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The longitudinal critical current of a bulk type-II superconductor near the transition field H., has been
calculated from the Ginzburg-Landau equations via a simple extension of Abrikosov’s treatment of the
mixed state, valid when the self-field of the current can be considered negligible compared with the external

field. The critical current is given by

(4nTcfc)= (2/3)¥*(H co/N) 1 —H/H 2)¥?/8(1—1/2:2).

This expression should be obeyed very near H.; by small wires with strong pinning and with surfaces properly

treated to inhibit surface currents.

1. INTRODUCTICN AND DISCUSSION

E have calculated the longitudinal critical

current of a bulk type-II superconductor very
near the transition field H.s, neglecting the seli-field
of the current (which goes to zero at H,). The calcu-
lation is a simple extension of the Abrikosov! treatment
of the mixed state (based on the Ginzburg-Landau?
equations). The result is

(4nJo/c)= (3)"*(Hep/N) (1 —H/H2)?/B(1—1/2¢%).

This differs from the result obtained by a simple free-
energy argument?® only by a numerical factor of order
unity. It is of the same form and order of magnitude
as the critical surface current density,*® except for the
substitution of H. for H.. Although the result is
derived subject to the approximation H.—H<KH .,
it is interesting to note that for zero field the result is
identical to the Ginzburg-Landau critical current of a
thin film in zero field® except for the numerical factor
B(1—1/2«2), which is of order unity.

The self-field of a current is most likely to be neg-
ligible compared to the external field for wires of small
radius in a longitudinal field H very near H. This is
the limit in which surface currents are particularly
important.4®78 In order to observe the bulk critical
current it may be necessary to treat the surface appro-
priately to inhibit surface currents. It is known’ that a
normal metal such as copper will inhibit surface
currents; perhaps a magnetic metal® would be even
more effective.
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A nominally longitudinal critical current in a uniform
external field gives rise to helical fluxoids which
approach straight lines as H — H.,. The current may
have a small component transverse to the local mag-
netic field, in which case the flux lines must be pinned
to prevent flux flow if we are to expect our expression
to apply. Such scanty data as are available on longi-
tudinal critical currents indicate that our predicted
values are approached for materials with strong
pinning® but not for materials with weak pinning.?®!
Although our calculation is based on a model in which
pinning is absent, it seems necessary to have some
pinning in order to make it applicable. We are not
troubled by the apparent logical inconsistency, since
physicists generally tolerate the same sort of logical
inconsistency when they calculate the thermodynamic
equilibrium of a noninteracting gas (which needs to
interact if it is to achieve thermodynamic equilibrium).

2. DERIVATION OF LONGITUDINAL
CRITICAL CURRENT

We shall follow Abrikosov! closely. We assume an
infinite superconductor. The external field H, and
vector potential A are assumed to be directed along the
z and y axes, respectively. The units of field and length
are the thermodynamic critical field V2H,;, and pene-
tration depth A, respectively. In these units the
Ginzburg-Landau® equations can be written

AY 2
(S+4) w-va—tep, (1

K

—VvX (V><A)=A|\1/|2+—;—(\p*v\11—q/v\1/*) )
K

Near the transition field |¥|%<1, so that we may
approximate the field with

IAI=A,,=H03(:. (3)

L. J. Barnes and H. J. Fink have shown that plating with magnetic
metals eliminates hysteresis near H. due to surface currents.
Herman Fink, private communication.
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We wish to introduce a longitudinal transport cur-
rent but neglect the magnetic field due to this
current, which amounts to neglecting 4.. We need a
longitudinal phase gradient to yield a longitudinal
current. The longitudinal phase gradient must be uni-
form to preserve the longitudinal translational in-
variance of the transverse currents. Accordingly, we
must include a phase factor exp(ijz) in ¥ which gives
rise to a longitudinal current proportional to |¥|?; the
current therefore avoids the vortex cores.

We assume that ¥ is otherwise a function of x only:

¥ =exp(ijz)f(x). 4)

Then, neglecting the term ¥|¥|2?, we obtain for f(x)
the harmonic-oscillator equation

& f/da*+ (@ — ) [1—He?/ (= ) 1f=0, ()
which has solutions when Ho= (k¥— j2)/k(2n+1). The
nucleation field is given by the largest eigenvalue

Ho= (¢—j%)/x, ©)

and corresponds to the solution

V=exp(ijz) exp[— (K2— 72)a?/2].

Equation (1) is also satisfied by the functions
Y=exp{ijatiky—3 (= Hx—k/ (=) F}. 8)

We choose a general solution of the form

T=¢iiz 3, Coeitriy, (x)

Yn=exp{—3 (= Px—kn/(@— 7T}, )

where k, C,, are arbitrary constants.
Let Aq be the vector potential for the nucleation field,

Q)

Ao= (1— Pa/k. (10)
We note the useful identity
OV /dx=—«[ (i/x)d/dy+ A0 ]¥, (11)

which may be easily verified by differentiation of Eq.
).

We substitute ¥ and 4, into the equation for the
current, Eq. (2), to obtain the first-order correction to
A. On making use of the identity Eq. (11), we get

924/da2=— (1/2¢) (3/9%) | ¥ |2, (12)
H=6A/0x:Ho—(1/2:c)|\If[2, (13)
A=H —1 /xl\Iil“’d’ (14)

=11 oX 5; X

which are identical to Abrikosov’s results, since the
phase j is contained only in [¥[% The constant H,
was shown by Abrikosov to be the external field
strength.

We now add to the factors Cuyn in Eq. (9) small
terms ¥, P :

V=V OF TN =3k (Cohuta®).  (15)
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We substitute ¥ together with 4 given by Eq. (14)
into Eq. (1). Keeping terms of first order in small
quantities, and subtracting the linear equation satisfied
by ¥© we obtain

()
) o

On multiplication by exp(—4kny) and integration over
y, we get an inhomogeneous equation for ¢,®. For a
solution to exist, the inhomogeneous part must be
orthogonal to the solution of the corresponding homo-
geneous equation. But this is simply ¢,. We multiply
the inhomogeneous part by ¥,, integrate over x, and
set the result equal to zero:

Jocsrml(Zor)
_<%V+A>2_|qflz}p=o. ()

We discard the superscript on ¥ hereafter.
Setting Ag+A=~2A, and discarding V-A, we get
from Eq. (17) after applying Eq. (11)

knul, —E(A0~A)i—\\1/{2 =0. (18)
k d

At this point some caution is necessary. We wish to
obtain a polynomial in |¥|? under the integral after
we multiply by C,* and sum over ». For this purpose
we must transfer the derivative to the term (4do—4)
by partial integration, which eliminates x as a co-
efficient. However, we must do this before performing
the sum if the evaluated term is to be zero. The order
of operations is as follows: We partially integrate half
the derivative term, then multiply by C,* and sum
over n. After adding the complex conjugate equation,
we finally get

//1\1112[%;—90(/10~A)— \\_I/i?]:o.

The phase j appears explicitly only in the derivative
term. On evaluation we obtain Abrikosov’s relation

(19)

k2— j2—«H

°<l«zl2>‘w+<1

~ 1><l\1’l4>av=0, 20)
2k2

K

in which the quantity (x*— j2)/x has taken the place of
« as the bulk nucleation field. From this we obtain

(1 |2av/ 2= [ (= ) /x—HoJ/ (20— 1)8,  (21)

where

6=<|‘I’l4>HV/<l\I’I2>av2 (22)

and B is independent of H.
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The natural unit of current is In ordinary cgs units, the critical current is then
In ordinary cg
4m) WVZH 0/ given by
(C/ 7|')( b/ )! 47"]0 ch (1—H/H02)3/2
which ensures that J=VXH in this system of units. = 2)3/2——*‘——-2— . (25)
Then the mean longitudinal current is given by ¢ A B(1=1/2¢)

(s 9N DA (2 22 S 2 The magnetization at the transition falls to two-thirds
J= G/ ¥ |Hev=24L (73 /x—H]/ 22 —1)B. (23) of its equilibrium value in the absence of current. The
We differentiate J with respect to j and set the deriva-  smallness of the change in the magnetization accounts
tive equal to zero to find the value of j for which Jisa  for the fact that a simple free-energy argument gives
maximum : very nearly the same result for the critical current.

8J /8]« k2—xkHo—37*=0 (24)
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The effects of transverse magnetic fields on a J =1 — 0 laser transition are considered, and expressions for
the macroscopic-atomic-polarization terms are derived. The contributions from the o modes are combined,
and equations for the intensities and frequencies of the = and ¢ oscillations are deduced. Various coupling
terms occur because of the common lower level of the transition, and a quenching of the initial w-mode
oscillation with a change to the ¢ mode is indicated as the magnetic field increases from zero. With increased
field, both modes oscillate simultaneously, and a beat occurs whose frequency depends on the operating
conditions, and which may become zero again at higher magnetic fields. At line center the beat frequency
should remain zero with increasing magnetic field, representing a method of laser tuning. Similar equations
for the circularly polarized o oscillations in axial magnetic fields are deduced. Here the conditions for stable
two-frequency operation are more readily satisfied, and no such quenching is indicated. Again there are zero-
beat-frequency regions of magnetic field in which a mutual synchronization of the oscillations should occur.
Some experimental results with transverse magnetic fields on the 1.153-u He-Ne laser are given. These dis-
play the general features indicated by the theory. Thus a quenching of the initial z-mode oscillation occurs,
with more or less abrupt changes to the ¢ mode, depending on conditions. Similar single-beat-frequency
variations with magnetic field occur, together with a region near the line center where the beat frequency,
although finite, remains constant with increasing magnetic field.

1. INTRODUCTION order dispersion functions involved in the laser transi-
tion, or on the balance between frequency pulling and
pushing effects. It is thus dependent on the lifetimes of
the states involved, on the cavity tuning and Q value,
on the applied magnetic field, and on the dispersive
properties of the laser medium. When the magnetic
field is zero the beat frequency is zero and the polariza-
tion is linear with a direction determined by small
anisotropies, chiefly in the reflectors, of the laser
cavity. The beat frequency may also pass through zero
in one or more regions as the axial magnetic field in-
creases.'2 In such regions the oscillations have a natural
tendency to coalesce because of nonlinear effects and
this again, for small anisotropy, gives rise to a linear

HE effects of relatively small magnetic fields on

the operating characteristics of gaseous lasers are

quite pronounced, and provide a fertile field for the
investigation of the dispersive and nonlinear properties
of the laser medium. Thus axial magnetic fields of a
few tenths of a gauss can produce orthogonal circularly
polarized oscillations and hence beat frequencies in a
planar-type laser, which in zero magnetic field oscillated
on a single frequency and was linearly polarized.! The
beat frequency observed as the magnetic field increases
depends on the detailed shape of the first- and third-
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