies,
particularly as regards arbitrary directions of magnetic field and
polarization.' Actually the results also apply when three axial modes of a
short laser operate with well resolved Zeeman components, but we
consider throughout a single axial mode and values of magnetic
field such that the Doppler broadened Zeeman transitions overlap.
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Ke require the values of the off-diagonal matrix ele-
ments p,d, pbd, and p, d to third order in the respective
perturbations V~, Vo, and Vl. Because of the common
lower atomic level d involved in these transitions, there
will be a coupling between the oscillations in the m and
o- modes which will depend on the applied magnetic field.

The equation of motion for the density matrix may
be written as

p= —2[~,p]—2 (1'p+pl')

and I' is the
nomenological
energies of the
are expressed
write

diagonal matrix representing the phe-
decay of the atomic states. Here the
atomic levels and the perturbations V(i)
in angular-frequency units. Hence we

av, (i) = —-,'A;*Z;[s—.(i—io) i]e-'&"'+4 &, (3)

where K is the appropriate Hamiltonian, which in the
present case is given by

0 0 V2(t)
0 pob 0 Vp (t)
0 0 o1, Vi (i)

V,*(i) V,*(i) V,*(i)

where

Pad(i) A2Pad+62 Pda ~

Here E is the excitation density, which is assumed. to
be the same for all transitions, Z is the dispersion func-
tion, ' and there are analogous equations for Pbdo&(t)
and P.d~»(i).

Expressing the equation of condition for laser oscilla-
tions at frequency v„and polarization e in the form

',e[ 2—(2v „—E'„+v v „r'-„/Q„)
+E„(0,,2 „v)2]e '""—'+& '+c.c.

= -', e (v%0)P„(i)e-'1""+O-&+C.C. , (10)

and using Eq. (8) for P,d"'(t), and its counterpart for
P,d" (t) and Pbdo~(i), we find that the parameter n„
in the linear approximation

the solutions for the respective macroscopic polariza-
tions in the 1zth axial mode may be written down
directly' as

Pad 1'& (t) = 21 ( I
A2

I
2/AKu)NE2e —'~ "2'+&»z(v2 —002)

+c.c., (8)

En =&n~n )where j= 2, 0, or 1 for the transitions Am= W1 and
Am=0, respectively, and Dj represents the matrix
element involved. These may be written in reduced
form as6

is given by

A, = —)2/v2, ~,=j2/VZ,

for the respective transitions, where the orthogonal
unit vectors indicate the polarization of the emitted
photons. Here k is along the laser axis, and we assume
that the magnetic field is along the i direction.

Equations for the various components of the density
matrix are now readily written down using Eqs. (1) and
(2), and we require the values of p,d, pbd, and p, d given by

for the m and a polarizations, where Z, represents the
imaginary part, and where, in the present instance, we
have combined the o- contributions for reasons given
later. The respective threshold parameters defined for
zero magnetic field are thus given by

Np' oohKu/
I
Ap

I
'Z;(0)Q——o

Ni'= «&Ku/2
I
A1I'Z'(0) Q

Pad= (2GD2+'Yad)Pad+2U2(Paa Pdd)

+2(V0 .b+ Vip-), (5)

F0= 21v[(I &0I2/«@Ku)NZ, (v„o10) Q—, ']——

(4) o'1= 2v{ (I &-1I'/opkKu)N[z, (va —002)

+Z, (v„—~1)]—Q,
—') (13)

pbd (2000+ Y bd) phd+ 2 Vo(pbb pdd)

+i (Vopb. +V1pb.),
Pad= (2O11+Yad)Pad+ 2V1(P Pdda)a

+Z(V2p, +Vopab),

where N2 0) Md MO Mb GOd and Rl Md.

(6)

(7)

from Eq. (4), and we assume
that Qp is slightly greater than Qi, the oscillation will
build up in this preferred. direction, which we term the
m mode when the magnetic field is also applied along
this direction.

(c) Third-Order Approximations

(b) Linear Approximation

Referring to Eq. (5) we see that p, d is not affected by
the coupling terms Vop b and Vlp, in the first-order
approximation. This also applies for pbd and p, d, and

'E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, New York, 1935), p. 63,

These are deduced from Eqs. (5), (6), and (7), to-
gether with other pertinent equations derived from Eqs.
(1) and (2), following the procedure developed by
Lamb, ' and adding the various third order terms. The
process may be simplified by comparing the various
equations involved, and thus deducing the appropriate
interchange of the subscripts 2, 1, and 0. It is then
found that the third-order contributions to the macro-
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scopic atomic polarizations are given by

P,d
' (t) = ,', il —nlI'ANE1'e '"—'+0 [7.d(7.d i(~—1 —vi))z.d(01 —vl)+1]

+3 oi I Al
I
'7a7dAXEle *'""+ ' {I

~3
I
'+3'[7d '{(7 d i—(~31 v—31))Sad (~» v—»)+ (7,d+i531)Zad pi») }

+ (7a+Z2821)+a(2~21) {(7ad+1~21)+ad(~21)+(7ad ~(011 Vl))Sad(%1 Vl) }]
+IA.I'E'[7.-'{(7.—'( -— .))~. ( -—-)+(7..—'~-)~..(~.)}

+ (7a—22hlo) 2 a (2&10) {(7ad 3(011 vl) )aCad (011 Vl)+ (7ad 3810)&Cad (810)}]}+c.c. (15)

Pod"'(/) =—,'oil &0l &&&0 &
' ""+0' [7ad(7ad i(000 vo))~ad(01o vo)+1]

+3 3 i
I
+0

I
7a7d4+Eo& {I

~1
I

El [7d {(7ad ~(0101 Vol))@ d(alool Vol)+ (7ad+ i~10)+ad (~10)}
+ (7.+ i2~10)~.(2~») {(7"+i~»)~"(~»)+ (7"—i(~0—Vo))~.d(~0 —

Vo) }]
+ I A2 I

P2 [7d {(7ad 3(0120 V20))+ad (&20, V20)+ (7ad+ 3~20)Sad (~20) }
+ (7a+&2~30)&a(2~20){(7ad &(010 vo))Sad(M0 vo)+ (7ad+1830)Sad(530)}]}+C.c.

q (16)

where
2 =7rlto(Pi, 37.7d«) ',

~ma =—3 [Oom &a (Vtn Va)] yi

&mn g m &n

v .=-,'(v +v.), (1&)
& (~)=(7 '+~') '

7.d= 3 (7.+7d)
m, m=2, 1, o.

The expression for P,d"'(t) follows from Eq. (15) by
interchanging the subscripts 1 and 2. We assume here

th. at EN, the Doppler linewidth parameter, is somewhat

larger than p, d, which is usually the case in gaseous

lasers.
These results for the various third-order macroscopic-

polarization terms would now be substituted into Eq.
(10), together with the first-order contributions given

by Eq. (8) and similar equations, to give the steady
state intensities and frequencies of the laser oscillations

jn the ~ and a modes. Ke defer the discussion of these

results, however, in order to discuss brieQy the effect

of an axial magnetic field on this same laser transition.

0 0 Vo(t)
0 cog 0 0
0 0 oo, vl (t)

y,*(t) 0 V,*(t)

(18)

3. AXIAL MAGNETIC FIELD

In this case the magnetic field is along the k clir ection,

which is also the laser axis. The transition Am=0 is not
allowed, and the transitions Am= %1 will now corre-

spond to laser oscillations in left- and right-handed

circular polarizations, respectively, provided the cavity
losses are relatively isotropic as regards the polarization

of the laser emission. This is generally so for a planar,
or internal optics laser, in contrast to the polarization
constraint imposed by Brewster angle windows in a
confocal laser.

The equations for the required off-diagonal matrix

elements p, z and p, & of the density matrix are deduced

exactly as before from Eq. (1), together with the
I-Iarniltonian

where the reduced matrix elements A~ and A2 now have
the numerical values Wv2, respectively. However, the
required results may also be deduced directly from Eq.
(8) for P,d"'(t) and the similar equation for P,d"'(t),
together with Eq. (15) for P,d"'(1') and the similar
equation for P,d"'(/). Here we simply put Eo 0, and-—
change the numerical value of the matrix elements A~

and A2. These macroscopic polarization terms are then
substituted into Eq. (10), and the equations for the
laser emission are deduced. The results are in agreement
with the equations given by Fork and Sargent for the
effect of an axial magnetic field on a J=1~0 laser
transition. '

4. DISCUSSION OF THE RESULTS

(a) Transverse Magnetic Field

The equations governing the steady-state intensities
and frequencies of the laser oscillations for this ge-

ometry are now obtained by substituting the first- and
third-order macroscopic polarizations given by Eqs. (8),
(15), and (16), and a,nalogous equations, into Eq. (10)
and equating the imaginary and real parts, respectively.
However, we have developed these equations assuming

two 0--rncde and one m-mode oscillation with frequencies

v&, v2, and vo, and since it is found experimentally, at
least for the He-Ne 1.153-p, laser transition, that only
one low-frequency beat actually occurs instead of the
two which this would imply, we now combine the two 0-

modes into one oscillation at the frequency v&.' This is

7It is conceivable that the two 0-mode frequencies v& and v2

could be diRerent even for a single axial mode due to frequency
pulling and pushing eRects, and hence mould not combine in
general even though the polarizations are in the same direction.
The experiments, however, indicate that the o components do
combine when the Zeeman transitions overlap. They would not
combine, of course, when three axial modes act on well resolved
Zeeman transitions, although coupling eRects are possible between
them due to the common lower level of the laser transition. See
also R. L, Fork and C. K. N. Patel, Appl. Phys. Letters 2, 180
(1963), and Ref. 2.
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done by putting E2——E& and v2= v& into the equations
for the a components and adding the results.

The resulting equations for the steady-state inteiisi-
ties of the two oscillations may then be written in

the form

where

El rrlE1 PlEl 010E0 El
Ep=rrpEQ PQE0 i 01E1 E0

(lo)

- =-; [-:C~(Z,(.--.)+Z.(.--))-Q-],
P =—'. C~l{2[V.d'(~"( —-)+~"( —"))+2]+2V.V"[&. ( —")+~. (b)]

+VaV d&a (2b) [VaV ad(&ad(~2 vn—)+&ad(~l vn—)) »—((~2—vn) &ad (~2—vn) —(~1 vn)—Sad (M 1 vn)—)]
+V.V.[2(V.V.—»')~.(»)~"(b)3, (2I)

(20)

~10 22VCB 2{V Vada[2+ad(2b)++ da(&20 V)a+@ad( O110 Vn)]

+VaVd@a(b) [VaVad(@ad(rp2 v)n+@ da( 010Vn)) b((o12 vn)

Cad�

(M2 vn) (ppl V )Sad ((dl vn))]
+V.V«.(b)~"(b/2) (2V.V"-b )), (»)

rr 0
———,

' v[C1XZ; (v„—pop)
—

Qp '], (23)

(24)P p ,', vC——d—V{2[V.d'Z. d (rop vp)+—1]},
i 01= 0 svC8 {2VaaV [d2~ad(zb)++ a(dipl pvn)++ad(rp02 vn)]+2V. VdVadZa(b)Lad(010 —v„)

+V.V«.(b)&'(~/2) (2V-V' —b')), (2~)

where Cl ——j 60
( /(egAKN) C2=

~
Ap

~
A/eo, and we have

pllt b21 b V~~ b20=5/2= —510, in the equations since
the differences between vp, v~, and v~ will be small, and
we may replace these frequencies by v„corresponding
to the eigenfrequency of the cavity for the single axial
mode considered.

The oscillations with electric field strength Eo would
correspond to the x mode if this is the direction of
polarization in zero magnetic field and the field is
applied along this direction. Ej would then correspond
to oscillations in the 0- mode of orthogonal polarization.
It is apparent that either a single oscillation in m or in
the o- mode may occur, i.e., one oscillation may suppress
the other, or both oscillations may occur simultaneously
and low-frequency beats will be observed. The behavior
will be governed by the coeKcients in the nonlinear
equations and by their variation with the magnetic
field.

In order to investigate these possibilities we write
Eqs. (19) ill tile f01111

where

~=Q.(So,yo), b= Q. (Sp,yo),
c=P (xp yp) d= J 0 (xp yp)

sp, pp are the coordinates of the singular point, and
the subscripts indicate differentiation with respect to
the indicated variable. The stability at the singula, r
point may then be determined from the character of
the roots of the characteristic equation9

S'—(b+ c)S+bc ad =0. —

For the case under consideration, and with the
condition

(b c)'+4ad & 0,— (30)

we have a node if ad —bc ~ 0, and the node is stable if
b+c(0, and unstable if b+c&0. If ad —bc& 0 we have
a saddle point.

On applying these criteria to the singular points of

ti= 2y(~1—Ply —glpx) =Q(s, y)

s= 2S(rrp Ppx spry) =P(x,y), 40 {.0

where x=Ep' and y=E1'. The singular Points (sp, yp) of
these equations are then givenby Q(xp, yp) =O=P(xp, yp),
and we proceed to investigate the stability of these
points in the phase plane by making a Taylor expansion
around them and retaining only the linear approxima-
tion. 8 This gives

3.0—

2.0

1.0

0.4
l

I

0.2

I 0
0 2 4 6 8 (0 {2 H )6 i8 20

8/y

j=ax+by,
x= cx+dy,

FrG. 2. Variation of the intensity and coupling parameters for

(27) 2r and a oscillations with transverse magnetic iield. Laser tuned to
line center; go

——2, qI = 1.98.

'A. A. Andronow and C. E. Chaikin, Theory of Oscillations
(Princeton University Press, Princeton, New Jersey, 1949), pp.
182-199.

J. J. Stoker, Nonlinear Vibrations in mechanical and Iilectrical
Systems (Interscience Publishers, Inc. , New York, 1950), pp.
40-44.
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2.0
0 0.8

Eqs. (45) we obtain the following results:

Oiono)nipo Stable node at

np&0

Ooirri)noPi Stable node at

plpo) 810801

Orono(rriPo x=
810801 1 0

rro810 rrlpo

810801 plpo

(3t )

and the similar equation for ~, plolotted as a function

where 3.0 "-

90$ =-+/+0'y r) lt =N/El' (35)

are the relative excitation parameters, curv s
~ ~

rves of the
variable parts of the expressions given by Eqs. (20)
through (25) are plotted in Fig. 2 against the app ie
magnetic field expressed as 8/y . The constant terms
-'vCyX and ~'~ vC~X are omitted in these plots, and t e
parameters &&=7&a) Yap 4+a) +I= gag og

d =1 01 have been users. It is clear thatQQ$ = 2 anU /pe — . 7) $$

2.0
0.4

f.o
-0.2e,Ot '0

8 tO tZ t4 &6 &8 Po
Sz~

0 p

nsit and cou Hng parameters for
fild L dtm and 0- oscillations with transverse magnetic fie d. aser e u

'

~0 &n, = )ra') 'g0= ) 'pl =
~ ~

= 1.98.

the effect of the parameters Hp~, eip wi l be greatest
within the natural line width of the transition, a.nd thatPo

t eywi enh 'll be negligible at the higher values of magnetic

netic field where Oio(Po, and Ooi(Pi, stable oscillations
Fio. 3. Expanded in both m and o modes are posssible and beat frequenciesP1 01

should occur. The situation is quite different in near
fi ld, ho, i 1th h 8o, 8

arid e,o are greater
P and Po are equal in zero field, we see t a, ierethan pi.
region of magnetic fieM in which (Hip anR ep]. This is
more clearly shown in the expanded plot of this regione„ F . 3 H for the conditions assumed here
we have no ——1.009rri in zero magnetic field and Eq. (31)
is satisfied, and the initial oscillation is in the x mo e.
However, as the field increases from zero the condition

a Pi ma, be satisfied in the region where Ooi)Pi,
whilst the condition Oiono)rriPo is no onger s

oscillation will

x=rro/Po, y=0 field increases from zero. is w'is will occur when Ooi/Pi
d h the magnetic field required will

d d the laser intensity, on the anisotropy iil e

n closer to threshold we have no/ni ——1.059 for
h ' f s these oscillations are concerned, the same conditions, an a ig g

WVe note that, as ar as es

e from m to 0- operation due to t e
condition on PiPo as comPared with OoiOio. be required to change rom ~ o ~

there is no con i io

f 0 /+ which is then necessary. q.larger ratio 0 py y w
~ ~ ~

Stable node at
t ue satisfied for some specific conditions,

ni py
—np8 — P th the m mode oscillation will be suppresse to some

extent at a specific value of magnetic fie d un i
E . ,33) are satisfied and simultaneousconditions in q.Oolrrl(rropi

oscl a'll tions occur in both x and 0. mcdes.
etc. , for aFi ure 4 shows similar curves o np, n~, Q, enp) nin ni)0

cavit — uning osition of ~p —v = y . e sa

~ igure
e same char-

o acteristics are apparent, but in ad dition there are someac erisf pipo(OoiOio there is a saddle point at the values o
x andyin q. ~& &~, an

t l C-.lu..i- -]' t. th.- b-"ppl~ respec ive y.tion is possi e. e sybl The system reverts to a stable osci a-
tiolls ln near zero

t. th" -. ~ ~
th, l„,,g„„l„eof,/, 107by Lamb' in his discussion of the interaction between

axial modes of a gas laser, and ared are referred to as weak
E(P7r'~'

) Ao
~

' rriOoi —rroPiand strong coupling respectively.
ine — = 16Assuming that the laser is initially tuned to the line

~ p 'rd ' 810801 PiPo-center, and expressing np and n~ in the form

no = —', vC iELZ, (v„—~o) —noi-'Z, (0))
~,= -', .~,E;P', (.„—~,)+z,(..—~,) 34

4.0—r)i,
—"2Z, (0)g,

.08
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of 8/7 for (pip —v„)equal to zero and 87„respectively.
The interaction between the oscillations and the dip in
the intensity E&' when Zeeman shift equals the cavity
detuning are apparent, as well as the fact that the 0-

oscillation is the strongest at these values of magnetic
Geld. where

P0 Pa+&0 ppE0 &01E1

Pl vn+w1 plEl rlpEO
(37)

When simultaneous oscillation occurs in both m and
o. modes the respective frequencies are given by

(38)

(39)

(40)

(41)

o p
———,

' PC1ÃZ„(p„—lop),

pp= PC~—$27 d(Mp —P„)Zd(pip P)—),
&01—02 PC&2{7al (~10 Vn)~ad(~10 Pn)+ (0120 Vn)+ad(0120 Pn))+7a7d[27a(C00 Vn)ta(5)Cad(Mp Pn))} i

0 1= 2 VCB'2$Zr(pn —&2)+Zr(pn —oil)),

Pl= 22PC2td{27 dE(p02 P )~ d(012 P )+ (atl v )cC d((pl P ))
+7aL2(~0 Pn)&ad(ppo Pn))+7a7d&g(2&)p&7ad(Sad(002 Pn) Bad(p&1 vn))

+7a((02 vn)—Sad(M2 Pn)—+(~1—Pn)&ad(~1 —Pn)))} i (42)

210= 22PC2X2{7aL(0120 Pn)~ad(0120 Vn)+ (Pllp Vn)@ad(ollp —Pn))

+7a7d+a (~) $7adtl(+ad (&2 Vn) +ad (oil Vn))+7a((C02 pn) aCad (012 Vn)+ (C01 pn)

Sad�

(oil pn) ))}~ (43)
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Flo. 5. Intensity parameters ~'~2&')rig~'/(4'Yavd) ei tile 2 and
0 modes versus transverse magnetic Geld. Full curves —laser tuned
to line center. Dashed curves —laser detuning coo—v„=Sy.F0=2,
qg = 1.98.

It is clear from an inspection of these equations that
all these coeScients are zero when the laser cavity is
tuned to the line center, and hence the beat frequency
v~ —vo will be zero for all values of transverse magnetic
Geld and laser intensity. As the cavity is tuned from the
line center a beat frequency will appear, and this may
be a reasonably sensitive way of tuning the laser to the
line center. Omitting the constant terms 2PClg and
012PC~, Fig. 6 gives the variation of the parameters
given by Eqs. (38) through (43) as a function of 5/7,
for a cavity detuning (000—v„)equal to 87„when it is
apparent that they all now assume finite values and.
that there are marked variations with magnetic Geld,
particularly in the value of p~ at Zeeman shifts near the
cavity tuning position. This will cause a similar rapid.
variation in the beat frequency given by

pl —po= 2 (v/Q„)(ri/Z;(0)) {o1—&0

(PlE1 P0E0 +&10E0 &01E1)} (44)

where E12 and Eo' are as given in Fig. 5. Equation (44)
is plotted as a function of 5/7, in Fig. 'I, taking ran=2,
and v/Q=10 and shows this variation, the beat fre-

quency being positive initially due to frequency pushing

Fre. 6. Variation
of the frequency co-
efEcients of the ~ and
0 modes with trans-
verse magnetic Gelds.
Laser detuning—v =87,.
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0.2
01

CTp
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8/y
16 18 20

e6ects, after which it begins to decrease and would.
change sign around a value of magnetic Geld corre-
sponding to 6/7, =30. In the region of zero beat fre-
quency at this higher value of magnetic field we may
expect phenomena such as a frequency locking of the m

and 0- modes together with a rotation of the polarization
with magnetic Geld as occurs with axial magnetic fields, '
but we shall not discuss this any further at present.

(b) Axial Magnetic Field

Using Eqs. (8), (15), and (10), together with the
results of Sec. 3, the equations governing the oscillation
intensities when an axial magnetic field is applied to a
J= 1~ 0 laser transition, may be written as

@1 rrlE1 P1E1 ti12E2 El
@2 &2E2 P2E2 021E1 E2 i

where the parameters are given by

~1=-',VÃ1'&Z;(P.—~,)—Q ),
pl= —,', 1 C2'N)2(7ad'Sad(lot —vn)+1)),
0»= 0'2PC2'W7. 7"E~"(~0—P )+~ d(&))

+7.7.~.(2&)L~. (&) (7.7"—2&')

+&..( —.)(7.7"+»( —-)))} (48)
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Mc/sec. rf excitation 5 W. Relative laser intensity 0.4.

values of magnetic 6eld, depending on the cavity tuning,
is apparent. At these values of magnetic 6eld, a more
or less abrupt change to the o- mode of oscillations
occurs for some cavity tuning positions. This is the
zero intensity gap in these curves, since the analyzer
is at 90' to the o polarization. On increasing the mag-
netic further both m and o- modes begin to oscillate and
low-frequency beats appear at magnetic 6elds around
30 G. For the curves of Fig. 14 which do not show a
region of zero intensity there are indications that both
m and fT oscillations occur on the slope portions of these
curves, but which are synchronized to a single fre-
quency and give rotation effects similar to those ob-
tained with axial magnetic fields. At higher values of
magnetic field, low-frequency beats finally appear in
all cases. The effects observed thus depend on the
operating conditions, and vary with cavity tuning and
anisotropy in the cavity Q values for the two polariza-
tions, although the general features shown in Fig. 14
persist. Figure 15 shows similar curves for a lower value
of laser intensity in zero magnetic field, where it is
apparent the magnetic field at which the oscillation
changes from the x mode to the o- mode is increased.
Low-frequency beats again occur at magnetic fields
around 30 G. For these results the magnetic 6eld was
applied in the direction of polarization in zero Geld.
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FIG. 16. Experimental curves of beat frequency versus trans-
verse magnetic Geld. Curve No. 1. In Lamb dip. No. 2 Laser
detuning Af=150, No. 3, 6 =200. No. 4, Af=250. No. 5, hf
=300. No. 6, Af=340 Mc sec. Transverse magnetic Geld 11.5
G/A.
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(b)

FIG. 17. Beat spectra in the transition between the Gnite and
zero beat frequency regions with transverse magnetic Gelds.
(a) Top trace—Magnetic Geld 50 G. Bottom trace—Increased to
65 G. (b) Slightly different cavity setting. Magnetic Geld 39, 41,
and 50 G from top to bottom. Spectrum analyzer sweep 20 Itc/
sec/cm. Zero frequency on left of all traces.

When it is applied perpendicular to this direction no
90' change in polarization, or rotation, was observed,
though low-frequency beats occurred at higher values
of magnetic 6eld."

Figure 16 shows the beat frequency versus magnetic
Geld for the x mode of operation and for various cavity
tuning positions. In contrast to previous results with
an axial magnetic held, when the cavity is tuned on or
near line center we see that the beat frequency between
the x and o- modes is independent of magnetic 6eld, at
least up to Gelds around 100 G. Slightly off, but near
line center, a region occurs where the beat frequency
after an initial increase, would return to zero again as
the Geld is increased. This zero position has been ob-
served but is not shown in the Ggure. Finally, a transi-
tion region with multiple beats is sometimes observed,
which is similar to that seen with axial magnetic fields. '
This is most predominant in the regions of zero beat
frequency, and is not observed when the cavity tuning
is far from line center. Figures 17(a) and 17(b) show
typical beat spectra obtained in such regions. It is to
be noted that at times the beats are not regular, or
harmonically related. As the magnetic field is increased
beyond this region, only one beat between the o- and m

modes is finally observed, suggesting that both a
transitions are combined by the oscillation with this
polarization, which combines with the m mode of

' The probable reason for this different behavior is that the
oscillation is already in the 0 direction on applying the magnetic
field. For a J=1-+0 transition no change in polarization would
then be expected. This follows from Eq. (32), where now u1&ap.
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oscillation to give a single beat frequency, instead of the
two which would otherwise be observed.

6. CONCLUSIONS

We have developed equations which govern the in-
tensities and the frequencies of the x and 0- modes
when a transverse magnetic field is applied to a planar-
type laser operating on the J= 1 —+ 0 transition and in
a single axial mode of the resonator. The results show
that the coupling of the transitions, due to the common
lower level, and determined by the coefficients 0&j and
Hap, plays an important role, par ticularly when the
Zeeman separation is within the natural linewidth of
the transition. Such a coupling may produce a quench-
ing of the original m. mode of oscillation, i.e., magnetic
field applied along the direction of polarization in zero
field, together with a more or less abrupt change in the
polarization of the oscillation to the 0 direction. The
value of magnetic field at which this occurs is dependent
on the operating conditions, and theory indicates that
this value will be higher for lower levels of laser in-
tensity, and for larger values of cavity detuning from
the line center. As the magnetic 6eld is increased the
conditions for two frequency operation are satisfied,
and since the two 0. modes are combined in the theory,
a single beat between the m and 0- modes with a fre-
quency dependent on the magnetic 6eld, and on the
operating conditions, should occur.

For a given detuning of the cavity from the line
center, the beat frequency is zero in zero magnetic
6eld, but it may also pass through zero again at higher
values of magnetic field due to the relative balance
between frequency pushing and pulling effects. In such
regions of zero beat frequency there is a natural tend-
ency for the oscillations to synchronize due to nonlinear
effects, and the theory would need some modification
in a way similar to that recently applied to consider a
similar effect with an axial magnetic held. ' The above
coupling coefficients, and also those denoted by 7p] and
Tyo in the equations for the frequencies of separate m

and o. oscillations, depend on the linewidths and on the
cavity tuning, but in general they become small at
higher values of magnetic field, and may be neglected
as a first approximation in such regions. When the
cavity is tuned to the line center the beat frequency
should remain zero for all values of transverse magnetic
field, which may be useful as a means of centering the
laser frequency on the Doppler distribution. Changes
in the intensities of the x and 0- modes at Zeeman sepa-
rations corresponding to the cavity detuning are also
indicated, as well as rapid variations in the beat fre-
quency when the third order dispersion term p& passes
through zero as shown in Figs. 6 and 7.

Similar results have been given for an axial magnetic
field acting on the J=1~0 transition, and somewhat
similar remarks apply. However, the conditions for

two-frequency operation in right- and left-handed cir-
cular polarizations are more readily satis6ed in this
case, and the quenching phenomena does not occur. In
zero-magnetic-6eld conditions are such that the oscilla-
tions should again become synchronized, and a rotation
of the resultant polarization with magnetic field should
be observed in this region, and in other regions of rnag-
netic field where the beat frequency passes through
zero. No such observations on this particular laser
transition have, however, been made as yet. The same
general remarks made above on the coupling coefFicients

apply, and in general their effects will be small at the
higher values of magnetic field. Sharp resonances occur,
particularly in the coefficients v~2 and 72~ in near zero
magnetic fields, which apparently give rise to a sharp
variation in the beat frequency, as shown in Figs. 11,
12, and 13. Such regions may be modified, however,
when the very tight coupling or synchronization between
the oscillations in such regions is considered.

The experimental results given on the effect of trans-
verse magnetic fields on the 1.153 p, 7= 1 —+ 2, He-Ne
laser transition represent the only such results available
at present. Hence the theoretical results deduced here
do not strictly apply in their entirety. However, the
agreement as regards the general features of the ob-
servations is certainly suggestive that similar effects
are occurring in these experiments. Thus we see a
quenching of the initial m mode of oscillation, and a
change to the o- mode of operation. As indicated by the
theory the magnetic field at which this occurs increases
with a decrease in laser intensity and with increased
cavity detuning from the line center. Similar beat-
frequency variations with magnetic field occur, and
there is a region near the line center where the beat
frequency remains constant with magnetic field. The
theory indicates a zero beat frequency at line center,
and the origin of the constant value of beat frequency
in the experiments, see Fig. 16, is not clear, although
there is some uncertainty in the exact experimental
conditions at this time. One might expect from sym-
metry conditions that the beat frequency would be
zero on line center even with this more complicated
laser transition. However, any further comparison of the
theory must await further definitive experimental ob-
servations on the particular laser transitions 7= 1 —+ 0
used in the present deductions, or an extension of the
theory to the more complicated J= 1 —+ 2 laser
transition. "

"Note added irl, proof. Experiments on a dc excited J=1—+0
laser transition at 2.65 p, using an enriched sample of Xe"',
show that quenching effects actually occur between axial modes
acting on well resolved 0- components in an axial magnetic Geld.
There are also indications of similar quenching eRects between the
o. oscillations on a single mode in axial magnetic Gelds of a few
gauss. Such results are not predicted in the present theory. Qne
possible explanation is that relaxation sects on transitions be-
tween the Zeeman levels also occur due to collision eRects within
the discharge. We hope to discuss these later results in a further
communication.




