
SP IN —LATTICE RELAXATION DUE TO LOCAL VI BRATIONS

rigid rotor embedded in a lattice would satisfy the re-
quirement of having a large temperature-independent
charge displacement, changes in which could be effective
in relaxing a paramagnetic center somewhere nearby.
The energy levels of a rigid rotor are proportional to
e(m+1) which for large e resembles the square-well
energy-level distribution.

The E' center in quartz, ~ which is an electron trapped
at a silicon atom next to an oxygen divacancy may
behave like a particle in a square well. The two missing
oxygen atoms free the silicon atom to swing in a large
arc about the line joining the remaining two oxygens.
For the E' center and for complex defects in general, it
is probable that the frequency of the localized motion
gets lower and lower, the motion becomes more and
more like a particle in a square well. It is clear that the
amplitude cannot remain harmonic for extremely low
frequencies because the amplitude of a harmonic
oscillator is proportional to or '~' as ~ —& 0. Large
anharmonicities must therefore become important at
very low frequencies.

SUMMARY

A paramagnetic center which is involved in a vibra-
tion whose amplitude is independent of temperature,
e.g., a particle moving in a large square well, or a

r J. G. Castle and D. W. Feldman, Phys. Rev. 137, A671 (1965);
J. Appl. Phys. 36, 124 (1965).

particle tunneling through a barrier between two stable
positions, can have a spin-lattice relaxation rate that
varies linearly with temperature at high temperatures
and drops off exponentially with the reciprocal of the
temperature at low temperatures. The linear tempera-
ture dependence for the tunneling model is a con-
sequence of a single excited vibrational state. The
process is analogous to an Orbach process. The tem-
perature dependence differs from that of an Orbach
process because spins in the excited state are observed
while in the Orbach process one observes only ground-
state spins. If the relaxation mechanism in the square-
well case is due to a magnetic interaction with some
other nearby dipole, the relaxation rate is linear in
temperature at high temperatures. In order to obtain a
linear variation in a Kramer s system using an electric-
field modulation, it is necessary to require that the
external magnetic field couple the excited states of the
defect together resulting in spin-Rip matrix elements
that are not proportional to the frequency of the par-
ticipating phonons. If this is not probable then the
electric-field ~odulation in a Kramers system leads
to a T' dependence at high temperatures.
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The reduction in the ionization loss of charged particles due to the polarization of the medium (density
effect) has been evaluated for several substances. An approximate semiempirical expression for the mean
excitation potential I as a function of the atomic number Z has been obtained.

l
'HE density effect correction for the ionization loss

of charged particles' has been previously
evaluated for various substances. ' ' The purpose of
the present paper is to give the results of additional
calculations for the following materials: silicon, ger-
manium, liquid hydrogen, propane and freon (CFsBr).
The first two substances are of interest in connection
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Energy Commission.
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with solid-state detectors, while an evaluation of the
density effect for liquid hydrogen, propane, and freon
should be useful in connection with the observation of
ionization densities in bubble chambers. We have also
obtained a semiempirical expression for the mean excita-
tion potential I (as a function of Z) which enters into
the Bethe-Bloch formula for the ionization loss. 7 '

VA review of expressions for the ionization loss and of the
experimental verification of the density effect has been given by
R. M. Sternheimer, in Methods of Experimental Physics, edited by
L. C. L. Yuan and C. S. Wu (Academic Press Inc. , New York,
1961), Vol. 5A, pp. 4-55.

8 See also the review article of U. Fano, Ann. Rev. Nucl. Sci.
13, 1 (1963).
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The procedure of the calculation of the density effect
followed along the same lines as in Refs. 4—6. Thus the
calculated values of 6 have been expressed in the form:

TABLE I. Data used to calculate the density effect. The values
of hv;, hv„, and I are in Rydberg units. For CF3Br, only the
constants (hr;, l;, f,) for F are listed, as discussed in the text.

8=4.606X+Cyo(X —X), (Xo&X&X) (1) Si Liq. H CSHS CF3Br

3=4.606X+C, (X&X,) (2)

u„= (ec'/~m, )'", (4)

with X=—log&s(p/mac), where p and mo are the momen-
tum and the rest mass of the incident particle. In
Eqs. (1) and (2), C, a, m, Xo, and Xq are constants which
are characteristic of the substance considered. In
particular, C is given by

C= —2 ln(I/hv„) —1,
where I is the mean excitation potential for the elec-
trons of the substance, and hv„ is the corresponding
plasma energy, with v„defined by

A VI

hV2
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l3
l4
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f3
f4
f5

P
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135.4
8.26
3.00
0.88

103.1
6.29
2.28
0.378

2/14
8/14
2/14
2/14

1.774
2.33

12.65

817.6
93.7
8.8
3.0
0.82

382.9
43.88
4.12
1.41
0.25

2/32
8/32
18/32
2/32
2/32

1.0

2.602

1,522 1.374
3.25 0.528

25.22 1.374

21.0
3.0
1.0
1.0

28.22
4.04
1.34
1.28

6/26
6/26
6/26
8/26

1.442
1.073
3.70

50.6
4.0
2.0

52.1
4.12
2.06

6/68
6/68

15/68

1.800
1.75

15,05

where e is the electron density (number of electrons
per cm'), and m, =electron mass. From Eq. (4), we
obtain

h~s =2 118(psZ/~o)'ls Ry& (5)

for the value of hv~ in Rydberg units; here po is the
density of the material (in g/cm') and Z, Ao are the
atomic number and atomic weight, respectively.

%e will now discuss the choice of the values for the
mean excitation potential I. For the cases of Si, Ge,
and Br (in CFsBr), we used the following semiempirical
expression proposed by Sternheimer' for Z~ 13:

I/Z= 9.76+58.8Z "' eV. (6)

This gives: I=172 eV for Si, 343 eV for Ge, and 372
eV for Br.

Equation (6) is based on the fact that the experi-
mental values of I/Z decrease slowly with increasing
Z from a value 12.5 for Al to 10 for Pb. Ke have
therefore fitted the following I values: I=163 eV for
Al ' I= 826 eV for Pb "and I=314 eV for Cu, 314being
the average of the result of Barkas and von Friesen"
(323 eV) and the value obtained by Zrelov and Stoletov"
(305 eV). It is easily seen that Eq. (6) reproduces these
three values of I, and gives a smooth behavior of I/Z in
the region considered (Z~ 13).

For hy'drogen, we used the value I= 18.7 eV given by
Berger and Seltzer. "For C and F, the value of I was
taken as 13Z eV, giving I= 78 eV for C and 117 eV
for F.

For the case of compounds (CsH, and CFsBr), the
value of I is given by the logarithmic average of the

' R. M. Sternheimer, (unpublished)."H. Bichsel and E. A. Uehling, Phys. Rev. 119, 1670 (1960)."W. H. Barkas and S. von Friesen, Nuovo Cimento Suppl. 19,
41 (1961).

'2 V. P. Zrelov and G. D. Stoletov, Zh. Kksperim. i Teor. Fiz.
36, 658 (1959) LEnglish transl. : Soviet Phys. —JETP 9, 461
(1959)g.

» M. J. Berger and S. M. Seltzer, National Research Council
Report No. 1133,p. 208 (unpublished).

I values of the constituent atoms, with weights pro-
portional to the corresponding numbers of electrons of
the various atoms. Thus, we obtain

lnI= ps fs lnIs, (7)

where fs is the fractional number of electrons of the
kth atomic species with excitation potential I~. For
C3Hs with fo=18/26, fH=S/26; Io=78 eV, IH=18.7
eV, we And I=50.3 eV. Similarly, for CF3Br, we have:
fo ——6/68, fF=27/68, fs,——35/68; Ic=78 eV, Ip=117
eV, and I~,=372 eV, giving I=204.7 eV.

The density-effect correction 6 is obtained from' ':
b=g, f; ln[(ls+P)/ls) —P(l —P')

where t is the solution of the following equation:

1/ll' 1=2*f./(~—''+l') . (9)

In Eqs. (8) and (9), P is the velocity of the particle (in
units c), f, is the oscillator strength pertaining to the
ith shell of the atom, l; and 9; are (dimensionless) fre-
quencies pertaining to i, which are obtained as follows:
Ke start with the experimental ionization potentials
for the various shells which will be denoted by hv;. In
a conductor, it has been previously shown4' that the
effective ionization potential pertaining to the conduc-
tion electrons (oscillator strength f,) is given by the
corresponding plasma frequency, which is v„f,'".Thus
we obtain for the conduction electrons: hp =huff, 'I',
where the prime of v,

' indicates that we are dealing with
an effective ionization potential, which can be used to
obtain the l; of Eq. (8) (see below).

The geometric mean of the effective excitation poten-
tials hv must be equal to the mean excitation potential
I as determined above LEq. (6)j. In general, as already
discussed in Refs. 4 and 6, the mean of the hv; will be
somewhat less than I. Therefore, we assume that the
effective hv values are given by kv;p, where p is a
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common multiplicative factor (p)1) for all shells i,
except the conduction electrons. Thus p is determined
by the condition:

YAsx,z II. Values of the constants which enter into the expres-
sion for the ionization loss LEq. (13)) and the density effect
correction g LEqs. (1) and (2)g. The mean excitation potentialI is in electron volts and A is in units MeV/g cm '. The values of
C, a, rn, Xe, and X& enter into Eqs. (1) and (2).

j-1
P f; ln(hv;p)+f, ln(hv„f, 't') =lnI, (10) Material I (ev) —C a m Xp Xy

l.—(vs+ f.) lts (12)

For all but the conduction electrons, the difference be-
tween v, and l; is usually negligible. I or i= j, we have

flis.
The basic ionization potentials hv; were obtained by

means of standard tabulations. ""For both Si and Ge,
it was assumed that only the two outermost p electrons
(3p and 4p, respectively) are conduction electrons in
the solid. For Si, the energies hv1, hv~, hv3, hv4 pertain
to the E, I., 3IIr(3s), and 3Irr(3p) electrons, respec-
tively. Similarly, for Ge, hv&, hv2, hv3, hv4, and hv5 pertain
to the K, L, 3E, Zr (4s), and IUrr (4P) electrons,
respectively.

The values of hv;, f;, and the resulting l; are given in
Table I. At the bottom of the table, we have also listed
the values of p, hv„, and I. We note that all energies
(i.e., hv, , hv„, I) in this table are in Rydberg units.

For C388, the energies hv1, hv2, and hv3 pertain to
the C atoms (1s, 2s, and 2p, respectively), while hve

pertains to the hydrogen. The value of p given in the
column for CsHs(p=1. 442) pertains to the carbon.

In Table I, the values of hv;, l,, and f; listed for
CFsBr pertain to the F atoms only (hvi for 1s, hvs for
2s, hvs for 2p). The pertinent value of tpv (=1.800) is
given at the bottom of the table. The values of hv; and

p for C were the same as those listed in the column for
CsHs. Finally, for Br, we used hvi ——993 Ry (rt=1),
hvs=120 Ry (tt=2), hvs=12 Ry (rt=3), and hv4=2
Ry (rt=4), with pn, =1.497. The resulting values of
l; for C and Br, which are not listed in Table I, are as
follows: l;= 17.30, 2.47, and 0.824 for C (with f,=2/68
for each of the three dispersion oscillators), and
l, =849.4, 102.6, 10.26, and 1.71 for Br (with f;=2/68,
8/68, 18/68, and 7/68, respectively). Thus, altogether
10 terms were used in Eqs. (8) and (9) for CFsBr.

'4 IIandhooh of Physics ctnd Chentistry, (Chemical Rubber
Publishing, Company, Cleveland, Ohio, 1962), 43rd ed. , p. 2728.

15 American Institute of Physics IIundbook (McGraw-Hill Book
Company, Inc. , New York, 1957), 1st ed. , p. 7—133.

where j is the total number of dispersion oscillators used
in the calculation, and f, (=f,) pertains to the conduc-
tion electrons. We have thus obtained: p=1.774 for
Si, 1.522 for Ge, 1.374 for H, 1.442 for C, 1.800 for F,
and 1.497 for Br-. The result that p& 1 probably rejects
the fact that for excitation of the atomic electrons to
continuum states, the excitation energy is larger than
the ionization potential for the shell considered.

Finally, the constants l; and v; of Eqs. (8) and (9)
are given by

v, =hv /hv„=hv, p/hv„(i( j), (11)

Si
Ge
Cil
Pb
Liq. H&

CgHS
CFSBr

172
343
323
826

18.7
50.3

204.7

0.0766
0.0677
0.0701
0.0608
0.1524
0.0906
0.0701

16.66
15.28
15.40
13.53
21.10
19.12
16.32

4.38
5.10
4.43
6.21
2.91
3.48
5.30

0.0874
0.1666
0.109
0.355
0.0569
0.555
0.179

3.586
3.136
3.39
2.64
6.224
2.567
3.097

0.10
0.10
0.20
0.40
0.415
0.241
0.423

In obtaining hv„ for liquid hydrogen, we have used
the density pp

——0.0626 g/crn' obtained by Burnstein
et al;ts For Si and Ge, the values of pp (=2.42 and 5.35
g/cm', respectively) were taken from Ref. 14. The
value of pp used for propane, namely 0.435 g/cm' was
obtained from an article by Tenner. '7 Finally, the
density pp

——1.5 g/cm' for CFsBr was obtained from a
paper by Bingham et al."If the densities of the bubble
chamber liquids differ slightly from the above values
under actual operating conditions, the results for 5
can be evaluated for the actual density pr(Wpp) by
means of a simple procedure which will be given below.

The values of 6 calculated from Eqs. (8) and (9)
were fitted by means of the expressions (1) and (2),
in the same manner as in our previous work. ' ' For Si
and Ge, we employed a value of Xp ——0.10 with 8(Xp)
=0.06. These values are the same as those previously
used for Mg in Ref. 6 (see p. 514). For H, Xp ——0.415 is
the value of X for which 8=0, according to Eqs. (8)
and (9). Similarly, for CsHs and CFsBr, we obtain:
Xo——0.241 and 0.423, respectively.

The resulting values of C, a, m, Xo, and X» are pre-
sented in Table II. This table also gives the constants
A and 8 which enter into the Bethe-Bloch formula for
the ionization loss, in our previous notation4 7:

A=2rrnee/m, cspp=0. 1536(Z/Ap) MeV/g cm ', (14)

I3= 1ngm, c'(10P eV)/Is). —

16 R. A. Burnstein, G. A. Snow, and H. Whiteside, Phys. Rev.
Letters 15, 639 (1965).

"A. G. Tenner, Nucl. Instr. Methods 22, 1 (1963).
is H. H. Ilingham et at. , in Proceedings of the Sienna Internationctt

Conference on Elementary Particles, f963, edited by G. Bernardini
and G. P. Puppi (Societh, Italiana di Fisica, Bologna, 1963),
Vol. 1, p. 555.

—(1/p) d&/dx = (2/P') LB+0.69+2 ln(p/mpc)

+ 1nW~,*,M.v —2P' —8j, (13)

where 8",„,M,z is the maximum energy transfer to an
atomic electron. Equation (13) applies for the average
energy loss for heavy particles. Alternative expressions
which pertain to the energy loss of electrons or the
restricted energy loss are given in Ref. 7. The constants
A and 8 are defined by
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where P is defined by

$=—logi, (I,/I)/logip(I, /Ii) . (17)

For Cu, we have: Ii= 20.5 Ry (Ref. 4), I&= 27.7 Ry
(Ref. 6), so that Io, 323 eV ——gives )=0.514. Similarly,
for Pb, Ii——55.6 Ry, I,=86.8 Ry, whence (=0.801 for
Ipb= 826 eV.

The calculated values of 81 for Cu and Pb were fitted
by means of Eqs. (1) and (2); the resulting values of
the coefficients a, m, Xo, and X~ are given in Table II.
For Xp and 8(Xp), we used the same data as in Ref. 6
(see p. 514), i.e., Xp ——0.20 for Cu and Xp ——0.40 for Pb,
with 8(Xp) =0.04 in both cases. We note that the present
values of b were used in the recalculation of the proton
range-energy relations"" for Cu and Pb, which has
been published in Ref. 20.

Concerning the results for liquid hydrogen, we note
that an approximate value of 6 could be obtained from
the expression for H2 gas at normal pressure, given in
Ref. 6 (see Table II), by substituting in place of
X a value X=—X+logip(70/2. 602) =X+1.430, where
70/2. 602 is the ratio of (I/hv„) for the two cases. Note
that in Ref. 6, I=1.40 Ry, hv„=0.020 Ry, giving
I/hvar= 70, as compared to li ——2.602 in Table I.

It should also be mentioned that if the density of the
liquid hydrogen po departs slightly from the value"
0.0626 g/cm' assumed in the present work, and with
it =—pp/0. 0626, the density effect correction 5 for the
density pp at the momentum p can be obtained from

where the subscript of 8 indicates the value of g. The
correction 5i (to be evaluated for the momentum pit't')
is given by Eqs. (1) and (2) with the constants C, a, m,

"R. M. Sternheimer, Phys. Rev. 115, 137 (1959); 124, 2051
(1961l.

~ Calculations by R. M. Sternheimer, published in High-Energy
and XNclear Physics Data Handbook, edited by W. Galbraith and
W. Williams (Rutherford High-Energy Laboratory, Chilton,
England, 1963) Sec. VII, Tables 1 and 2.

In addition to the results for the substances discussed
above, we have also given in Table II values for the
density e6'ect for Cu and Pb. In obtaining these values,
we used the results for I obtained by Babas and von
Friesen, " namely I~„——323 eV and Ipb ——826 eV. The
values of b were obtained by interpolation of the results
of Refs. 4 and 6, which pertain to different values of I.
Thus, if we denote the two values of I for a given sub-
stance by I& and I2, and the corresponding values of
8 by 8& and 8&, respectively, then the value of 8 appro-
priate to an intermediate value I (Ii&I&I,) is ob-
tained by logarithmic interpolation:

(16)

Xp and Xi listed in Table II. Equation (18) can be
deduced directly from Eq. (10c) of Ref. 4.

The same comment concerning the evaluation of 8
for the actual density po applies, of course, to any other
substance. In particular, if the density po of the C3H8
or CF3Br differs from the values used in the preceding
calculations, one can again use Eq. (18) to obtain
8„(p), in which g is now defined as rt=pp/0. 435 for
propane and it=—pp/1. 5 for freon.

The density effect for liquid helium can be directly
obtained from the results given in Ref. 6 for helium
bas at normal pressure. Thus according to Ref. 17,
the density of liquid helium under bubble chamber
operating conditions is 0.125 g/cm', which gives
according to Eq. (5): hp„=0.529 Ry. Since hv„=0.020
Ry for He gas, ' the ratio of the hv„values and hence
it'I' equals 26.45. Upon inserting" this result in Eq. (18),
we obtain

8i;p.H, (p) = 8p,.(26.45p), (19)

where 8„„ is obtained from Ref. 6 (with I=44 eV).
The constants which enter into Eqs. (1) and (2) for

have the following values: a= 2.13, m= 3.22,
C= —11.18, Xp= 2.21 Xi=3 (see Table II of Ref. 6).
In view of Eq. (19), the effective value of Xp for liquid
helium is given by
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Xp= loglp(Pp/m, c) = 2.21—logip26 45 =0.788, (20)

so that pp/mpc=6. 13. For smaller values of the mo-
rnentum, p&pp, we have bi;p. H, =O.

Note added in proof. We have also obtained the den-
sity-effect correction b for the case of lithium fluoride.
Upon using the value I=13Z eV for both Li and F
(IL' —39 eV, IF= 117 eV), one finds: IL;F——88.9 eV,
giving 8=17.98. With pp=2. 601 g/cm', one obtains
hv„=2.32 Ry. The constants 2 and C have the values
2=0.0711 MeV/g cm ', C= —3.07. The ionization
potentials hv~, hv2, and has for F and the corresponding
value of p (=1.800) have been listed in Table I in
connection with CF3Br. For Ii, we used hv&=4. 0 Ry
for the 1s electrons, and hs 2

——0.4 Ry for 2s. The resulting
value of p (required to give IL,.=39 eV) is pL; ——1.544.
Thus altogether five dispersion oscillators were used in
Eqs. (8) and (9) for LiF.

The calculated results for 8 are well fitted by Eqs. (1)
and (2) with the following values of the constants:
X = 0.072 $8(Xp) =0)' Xi= 2 C= 3.07 a=0.456
and m= 2.757.


