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Ising-Chain Statistics*
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The general n-spin correlation function for the Ising chain is calculated exactly. The perpendicular mag-
netic susceptibility is calculated for arbitrary values of the parallel magnetic field.

I. INTRODUCTIOH

'HE statistics of the Ising chain are quite simple
to calculate exactly, yet do not seem to be

widely known. By statistics, we mean the probability
of any particular arrangement of spins or, equivalently,
the value of the correlation function involving any set
of spins in the chain.

The knowledge of these is useful in several cases.
There seems to be an application to at least one type
of physical system, namely, rare-earth chloride crys-
tals, '2 and presumably results from the Ising-chain
problem could be applied with similar good effect to
other axial systems. It is useful to have a nontrivial,
solvable, system in which one can check approximations
that must be made for real systems. For instance, Lee'
has checked the approximations Inade by McMillan
and Opechowski4 in a line-shift and shape calculation
by repeating the derivation exactly for the Ising-
chain case.

In this paper we expose the Ising-chain statistics
and apply them to two cases: We calculate the per-
pendicular magnetic susceptibility of the Ising chain
for arbitrary values of the parallel magnetic Geld, and
we show how Lee's calculation may be done in a few
lines. This is made possible by an apparently novel
point of view regarding the necessary statistical sums
which allows us to evaluate them by inspection in terms
of the joint probability of the various arrangements of
three spins in a row. The same sort of considerations
are applicable to more general Ising models, but in
those cases, the necessary joint probabilities have not
been calculated.

II. STATISTICS

We write the Hamiltonian of the Ising chain in
the form

P.= —-'J P o"o" HP o"—
(' j) i

where o-; is the variable describing particle i, and 0.;
takes on the values &i. H is the external magnetic
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field times the various factors needed to make the
energy come out right. The summation index, (i,j),
means that the sum is taken over near neighbors in the
chain and each "bond" is counted once. Then the
partition function, Z, is given by

Z= tr(e-&s),
where

P= 1/kr.

Suppose now that one wants to know the proba-
bility that any particular spin, spin i, is up or down,
P(o,=&1). We call this P(E;), where K;=&1 for
P(o,= &1).T. his will be given by the sum over all the
Boltzmann factors involving a-;=K;, divided by the
partition function. We can extend this sum over the
whole phase space by multiplying the Boltzmann factor
by a projection operator which is one when 0-;=K;
and zero when o,= K,. Such —an operator is P(K;)
= —.

', (1+K,o-;), so tha, t

P(K,)= Z ' tr(P(K;)e —~s)=—(P(K;))=-', (1+K;(o)),

where the bracket means the thermodynamic average
and (o.,)=(o) because of the translational invariance
of the chain.

Obviously the joint probability of any particular
arrangement of any e spins is given by the following
expression, where we make an obvious extension of
notation:

P(K;,Ky, .
, K„)

=(P(K;)P(K,) . . P(K„))
=2-"(1+(o.)Q K~+/ Kg, (o;o.;)+

+K~; K„(~o;o )), .

where the summations are over the spins involved. We
must therefore calculate the general spin correlation
function, (o.; .o ~).

This is true, of course, for any Ising model, but for
the Ising chain, these correlation functions can be
evaluated exactly using, for example, matrix methods. "

Consider the two-by-two matrix

H((r;o;+$) = exp(Ko, o,~&+ ',C(o,+o,+&)). --
5 H. A. Kramers and G. H. W'annier, Phys. Rev. 60, 252, 263

(1941).' B. Kaufman and L. Onsager, Phys. Rev. 76, 1244 (1949).
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or
(~K+C ~

—K

(~—K ~K—C)

Similarly, any e spin correlation function can be
written, with the obvious extension of notation,

then

X1,2
——eK cosh(C) (1&y),

y= (1+(e 'K—1) sech'C)' '

Z yN+yN

Since p is always positive, P»P2, and as S gets very
large, Z X»~, which is the usual result.

Suppose now that one wants to calculate (a,&. This
can be done if, in Eq. (1), the part that involves
a,=+1 is taken with a plus sign. and the part that
involves 0-,= —1 is taken with a minus sign, and the
sum divided by Z. This will obviously happen if

where Il. =J/2kT, and C= H/kT.
As is well known, ~ the partition function for the

Ising chain is given by

Z = tr(H (ala2)H (a2a6) ~ ~ H (aNal)), (1)

where there are X spins in the chain and the ends of
the chain are joined.

If we transform B into diagonal form,

A. =SBS ',
(Z, O)

EO
where

If we now let Z=S05—', where 5 is the same matrix
that diagonalizes B, then

(alal+rl ' ai+rl+ "+rn)
= Xl N tr(XN "' "' rnZXr'Z XrnZ) .

Since H(a,a,+1) is real and Hermitian, S is real and
orthogonal, and we have Z»» ———2~2 and Z»2=Z~».

For instance, we have

(a ')= Xl tr (rl Z) =Zll+Z22(X2/hl) =Zll —(a)

as S gets large. This evaluates Z»» and 222 since

(a)= 8 1nX1/BC= tanhC/y.

(a a &=l11 N trp N—rZArZ) Z 2+Z12, r

where we have set 6=X2/Xl. When r=O, we have

(a,a,)= 1= (0.)'+Z12' or Z12'= 1—(a)'.

When r=1,

( ' &=( )=( )'+(1—( )') .
Now (aa& is given by (aa&= 8 lnl11/BIG, so that

6= ((«&—(a&')/(1 —(a)')

evaluates X2/Xl, which is also given by 6= (1—p)/
(1+y). The latter form is convenient for calculations
while the former form is more expressive of the physical
content.

(a,a~„a~„+,)=X;N tr(XN- —
ZZ ZX Z)

Zll +Z12 Zll(6 + 6 )+Z12 Z226

= (a&'+ (a) (1—(a)') (6'+ 6'—6'+') .

is inserted between the two matrices in Eq. (1) that
involve 0-; before the trace is taken.

(lr;)=Z(a,) Z ' tr(=H(a—
102)

XH(a la;)aH(a, a,+1) H(ONo. l)). In general we have

7 Irr ~ ~ 0 p
P. N "' "' "n"C;2Z2rhr"'8m X rnid Z )

n+1+Z n—1Z 2 (6rl+6r2+. . .+6m)+Z n—3Z (6rl+r2+ 6rl+r4+. . .+&rl+rn+ 612+ri+. . .+&rn 2+m)—
+Z n—2Z Z 2(6rl+r2+6r2+r3+. . .+6m 1+m)+Z n—6Z126(6r—1+r2+r2+6rl+ra+r6+. . .+6m 4+m 2+m)— —

+. . .+Z n—1Z 26rl+r2+ ~ ~ +rn

where we have neglected terms proportional to e .
This is written down by inspection as follows: The
trace involves X» and X2 to the various powers r» r„;
we start by writing down first the part coming from

7 D. ter Haar, Elements of Statistical 3IIechunics (Rinehart and
Company, Inc., New York, 1956).

the X» parts of all the X matrices, i.e., Z»»"+'; this gives
the first term. Then we have the part that comes from
the 'A2 part of one of the X matrices; this introduces a
Z»2 factor from each side of the X matrix in question
and Z»» occurs only e—1 times. This gives the second
term. Next we have the terms from the X2 parts of two
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of the X matrices. %hen the two X matrices in question
are not adjacent, we get Z» occuring e—3 times and
5~2 4 times, two for each X matrix; this gives the third
term. When the ) matrices are adjacent we get Z» e—2
times, Z~~ once from the Z between the two X matrices,
and Z~~ twice to get the fourth term; and so on. Thus
we can calculate the general e-spin correlation function.

III. APPLICATIONS

Neighbors

+ +
+ — —+

—2{11,+J)—2H,—2(H, —J)

P
P (UUU)
P(UUD)
P(DUD)

P
P{UDU)
P(UDD)
P(DDD)

TAaz.z I. In the "Neighbors" column, the signs on either side
of the comma indicate the orientation of the neighboring spins on
either side of spin i; E„—E is the corresponding energy denomi-
nator; P„and P are explained in the text.

For a broad class of problems one is interested in the
relative number of transitions between two sets of states
induced by some one-particle operator. By one-particle
operator, we mean an operator of the form O=g; 0;,
where 0, operates only on the coordinates of the ith
spin. These transitions are classified by the energy
difference between the initial and Anal states, and since
each spin is coupled only to its nearest neighbors, this
means classification according to diferent arrange-
ments of three spins in a row.

We will illustrate this first by calculating the perpen-
dicular magnetic susceptibility for the Ising chain for
any value of the parallel magnetic Geld. This has
already been done by Fisher' and Katsura' for the case
when the parallel Geld is zero. We do this by calculating
the correction to the free energy of the Ising chain in a
perpendicular magnetic field H to second order in H .
The susceptibility X& is then found by taking the
appropriate derivatives.

If the Hamiltonian of the crystal is given by
X=X+V, and the states of the unperturbed Hamil-
tonian are labeled with the indices e, i.e., F.

I
n&=E

I e&,
and the matrix elements of the perturbing potential, U,
with the eigenstates of E are called U„, then the free
energy of the system described by X can be expanded
in the form"

F=FO+Fl+F2+ ' ' '

where Fo —P 'ln tr(e &——~)—= —P 'lnZO is the "unper-
turbed free energy, "

Fg (V„„)——
and

F2= —-' 2 L(~-—~-) I V-I'/(z- —z-)3

Here, the angular brackets mean the thermodynamic
average over the "unperturbed distribution, " e t'~,
and or„ is the probability of occurrence of the unper-
turbed state, co„=ZO 'e 1'E".

E will be the Hamiltonian for the Ising chain,
so that Zo ——XP, and V= HQ;(o;—++o, )—=Q, V, ,
where again the factors that make the energy come
out right have been absorbed into H„and

(0 1~ t
0 0~

ko 0)
'

k1 0)

In this case, U „=0,so that the correction to second
order comes from the first term of F2, which may be
written

F2=2 2 (~-—~-) I V', -I'/(&. —&-).

Since the U; cause only one spin at a time to Qip.

I
V; „ I'=H, ' when it is nonzero, and it is nonzero

only between states that dier only in the orientation
of spin i. Thus the energy denominators fall into three
classes determined by the orientation of the nearest
neighbors to spin i. If we let the index n refer to those
states where spin i is up (0.,=+1) and m refer to the
states where spin i is down, the neighborhoods and
corresponding energy denominators are as given in
Table I. It is apparent that when ~„—co is performed
over the states which lead to a particular energy
denominator, we will get just the joint probabilities of
the various arrangements of three spins in a row. These
are given in the table in the columns headed P„and
P where, for instance, P(UUD) =P(K; ~K;K~~), —
when K. q=K;=+1 and E~~———1, i.e., spins i and
i 1are u—p and spin i+1 is down. The subsequent
summation over i gives the factor E. Thus

2(H,+J)
P (UUU) P(UDU) P (UU—D) P(UDD) P (DU—D) P(DDD)—

F = —gH, '
H, 2(H, J)—

()+2( &+( & ( &
—( & ()—2( &+(= —H,'NE/2 J + +

2(C+2E') C 2(C—2E)
H,2NG/2 J= H,'—X,/2, —

fl M. E. Fisher, Physica 26, 618 {1960).
11 S. Katsura, Phys. Rev. 127, 1508 (1962).
'0L. D. Landau and E. M. Lifshitz, Statistical Physics (Permagon Press Ltd. , London, 1958).
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FIG. 1. Perpendicular magnetic sus-
ceptibility of the Ising chain as a
function+of temperature for different
values of the parallel magnetic Geld.
xq'=JXq/E. The numbers on each
curve give the ratio 2H,/J. Ferro-
magnetic coupling is on the right-
hand side of the graph and antiferro-
magnetic coupling is on the left.

-6 -5
I

4

I/K = 2I(T/J

since X~= ri'p/AH—,'. Here, («o)=(o; to,o;+&)~ and
we have used the fact that P(UUD) =P(DUU) etc.

One might be alarmed that something nasty will

happen to F2 when one of the denominators approaches
zero. However, when this happens, F2 approaches a
Qnite limit and in fact it can be shown, by taking
suitable linear combinations of the offending states so
that t/" is diagonal among these states and calculating
the contributions of these matrix elements to F~ and
the second term of F2, that G approaches the correct
limit.

Thus, when H, —+ 0, JX,/X K sech'K+ tanhK,
which is the result of Fisher and Katsura.

In Fig. 1 we show JXj/1V as a function of 1/K for
various values of C/K=2H, /J. When J is positive
(ferromagnetic coupling) the chain becomes more
"rigid, " i.e., the spins are locked in the s direction, as
H, is increased and it becomes harder for B, to induce
a moment cr, in the x direction. For constant H, the
Quctuations in a, are controlled by the magnetic
energy until the thermal energy overcomes the magnetic
energy. In fact, kTX,~( ., )o, sso we see (a,') rising
linearly from T=0 and becoming constant for tempera-
tures higher than kT H, .

When J is negative (antiferromagnetic coupling) at
low temperatures, we see the susceptibility rising as
H, increases toward J, for, as this happens, the spins
become more and more "free" as the magnetic energy

tends to cancel the coupling energy and so the Quctua-
tions (o.,') become large As H. , increases beyond this
point and dominates the orientation energy, the chain
resembles more and more the ferromagnetically coupled
chain, as is shown by the behavior of the susceptibility
for high fields.

Thus the perpendicular susceptibility behaves more
or less the way it is supposed to.

We now discuss Lee's calculation. ' Lee is calculating
the relative intensities of lines seen in an EPR-type
experiment on an Ising chain. The lines come from a
Qip of one spin at a time and the corresponding energies
are just the energy denominators in Table I and they
arise from the corresponding neighborhoods. We see by
inspection that if Lee's Eq. (4) is divided on the left by
the partition function of the Ising chain, the statistical
sums will be just the differences of the joint probabilities
of the neighborhoods as found in the last two columns
of Table I.Thus, we have immediately, in unnormalized
form, Lee's Eq. (7).

I(2H,+21)=P (UUU) P(UDU), —

I(2H, )= 2(P(UUD) P(UDD)), —

I(2H, 2J)=P (DUD) —P(DDD), —

except for differences from the different way in which
the Ising chain Hamiltonian is written.


