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In the usual treatment of the temperature dependence of spin-lattice relaxation of impurity ions, the
vibrational properties of the paramagnetic ion are assumed to be those of a normal host ion. For impurities
that do not affect the vibrational properties of the lattice, this is expected to be a resonable approximation.
However, if a paramagnetic impurity is associated with a gross defect in a crystal, it should be expected that
the temperature dependence of the spin-lattice relaxation time will be dominated by the vibrational prop-
erties of the defect. An ion could be trapped at a site about which the potential is highly anharmonic and
such that the vibrational amplitude is very large and electively independent of the state of excitation.
Under these circumstances lattice vibrations whose amplitudes have the usual temperature dependence
could beat with the vibrations of the defect, producing a difference frequency resulting in a spin transition.
In the high-temperature limit one would expect a spin transition rate that is proportional to T rather than to
2' because only the lattice-vibration part of the interaction is temperature-dependent and at high tempera-
tures this dependence is linear. In this paper two simple defect models are discussed. In the 6xst, a para-
magnetic ion tunnels between two stable positions, and in the second, the ion is trapped in a one-dimensional
square well. In the tunneling model, the form of the temperature dependence is independent of the details
of the spin-lattice interaction, whereas the square-well results are sensitive to these details. In the latter case,
the efFect of electric and magnetic interactions is discussed. Recent measurements by Feldman, Castle, and
Wagner of the spin-lattice relaxation time of hydrogen centers in fused quartz exhibit the behavior de-
scribed by either of these models, but their data can be 6tted better by the square-well model.

INTRODUCTION frequency of the spin system. As the temperature is
raised, other relaxation mechanisms become important.
One in particular is the inelastic scattering of phonons

by the spin. This is generally referred to as the Raman
process because of its analogy with the inelastic scatter-
ing of photons. Because of the frequency dependence of
the scattering matrix elements and the fact that many
pairs of phonons can be involved in the process, the
temperature dependence of the relaxation rate due to
Raman scattering varies as a high power of the tem-
perature. In some cases it is proportional to T'Js(O~D/+)
in others to T'Js(OD/T) where'

ECENT measurements of Feldman, Castle, and
Wagner' on the spin-lattice relaxation rate of

atomic hydrogen centers in fused quartz display a
linear temperature dependence at high temperatures.
This result is at erst surprising since one generally
associates a linear temperature dependence of the
reciprocal of the relaxation time with low-temperature
processes involving the real absorption or emission of
single phonons. The temperature dependence they ob-
served is suggestively close to that given by the function
Lexp(13.5/T) —17 ' which is the occupation number of
phonons of energy 13.5 k, where k is Boltzman's
constant. Since atomic hydrogen has no excited elec-
tronic states below 50000 cm ', we can rule out an
Orbach' process as the source of this behavior. The
purpose of this paper is to describe some defect models
with low-lying vibrational states which could result
in the observed temperature dependence.

The e6ect of temperture on electron spin-lattice re-
laxation times has been treated in detail by several
authors. ' ' At very low temperatures, the reciprocal
of the relaxation time 1/Tt is proportional to the
absolute temperature. This is generally referred to as
the region of the direct process. At these temperatures,
the relaxation involves the emission and the absorption
of phonons that have a frequency equal to the Zeeman
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and 0'& denotes the Debye temperature of the lattice.
The function J„(O~D/T) is a constant for small T and
is proportional to T' "for large T and e&1.Therefore,
all two-phonon relaxation processes vary as T' at high
temperatures.

Only systems with an odd number of electrons
(Kramer's systems) can exhibit the T'Js(HD/T) tem-
perature dependence. The extra temperature depend-
ence apparent in Kramer's systems at low temperatures
is a consequence of the properties of both the dynamic
crystalline electric field and the wave functions which
result in matrix elements that are proportional to the
frequency of the participating phonons.

If the paramagnetic defect has electronic energy
levels that lie within the phonon spectrum) phonons
can be absorbed and re-emitted as the electron makes

' D. W. Feldman, J. G. Castle, Jr., and G. R. Wagner, preceding
paper, Phys. Rev. 145, 237 (1966).' R. Qrbach, Proc. Roy. Soc. (London) A264, 458 (1961).

3 J. H. Van Vleck, J. Chem. Phys. 7, 72 (1939);Phys. Rev. 57,
426 (1940);59, 724 (1941);59, 730 (1941).

4C. 3. P. Finn, R. Orbach, and P. Wolf, Proc. Phys. Soc.
(London) 77, 261 (1961).' R. L. Peterson, Phys. Rev. 139, A1151 (1965).

6 gl'. M. Rogers and R. L. Powell, Natl. Bur. Std. (U.S.), Circ.
No. 595 (1958).
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FxG. 1. The energy levels of the
oscillator. The closely spaced pairs' ~~~ ~ represent the Zeeman levels of the
spin system. The separation 6 in
temperature units is h (Planck's
constant) times the tunneling fre-
quency divided by 3oltzmann's
constant. The next excited state is
assumed to be too high in energy to
contribute to the relaxation process.

DEFECTS WITH TEMPERATURE-INDEPEN DENT
AMPLITUDES

In the high-temperature limit, the T' dependence of
the normal Raman process is a consequence of the fact
that the strain associated with both of the phonons in-
volved is proportional to T. A linear temperature de-
pendence may result if the paramagnetic defect is such
that the amplitude of one of its vibrations (a localized
mode) is very large (of the order of the interatomic
spacing) and because of anharmonic forces approxi-
mately temperature-independent, and if the number of
vibrational states of the defect does not increase with
energy. The relaxation mechanism implied is similar

transitions between the ground state and the excited
states. Orbach' recognized the importance of excited
electron levels lying within the phonon spectrum. He
showed that if an excited electronic level at an energy
kh above the ground state is sharp, the temperature
dependence of 1/Ti is given by

1/Ti AT+ B/——exp(h/T) 17
—'+C—T"J„ i(Oa/T),

where m is either 7 or 9 depending upon whether or not
Van Vleck cancellation effects are important. If B is
large enough, the second term dominates at inter-
mediate temperatures but since it approaches a linear
temperature dependence at high temperatures, the
highest temperature region will still be dominated by
the regular Raman process. If the excited electronic
state is low enough and 8 is sufficiently large relative to
A and C, both the exponential rise and the region of
linear temperature dependence associated with the
Orbach process will be observed. The point of interest
here is that there is the possibility of a region at higher
temperatures that is linear in T as well as the usual
linear temperature dependence at low temperatures.

In analyzing the temperature dependence of a spin
system that displays the feature of a linear region above
an exponential region, one would generally have some
knowledge of the excited states of the electronic system.
If, as in atomic hydrogen centers, there is good reason
to believe that no excited electronic states are close
enough to the ground state for an Orbach process to
exist, then we must look elsewhere for the source of
the linear temperature dependence.

to that described by Orbach except that here, the low-
lying excited states are vibrational rather than elec-
tronic. An important distinction must be made be-
tween these two types of excited states. The g values of
excited electronic states are different (barring accident)
from the g value of the ground state. Consequently, one
only observes the spins in the ground multiplet and
for a single low-lying excited state, one is led to a relaxa-
tion rate that is proportional to [exp(A/T) —1j '. On
the other hand, vibrational excitations do not affect
the g value (in first order) and therefore all of the spins
in the sample are observed. This fact leads to a some-
what different temperature dependence than that ob-
tained when one observed only the spins in the ground
multiplet.

We will describe two examples of defects with large
temperature-independent vibrational amplitudes and
derive the temperature dependence of 1/Ti for each.
As in the calculation of Finn et al. 4 we will treat the
transitions between the states of the defect in 6rst order.

The Tunneling Oscillator

Imagine a paramagnetic ion with S=-, trapped in a
double well such as that shown in Fig. 1.We will assume
that all excited states above the first antis~nrnetric
state have sufficiently high energies that we need not
consider them. The splitting kA between the symmetric
ground state and the antisymmetric excited state
determines the tunneling frequency. The amplitude of
oscillation in this case is the separation between the
well minima and to the extent that the change in the
separation due to a change in temperature can be
neglected when compared with the separation, the
amplitude of oscillation is temperature-independent.
Including spin, there are only four states of interest for
the tunneling particle and they are marked 1, 2, 3, and 4
in Fig. 1. In the absence of the spin-lattice coupling
energy, the energy difference between states 1 and 2
as well as that between states 3 and 4 is the Zeeman
energy of the spin. Both levels 4 and 2 are "spin-up"
levels while levels 3 and 1 are "spin-down" levels.

Since the vibrational states of the defect are assumed
to be more tightly coupled to the lattice than are the
spin states, the vibrational excitation is expected to
remain in thermal equilibrium with the lattice while the
spins relax. Therefore, since the spin parts of states j.
and 3 are identical, as are the spin parts of states 2
and 4, the following constraint on the populations of
the states will prevail:

Xs/Xi= lV4/A s ——e ~~r. (1a)
This is equivalent to

Ãi+Xs —— 1V,
1+e a~r

and
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W4r ——W82 ——W[n(6)+1),
Wy4= W23 =Wn(h), (3)

where we have neglected the Zeeman energy relative to
kh. The factor 8' contains the matrix element of the
position coordinate of the tunneling particle as well

as the spin matrix elements and is temperature-
independent. Substituting Eqs. (1a) and (3) into
Eq. (2) we find

d(51V/dt= —4W(N~ —N2)[exp(h/T) —1)-'. (4)

But 1V2 Nq= (8N)r i—s the diRerence in the population
of the spin states when the tunneling particle is in its
ground vibrational state. Using Eq. (1a) and the
dehnition of bE, we find

(KV) &
——bN[1+ exp( —6/T)) '.

Substituting Eq. (5) into Eq. (4), we get

d(RV)/dh = —G(81V),
where

(5)

(6a)

G=4W[exp(d/T) —exp( —6/T)) '
= 2W csch(A/T) . (6b)

The function csch(d, /T) is compared in Fig. 3 with
other functions to be derived below.

The Square We11

Another type of defect that has a localized motion
which is nearly temperature-independent is that of a
particle trapped in a square well. Imagine a solid in
which there are large voids that are much longer in one
dimension than in the other two so that for all tem-
peratures to be considered, the occupied vibrational
states correspond to motion of the particle in the long
dimension. The energy levels of a particle of mass M

where N=1Vq+N, +1V3+N4 is the total number of
spin s.

Let 8';; be the rate coefficient for transitions from
level i to level j due to the absorption or emission of a
lattice phonon, and let E; represent the population of
level i. Direct spin-Qip processes, i.e., 4~ 3 and 2 &-+ 1
will be neglected, being much slower because of the low

density of the corresponding lattice phonons. The rate
equations for the remaining transitions reduce to

d(olV)/dk = —2[W41N4+ W281V2 W14N1 W82N8) p (2)

where (SN)=N4+N2 N8 1V—~. N—otice that this is a
rate equation for all of the spins in the sample, not just
those in the ground multiplet as in the case of the
Orbach process. The probability that the tunneling
particle makes a downward transition in Fig. 1 is
proportional to [n(A)+1) while the upward transition
probability is proportional to n(A), where nt(d, )
=[exp(A/T) —1) ' is the number of quanta in the
lattice mode of energy kh. The coefficients 8';; are
then given by

in an infinite well of dimension 2u are given by
E~;=i2h'/32Ma' i=1, 2, 3, . .

In the tunneling model, there were only two vibra-
tional states between which transitions occurred. The
specific form of the interaction coupling the defect
states and the rest of the lattice was not critical since a
change in the form could only change the magnitude of
the temperature-dependent function and not the tem-
perature function itself. In the square well, however,
there are a large number of vibrational states of the
defect, therefore the matrix elements of the interaction
must be taken between many pairs of states. Since the
splitting between the energy levels of a square well in-
creases with energy, i.e., E,+~—E;= (2i+ 1)h'/32Ma',
lattice vibrations at all of these frequencies are involved
in the spin-Gipping process. As in Raman scattering in
perfect crystals the total relaxation rate for the square-
well defect involves a sum over all the contributing
vibrational modes. The dependence of each individual
transition upon its frequency is therefore important in
determining the ultimate temperature dependence of
the total transition probability.

There are two principal mechanisms by which the
spin can be Ripped. The first and simplest is a modulated
magnetic dipole-dipole interaction with some nearby
rapidly relaxing spin center and the second is a modu-
lated electric field. One might expect the electric-field
modulation to be weak if the excited states of the
paramagnetic center are at very high energies relative
to the ground state. We will first discuss the magnetic-
field case.

3Eagnetic Dipole Dipole Intera-ction

The spin states of the paramagnetic ion can be
coupled together directly by a magnetic dipole-dipole
coupling to another spin system. Because the interaction
energy falls oR as 1/E' where It. is the separation be-
tween the two dipoles, the probability of the modulation
of this interaction inducing spin transitions falls off
as 1/E'. In order to be eRective, then, the dipoles must
be fairly close together. We will assume that the dipole
embedded in the lattice is close enough to the square
well that the two can be considered to have the same
amplitude and su%ciently alike phases that their rela-
tive displacements can be ignored. We will further
assume that the square well and the nearby dipole
behave as a particle in a Debye continuum so that the
density of lattice states can be handled in a simple
manner. With these restrictions the spin-lattice inter-
action, expanded in powers of the relative displace-
ments of the paramagnetic ion (x&) and the square
well (x~), is

I =~,+&.(*,—*,)+&..(*,—~,) +" . (7)

The linear term in Eq. (7) is responsible for the emission
or absorption of phonons at the Zeeman frequency, i.e.,
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I xo. 2. Spin-Qipping transitions in
which lattice quanta are annihilated
while the square-well particle makes
an upward transition (wavy arrows
entering from the left) and those in
which lattice quanta are created while
the square-well particle makes a
downward transition (wavy arrows
leaving to the right). The + and-
signs denote the up and down spin
states, respectively.

restriction is imposed by setting

and (10)

where l7+ and E are the total number of spins in the
up and down states, respectively. Substituting these
into Eq. (9), summing over all the square-well levels
and subtracting the resulting equation for E from
the equation for E+, we get

d(KV)//Ck= —W(81V),
where

the direct process. .
-:;,The quadratic term contains a

component that is bilinear in x~ and x2. Because of this
term, energy can be coupled into and out of the square
well. The coefficients V, etc. are operators that contain
the spin coordinates of the interacting systems. The
phenomenological potential that is responsible for the
spin transitions at temperatures above the direct-
process region is

II'= Cxgxg.

+gr, &
E si . i—lsT—+—gl, ,&

E+s i+ils—T]) (11a)

Since the energy levels have a lower limit, a change of
summation variable shows that the third and fourth
sums in the numerator are equal, respectively, to the
first and second sums, in which case

We must now calculate the transition probabilities be-
tween the lattice plus square-well eigenstates.

Let us define (1V+); to be the population of the ith
square-well sta, te with spin up and (1Y ),, the population
of the corresponding state with spin down. Once again
we will use the erst-order theory discussed earlier
for the tunneling model. H/";; will be the transition
probability per unit time from state i to state j.
Figure 2 illustrates some of the transitions considered.
The solid arrows indicate transitions of the square-well
particle in which the spin is Qipped. The wavy lines
entering from the left represent lattice quanta de-
stroyed in the process while those leaving to the right
represent lattice quanta created in the process. The
rate equation for each of the spin —square-well states
(X~), is

We have left off the terms that correspond to transi-
tions in which the spin does not Qip since they cancel
in sunnning over all of the square-well levels. A transi-
tion due to a perturbation linear in the amplitude of a
particle in an infinite square well vanishes unless the
change in level number is odd; hence the appearance in
Eq. (9) of transitions to states differing in number by
(2l+1). As in the tunneling model we now require that
the vibrational energy of the square-well particle re-
main in thermal equilibrium with the lattice. This

ge EilkT/Q e
—EilkT —(11b)

If we consider the lattice and the square-well particles
to be initially in one of their respective eigenstates, the
transition probabilities between the square-well states
will be proportional to

where

8';;~ P;;fn(E; E,)+1], j(z;—
Prie(E; E;), —j&z; (13)

Substituting Eq. (13) into Eq. (11b) we find that the
sums over the two terms in Eq. (11b) are equal and

where p(E; E;) is the phono—n density at the frequency
corresponding to the difference in energy between the
square-well levels it; and f;. C; and C; are harmonic-
oscillator lattice eigenfunctions differing in energy by
one quantum, of frequency (E; E;)//h. Throughout the-
discussion we neglect the Zeeman energy of the spins
relative to the energy splittings of the square-well
states. The matrix elements of x2 are proportional
co 'l'(n(&o))'l' or ro 'l'( ( T)i+io1)'l depending upon
whether a phonon of frequency co is destroyed or created,
respectively, in the transition and N(co) is the occupa-
tion number of the mode of that frequency. We see
then that
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therefore that

W~ [Q e ~""r7 '

p «'+s~+t —&') I (lt'+s~t I » I u'& I
'e E'"'

XZ
' '

I &'+s~+r —&'I (exp[(&'+s~+r —&')/&&7 —1}
(14)

10

The normalized eigenfunction corresponding to the
eth level of the infinite square well is

/kz~xq &s~xq-
', a 'I' —expI I

—(—1)"expI—
4 2a i 2ai

It is straightforward to show that

i+2l+1 & i

16u2
[(2l+1) '—(2l+2s+1) '7'. (1$)

The specific form of the density of states p(u) for the
lattice with the square well is subject to speculation.
We propose, however, that the number of phonons in
the important wavelength region, i.e., long compared
with the size of the square well, would not be strongly
perturbed by the presence of the defect. We then say
that p(ro) is proportional to cos as in the Debye model
for a lattice. Substituting Eq. (15) into Eq. (14), and
replacing p(E;+r—E;) by (E;q&—E;)' and Z; by i'O~,

where 0'k=h'/32Ma', we find that the temperature
dependence of the spin lattice relaxation rate for the
atom in a square well is proportional to

, 01

.001

10

3It=[g;ef " l &7 ' P (2i+2l+1)(2l+1)

X[(2&+1) '—(2&+2s+1) '7'

exp( —s'O~/T)
X (16)

exp[(2i+ 2l+ 1)(2l+ 1)O~/T7 —1

The function 3f~ is plotted in Fig. 3.

E/ectri c-Field Modllati oe

According to Kramers theorem, tvvo states of half-
integral angular momentum that transform into one
another under the operation of time reversal, cannot be
coupled together by an electric field. For this reason,
the direct process, wherein a spin is Ripped and a single
phonon is created or destroyed, can only occur if the
external magnetic field removes the time-reversal sym-
metry. Under these circumstances, the initial and final
spin states are a mixture of states of different character
with respect to time reversal and therefore can be
coupled together. The extent to which time-reversal
symmetry is removed is proportional to the magnetic-

I'zo. 3.The temperature dependence of the reciprocal of the spin-
lattice relaxation time 1/T& for the defect models considered. Mr
and 3f3 are associated with the square-well defect while the
hyperbolic cosecant is associated with the tunneling oscillator.
The parameter n is 1/k times the energy of the first excited state
above the ground state where k is Boltzmann's constant.

field strength H. Hence the transition matrix elements
are proportional to B. Time-reversal symmetry does
not preclude electric fields froxn coupling together states
that do not transform into each other under the time-
reversal operation. A consequence of this is that an
electric held in second order can couple states together
that are Kramers conjugates, i.e., transform into each
other under time reversal. Orbach' has shown that, if
the mixing of excited states due to the external magnetic
6eld is small, after summing over the intermediate
states involved in the second-order process, the con-
tributions from each excited Kramers pair almost
cancel. This is similar to the "Van Vleck cancellation"
and is a consequence of time-reversal symmetry. The
resulting matrix elements are proportional to the sum
of the frequencies of the participating phonons. On the
other hand, if the mixing of the excited states due to the
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M = [+;exp& " ~ '] ' P (2i+2l+1)'(2l+1)'

X [(23+1)—'—(21+2i+1) 'j'
exp( —i'0'/T)

exp[(2i+2l+1) (2l+1)O~/T j—1
~ (17)

This function is plotted in Fig. 3 with a suitable scal-
ing factor to enable easy comparison with the other
functions.

We have considered magnetic and electric interactions
that may be responsible for transitions between the
spin states of the particle trapped in the box. Another
interaction by means of which the spin could be flipped
is the collision of the particle with the walls. According
to our model, the particle encounters delta-function
forces at the walls. These sudden forces could mix
excited electronic states with the ground just as the
usual action at a distance electric fields that we have
just considered. The mean force of the walls on the
particle is equal to the energy of the particle divided
by the length of the well. We can estimate this force

external magnetic field cannot be neglected the can-
cellation just mentioned is avoided by an amount pro-
portional to the field. The resulting matrix elements in
this case are independent of frequency but depend
linearly upon the magnetic field. We have, then, that the
matrix elements for a spin flip in a Kramers system may
be

(a) proportional to the frequency of the participating
phonons or

(b) independent of the frequency of the phonons but
proportional to the magnetic-field intensity II.

If the electric field in the neighborhood of the spin
site is due to a set of point charges, fixed relative to the
square-well position, we can expand it as in Eq. (7).
Ignoring the direct process, the high-temperature re-
laxation will be due to the linear term in second order.
Since excited electronic states must be mixed with the
ground state, the quadratic term in first order cannot
make any contribution here. The interaction Hamil-
tonian that is responsible for the spin lips can again
be written as in Eq. (8) except that now the coefficient
C may be dependent upon the frequency of the phonons
depending upon whether or not the mixing of states by
the magnetic field is important. If the magnetic-field
mixing is important, the matrix elements of C are
independent of frequency and the spin-lattice relaxa-
tion rate is again proportional to Mi given by Eq. (16)
and to H'. If however the magnetic-field e6ects are not
important the matrix elements of the spin transitions
are proportional to the frequency and so each transition
probability W,, [Eq. (13)j will contain an extra factor
(E;—E,)' (neglecting factors of h). The final form of the
temperature dependence in this case is

by assuming that the well length is 10 A and in the
high-temperature liInit the energy of the particle is kT.
At 100'K the mean force is equal to that felt by a
unit charge in an electric field of roughly 10' V/cm. The
field of a unit charge at a distance of 10 A, on the other
hand, is about 10' V/cm. It is probable, therefore, that
the fields due to surrounding charges would be more
effective in flipping the spin than would collisions with
the walls.

DISCUSSION

In Fig. 3 we have plotted on a log-log scale the two
different square-well relaxation functions Mi(h/T) and
3E3(b,/T) and the tunneling-model function csch (6/T).
The energy of the first excited state of each defect is kA
above the ground state. In each case the vertical scale
has been adjusted so that they can be compared. The
lines in the upper left corner of the figure represent
functions, one of which varies linearly, the other
quadratically with temperature. Observe that in the
high-temperature limit, M& and the hyperbolic cosecant
vary as T while M3 varies as T'. The data for the spin
lattice relaxation rate of atomic hydrogen in fused
quartz, reported in the preceding paper, is fairly well
described by the function M& with 6= 13.5'K. The first
excited state of the square well of width 2a lies at
M, =3k'/323fa, ' above the ground state. Substituting
the mass of hydrogen and this value of 6, one finds a
width equal to about 7 A. Holes of this size are not out
of the question in fused quartz.

If instead of a one-dimensional square-well potential
we had chosen a three-dimensional box, we would have
derived a relaxation rate that is a superposition of terms
like M~ or M3, i.e., to second order in the relative dis-
placements of the square-well particle and the sur-
rounding ions the three-dimensional well is simply a
superposition of three one-dimensional square wells.
The complete analysis of the three-dimensional square
well to higher order has not been carried out. It is felt,
however, that if the terms higher than second order in
the relative displacements are important, then the three-
dimensional well would result in a faster rate than the
one-dimensional well because the density of states for
the 3-D well increases with energy (equivalent to the
increase in degeneracy of a 3-D harmonic oscillator with
increasing quantum number of the level). One important
factor for deriving a linear (or quadratic as the case may
be) temperature dependence at high temperatures in
the one-dimensional well is the fact the density of states
is independent of energy.

The features of the models presented here that, in the
high-temperature limit, are responsible for the relatively
slow temperature dependence of the processes con-
sidered are the existence of a temperature-independent
vibrational amplitude of the defect as well as a density
of defect states that does not increase with energy.
These features may be common to a number of other
defect models. I'or instance an asymmetric charged
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rigid rotor embedded in a lattice would satisfy the re-
quirement of having a large temperature-independent
charge displacement, changes in which could be effective
in relaxing a paramagnetic center somewhere nearby.
The energy levels of a rigid rotor are proportional to
e(m+1) which for large e resembles the square-well
energy-level distribution.

The E' center in quartz, ~ which is an electron trapped
at a silicon atom next to an oxygen divacancy may
behave like a particle in a square well. The two missing
oxygen atoms free the silicon atom to swing in a large
arc about the line joining the remaining two oxygens.
For the E' center and for complex defects in general, it
is probable that the frequency of the localized motion
gets lower and lower, the motion becomes more and
more like a particle in a square well. It is clear that the
amplitude cannot remain harmonic for extremely low
frequencies because the amplitude of a harmonic
oscillator is proportional to or '~' as ~ —& 0. Large
anharmonicities must therefore become important at
very low frequencies.

SUMMARY

A paramagnetic center which is involved in a vibra-
tion whose amplitude is independent of temperature,
e.g., a particle moving in a large square well, or a

r J. G. Castle and D. W. Feldman, Phys. Rev. 137, A671 (1965);
J. Appl. Phys. 36, 124 (1965).

particle tunneling through a barrier between two stable
positions, can have a spin-lattice relaxation rate that
varies linearly with temperature at high temperatures
and drops off exponentially with the reciprocal of the
temperature at low temperatures. The linear tempera-
ture dependence for the tunneling model is a con-
sequence of a single excited vibrational state. The
process is analogous to an Orbach process. The tem-
perature dependence differs from that of an Orbach
process because spins in the excited state are observed
while in the Orbach process one observes only ground-
state spins. If the relaxation mechanism in the square-
well case is due to a magnetic interaction with some
other nearby dipole, the relaxation rate is linear in
temperature at high temperatures. In order to obtain a
linear variation in a Kramer s system using an electric-
field modulation, it is necessary to require that the
external magnetic field couple the excited states of the
defect together resulting in spin-Rip matrix elements
that are not proportional to the frequency of the par-
ticipating phonons. If this is not probable then the
electric-field ~odulation in a Kramers system leads
to a T' dependence at high temperatures.
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The reduction in the ionization loss of charged particles due to the polarization of the medium (density
effect) has been evaluated for several substances. An approximate semiempirical expression for the mean
excitation potential I as a function of the atomic number Z has been obtained.

l
'HE density effect correction for the ionization loss

of charged particles' has been previously
evaluated for various substances. ' ' The purpose of
the present paper is to give the results of additional
calculations for the following materials: silicon, ger-
manium, liquid hydrogen, propane and freon (CFsBr).
The first two substances are of interest in connection
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with solid-state detectors, while an evaluation of the
density effect for liquid hydrogen, propane, and freon
should be useful in connection with the observation of
ionization densities in bubble chambers. We have also
obtained a semiempirical expression for the mean excita-
tion potential I (as a function of Z) which enters into
the Bethe-Bloch formula for the ionization loss. 7 '

VA review of expressions for the ionization loss and of the
experimental verification of the density effect has been given by
R. M. Sternheimer, in Methods of Experimental Physics, edited by
L. C. L. Yuan and C. S. Wu (Academic Press Inc. , New York,
1961), Vol. 5A, pp. 4-55.

8 See also the review article of U. Fano, Ann. Rev. Nucl. Sci.
13, 1 (1963).


