
PHYSICAL REVIEW VOLUME 145, NUMBER 1 6 MA Y 1966

Longitudinal Critical Current in Type-II Superconductors

R. G. Bovn

Inorganic Materials Research Division, Lawrence Radiation Laboratory,
University of California, Berkeley, California

(Received 22 November 1965; revised manuscript received 12 January 1966)

The longitudinal critical current of a bulk type-II superconductor near the transition field FI,2 has been
calculated from the Ginzburg-Landau equations via a simple extension of Abrikosov s treatment of the
mixed state, valid when the self-field of the current can be considered negligible compared with the external
field. The critical current is given by

(4',/c) = (2/3) 't' (FF~e/&) (1—FF/FF cp)' '/P (1—1/2&')

This expression should be obeyed very near FI,2 by small wires with strong pinning and with surfaces properly
treated to inhibit surface currents.

l. INTRODUCTION AND DISCUSSION

E have calculated the longitudinal critical
current of a bulk type-II superconductor very

near the transition held H, ~, neglecting the self-field
of the current (which goes to zero at H, r). The calcu-
lation is a simple extension of the Abrikosov' treatment
of the mixed state (based on the Ginzburg-Landau'
equations). The result is

(4rrJ,/c) = (s) s (H s/g) (1 H/Hps)st'/P (—1—1/2'')

This differs from the result obtained by a simple free-
energy argument' only by a numerical factor of order
unity. It is of the same form and order of magnitude
as the critical surface current density, 4 ' except for the
substitution of H, ~ for H, 3. Although the result is
derived subject to the approximation H, 2

—H((H, 2,

it is interesting to note that for zero held the result is
identical to the Ginzburg-Landau critical current of a
thin film in zero held' except for the numerical factor
P(1—1/2tt'), which is of order unity.

The self-field of a current is most likely to be neg-
ligible compared to the external 6eld for wires of small
radius in a longitudinal field H very near H, 2. This is
the limit in which surface currents are particularly
important. ' ' ' ' In order to observe the bulk critical
current it may be necessary to treat the surface appro-
priately to inhibit surface currents. It is known7 that a
normal metal such as copper will inhibit surface
currents; perhaps a magnetic metal' would be even
more effective.

A nominally longitudinal critical current in a uniform
external field gives rise to helical Quxoids which
approach straight lines as H —+ H, 2. The current may
have a small component transverse to the local mag-
netic field, in which case the Aux lines must be pinned
to prevent Aux Row if we are to expect our expression
to apply. Such scanty data as are available on longi-
tudinal critical currents indicate that our predicted
values are approached for materials with strong
pinning' but not for materials with weak pinning. ' "
Although our calculation is based on a model in which

pinning is absent, it seems necessary to have some

pinning in order to make it applicable. Ke are not
troubled by the apparent logical inconsistency, since
physicists generally tolerate the same sort. of logical
inconsistency when they calculate the thermodynamic
equilibrium of a noninteracting gas (which needs to
interact if it is to achieve thermodynamic equilibrium).

2. DERIVATION OF LONGITUDINAL
CRITICAL CURRENT

We shall follow' Abrikosov' closely. We assume Bn

infinite superconductor. The external field Hp and
vector potential A are assumed to be directed along the
s and y axes, respectively. The units of field and length
are the thermodynamic critical field u2H, & and pene-
tration depth X, respectively. In these units the
Ginzburg-Landau-' equations can be written
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z—VX (VXA) =Aj+~'+—(+*V+—+V+*) . (2)
2K
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(Ai =Av=Hpx. (3)
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("R I TI("AL CURRENT I N TYPE —I I SUPE RCON DU CTORS

The natural unit of current is

(c/4sr) (V2H, p/) ),
which ensures that J= VXH in this system of units.
Then the mean longitudinal current is given by

&= (j/K)(~+~')..= 2jL'(»' —j')/a —&p$/(2a' —1)P. (23)

Ke differentiate J with respect to j and set the deriva-
tive equal to zero to find the value of j for which J is a
maximum:

8J/8 j~ tt' —AH p —3j'= 0
or

In ordinary cgs units, the critical current is then
given by

4trJ. H, p (1—II/H, s)'t'—(s)8/2
c )i P (1—1/2'')

(25)
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The eGects of transverse magnetic fields on a J= 1 —+ 0 laser transition are considered, and expressions for
the macroscopic-atomic-polarization terms are derived. The contributions from the cr modes are combined,
and equations for the intensities and frequencies of the x and a. oscillations are deduced. Various coupling
terms occur because of the common lower level of the transition, and a quenching of the initial ~-mode
oscillation with a change to the 0 mode is indicated as the magnetic field increases from zero. With increased
Geld, both modes oscillate simultaneously, and a beat occurs whose frequency depends on the operating
conditions, and which may become zero again at higher magnetic fields. At line center the beat frequency
should remain zero with increasing magnetic Geld, representing a method of laser tuning. Similar equations
for the circularly polarized 0- oscillations in axial magnetic Gelds are deduced. Here the conditions for stable
two-frequency operation are more readily satisfied, and no such quenching is indicated. Again there are zero-
beat-frequency regions of magnetic Geld in which a mutual synchronization of the oscillations should occur.
Some experimental results with transverse magnetic Gelds on the 1.153-p He-Ne laser are given. These dis-
play the general features indicated by the theory. Thus a quenching of the initial m.-mode oscillation occurs,
with more or less abrupt changes to the 0- mode, depending on conditions. Similar single-beat-frequency
variations with magnetic Geld occur, together with a region near the line center where the beat frequency,
although Gnite, remains constant with increasing magnetic Geld.

1. INTRODUCTION

HE effects of relatively small magnetic fields on
the operating characteristics of gaseous lasers are

quite pronounced, and provide a fertile field for the
investigation of the dispersive and nonlinear properties
of the laser medium. Thus axial magnetic fields of a
few tenths of a gauss can produce orthogonal circularly
polarized oscillations and hence beat frequencies in a
planar-type laser, which in zero magnetic field oscillated
on a single frequency and was linearly polarized. ' The
beat frequency observed as the magnetic fieM increases
depends on the detailed shape of the erst- and third-
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order dispersion functions involved in the laser transi-
tion, or on the balance between frequency pulling and
pushing effects. It is thus dependent on the lifetimes of
the states involved, on the cavity tuning and Q value,
on the applied magnetic field, and on the dispersive
properties of the laser medium. When the magnetic
field is zero the beat frequency is zero and the polariza-
tion is linear with a direction determined by small
anisotropies, chieAy in the reflectors, of the laser
cavity. The beat frequency may also pass through zero
in one or more regions as the axial magnetic field in-
creases."In such regions the oscillations have a natural
tendency to coalesce because of nonlinear effects and
this again, for small anisotropy, gives rise to a linear
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