
224 O. S. LUTES AND D. A. CLAYTON

Special emphasis was given the dependence of transition
temperature on laminar period. The dependence was
found to be in qualitative, but not quantitative, agree-
ment with proximity-effect theory developed for super-
imposed 6lms.
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The diffusion constant of spins in ferromagnets or of molecules in binary mixtures near the critical point is
discussed employing a time-dependent Ising model in which spin interactions are replaced by certain
temperature-dependent transition probabilities of spin exchange. The spin diffusion constant is calculated
with the single approximation of replacing a reduced spin distribution function by its value for local equi-
librium with a given inhomogeneous spin density, The behavior of the diffusion constant near the critical
point is dominated by a factor X,where X is the magnetic susceptibility. This problem is also studied with
the use of the Bethe lattice. The effects of surrounding spins on the transition probability for spin ex-
change are found to be essential for obtaining the critical slowing-down near the critical point. In view of
this, Kocinski s calculation of the spin diffusion constant is critically discussed.

I. INTRODUCTION

~
~ 'HE behavior of various transport coefficients near

the critical point is one of the most interesting
but least understood problems in statistical physics
today, and a large body of experimental work is ap-
pearing without proper theoretical understanding. '
Among these phenomena, the problem of spin diffusion
in ferromagnets near the Curie point has received rn.ore
theoretical treatment than others because of the
apparent simplicity of the problem. ' ~ In the present
paper we shall also be concerned with this problem.
This problem can be translated into the problem of
moleulcar diffusion in binary mixtures if we ignore the
quantum nature of the Heisenberg system. ' The spin
density and the external magnetic field correspond to
the concentration and the chemical potential, re-
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spectively. In this paper we shall use the terminology of
the spin system.

We shall now briefly discuss the present status of this
problem. The most common theoretical argument goes
somewhat like this. '4' I.et us consider an isolated
spin system and divide it into small but macroscopic
cells. Let the fluctuation of the magnetization of the
jth cell be M;. Then the excess entropy associated with
this fluctuation is written as

45= —ktt/2 Q a;tM;Mt

=—ktt/2rt Q X~MsMs', (1.2)

where e is the total number of cells and kB the Boltz-
mann constant, and we have introduced the following
Fourier transforms:

X,—=Qt a, t expt itl (r;—rt)],
M,—=gt Mt exp( —itl rt),

(1.3)

' P. Debye, Phys. Rev. Letters 14, 783 (1965).

where r; denotes the position vector of the jth cell.
Since the probability of occurrence of the fluctuation
M» is ProPortional to exP(65/kn), we have

X, '=rt '(M,M,*)=knTX„

where X~ is the wave-vector-dependent magnetic su-
susceptibility and T the temperature. Thermodynamics
of irreversible processes then gives the relaxation rate
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of Afar as

M, =L,BBS/83f»"= —y»M „

%hen the total magnetization is conserved, for small

q we have

L~—q'L,

and X, reduces to a uniform susceptibility Xo. Thus,

&a=Dq )

with the diffusion constant D given by

(1.9)

(1.10)

Now, L is assumed to be insensitive to the tempera-
ture variation near the critical point and the anomalous
temperature dependence of D is attributed to that of
Xo. Thus the diffusion constant vanishes at the critical
point because of the infinite susceptibility there. In
other words, the diffusion constant vanishes at the
critical point because the thermodynamic driving force
which causes the diffusion vanishes.

Although the above argument is a quite general and
plausible one, we cannot give any justification for the
assumption that L is finite at the critical point without
going into the microscopic meaning of L. Following the
pioneering works of de Gennes, ' such a microscopic
study of L has been started for the Heisenberg spin
system by Mori and the present author' employing a
correlation-function expression for the spin diffusion
constant. They found that L is expressed in terms of a
time correlation function of torques acting on each
spin. Since the static pair correlations of torques contain
only short-range spin correlations, they argued that L
would not contain any long-range spin correlations
which can give rise to an anomalous temperature
dependence of L. No rigorous justification for this,
however, was given. Bennett and Martin' discussed this
problem by means of Green's functions. However,
they reached no definite conclusion concerning the
behavior of D near the Curie point. Kocinski studied
the problem using the constant-coupling approximation,
and obtained a nonvanishing diffusion constant at the
Curie point at variance with the phenomenological
argument mentioned earlier. Recently, Mori~ developed
a very general and powerful method for calculating
time correlation functions in the form of continued-
fraction expansions which are expressed in terms of
various static correlations, and applied the technique
to the present problem. Although his theory may turn
out to give the first-order approximations in some sense
to the anomalies in various transport coefficients, the
question of the convergence of his expansion, especially
near the critical point, remains unanswered.

where L~ is Onsager's kinetic coefficient and the rate
constant y» is, using (1.2) and (1.5),

7,= (L,/eT)x,

On the other hand, the Ising spin system in
which certain transition probabilities for spin Qips
are allowed is used by Kikuchi" to calculate the spin
diffusion constant. He introduced the method of path
probability in which a certain variational principle is
used to determine the most probable path for the states
of the entire system. His result turned out to be equiva-
lent to the Bethe approximation and his diffusion
constant vanishes at the Curie point.

In the present paper, we shall discuss this problem
using a well-defined mathematical model for spin
diBusion which is the Ising spin system in which spin
interactions are replaced by a set of certain transition
probabilities for spin exchange, as described in Sec. 2.
The loss of generality for choosing a particular model is
compensated by the simplicity of the treatment and the
clarity of the approximation introduced. Furthermore,
the present treatment gives some insight into the
nature of the approximations which give the di6usion
constant which vanishes at the critical point. In Sec. 3
we calculate the diffusion constant by expressing the
spin current in terms of the reduced distribution func-
tion for a pair of nearest-neighbor spins and their
nearest neighbors. Under a single approximation of re-
placing the reduced distribution function by its value at
local equilibrium with a given spin-density gradient,
we obtain a diftusion constant whose behavior near the
Curie point is dominated by the inverse of the magnetic
susceptibility in agreement with earlier theories. In
Sec. 5 we present a slightly different treatment for a
special system (Bethe lattice), whereby we critically
discuss the calculation of Kocinski.

Although the model employed is a rather special one,
we believe, in view of the enormous difhculties of
treating real systems, that it is certainly worthwhile to
study the simplest possible microscopic models for
which something definite can be said.

2. KINETIC MODEL

The system we shall consider is an array of S coupled
spins. The coupling between spins is represented by a
set of transition probabilities of spin exchange rather
than by the conventional exchange interactions. The
transition probabilities are so chosen as to give the
same equilibrium spin distribution function as the
conventional Ising system. In this respect, our model
is quite similar to Glauber's, "but is different from his
in that the total spin is conserved at each transition and
we do not restrict the problem to one dimension.

Restricting ourselves to the lattices which do not
have the so-called nearest-neighbor triangles, the
transition probability for the isothermal spin-exchange
transition in which the pair of spins 0-~ and a2 on the
nearest neighboring sites 1 and 2 exchange each other,

'0 R. Kiknchi, Ann. Phys. (N.Y.) 10, 127 (1960);ll, 306 (1960)."R.J. Glauber, J. Math. Phys. 4, 294 (1963).
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which satisfies the requirements of the preceding
paragraph, is of the form

II' (( } )=l II (1+7 )rI (1+7 ), (21)

with
Xp=K(0'102+0'1 g 0)+'tT2 g (T]),

exp(Xp+ X') .

(2.4)

(2.S)

where 0;. denotes the spin on the jth site and takes the
values of +1 and —1 corresponding to up and down

spins; n does not depend on a' s, y is a function of
temperature defined below. The product of j (or t) is
over the nearest-neighboring lattice sites of the site 1

(or 2) excluding the site 2 (or 1). We use a symbol (ij)
where i and j are nearset neighbors to designate a set
of sites consisting of the sites i, j and their nearest
neighbors surrounding them. A symbol [ij] is used in
a similar way, but excluding the sites i and j. Thus
(a }[12) is a set of p. 's referring to the sites belonging to
(12). y is determined by the following condition of
detailed balancing as mentioned earlier:

P))[ ({0'}~)=Z expX
& (2.7)

X' does not contain p.i and a.2, and the sum p p;(p 0[)
is over the nearest-neighboring spins of 01(p.2) ex-
cluding 02(ai). K is related to the magnitude of inter-
action between nearest-neighbor spins J of the usual
Ising Hamiltonian by K= J/k&T. Equation (2.3) can
be easily verified using the definition of the reduced
distribution function p [12),

p[12)({0}[12))=Tr'p&({o}N), (2.6)

where p))[ is the normalized distribution function of the
whole system, and its equilibrium value p&' is given by

If 12(&1&2(&}[12]) P(12) (02&1(&}[12])
)

%12(0201{0}[12]) P(12) (01&2{P}[12])
(2.2)

with
X= P Kcr,o],

&j&&
(2 8)

pi»)'((~} [»))=t ' exp(xo+X'), (2.3)

where p[»)' is the equilibrium distribution function of
spins on the sites (12) and has a form

and the sum is over all the nearest-neighboring pairs of
spins, and Z is the partition function. Tr' means to
take the trace over all the spin states with fixed {o.}[12).
Thus the right-hand side of (2.2) becomes

expK(02 Q p', +p'1 Q )) g, [coshK+o, o; sinhK] g, [coshK+o, o, sinhK. ]
expK(o. i Q 0,+02+. 0[) g, [coshK+o. o, sinhK] g [coshK+o o sinhK]

(2.9)

y = tanhK. (2.10)

The transition described by (2.1) is meaningful only
when 02 ———01, but we shall use (2.1) even for 02=01
because it does not affect the kinetic equation we shall

derive in the following due to cancellation.
In this model W is the transition probability for a

spin exchange when the surrounding spin configuration
is fixed. The effects of this surrounding spin state on W

give rise to cooperative irreversible change. Thus n

is regarded as the transition probability in the absence
of spin correlation. Therefore, it is quite reasonable to
assume that n is a slowly varying function of tempera-
ture near the critical point, and in particular we shall
assume for definiteness that n is a constant. For
Glauber's model the physical content of n is studied by
Heims" and n is related to a certain correlation func-
tion of "lattice variables" under some assumptions. A
similar analysis Inay be made for our n, which is

however, beyond the scope of this paper.
Given the transition probabilities of elementary spin-

exchange processes, the most general kinetic equation
which describes the temporal development of the

"S.P. Heims, Phys. Rev. 138, A587 (1965).

Comparison of this with (2.1) and (2.2) shows that the
following choice of p satisfies our requirement

system is of course the master equation. Here we have
assumed that the off-diagonal elements of the density
matrix can be ignored. Denoting the normalized S
spin distribution function at time t by p&({0}&,t), the
master equation is written as

(d/«)P~(~}~ t= Z~ )(~ ~)(—~}[)])P~((~}~t)

+ Q Wti(a'iot{0'}[,[])P))[((o})p")t), (2.11)

where (0}~&' is the spin configuration in which o, and
0 1 are interchanged in the configuration {o}&. (jt) means
the pair of nearest-neighbor spins. We cannot in general
solve the maser equation (2.11). Only for the case
without spin correlation (y=0) have we been able to
use (2.11) to obtain the spin diffusion equation (Ap-
pendix). However, for the calculation of the diffusion
constant, we do not require full knowledge of p,&, but
only certain reduced distribution functions. Thus, in
the following, we shall use a method which involves
only the reduced distribution functions to calculate
the diffusion constant.

3. DIFFUSION CONSTANT

We start the calculation of the diffusion constant by
deriving an expression for the spin Qux in the presence of
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a spin-density gradient along the x direction. For this

purpose, we take a simple cubic lattice and consider a
pair of adjacent spins 0-& and cr2 on the x axis and their
nearest-neighboring spins o2, o4, . 012 (Fig. 1).Then,
the spin current density at time t in the positive x
direction along the bond connecting 1 and 2, J,(t),
is immediately written down as

~z(t) a Z ((r1 (r2)W12({0}(12))

Xp(»)({0}(»),t), (3.1)

where a is the lattice constant and the factor (01—a2)
takes care of the fact that when 01= —o2 ——1 (or —1)
two units of spin Row in the positive (or negative)
x direction and when 0-~ ——02 there is no net spin Row

during the transition. p(12& is the reduced distribution
function for {o)(12), and is related to the distribution
function of the whole system p)»({o.)»(, t) by (2.6).

Since we know the transition probablilty W», (2.1),
the main problem here is to find p(12& in the presence of
a spin-density gradient. The most rigorous approach
would be to solve the master equation (2.11) for an
appropriate stationary state of constant spin Bow.
This has not been done in general in the presence
of spin correlation y. Thus we have to introduce a
fundamental approximation which has been often
used in a similar situation, ' " namely, we approxi-
mate p(»& ({o.) (»), t) by its value in the local equilibrium
state consistent with the given spin density. This is
supposed to be a good approximation when we are
dealing with a small deviation from equilibrium,
although there appears to be no rigorous justification.
Physically, our approximation amounts to calculating
the initial spin Aux at the moment when the constraint
which has kept the system in local equilibrium is re-
Inoved. Thus, rigorously speaking, we are actually cal-
culating the "initial diffusion constant, "although in the
following we shall refer to it simply as the diffusion
constant keeping this situation in mind.

Now, the local equilibrium p(»& is related by (2.6)
to the local equilibrium p)&(({a)»() which, for a small
deviation from equilibrium, can be written as

where

FIG. 1. Lattice sites in the simple cubic lattice.

XP —EO'102 = —(XP—EO102)~''
and we obtain

(3.8)

W(12) ({o) (12))e«= -2'(re /(coshE) 2(' ') . (3.9)

The fact that this quantity is a constant number is
closely related to the requirement of detailed balancing,
(2.2). By the fact that both X' and h,do not contain
0.~ and a-2, the 6 term drops out after the summation
over spin variables in (3.1). Thus, we finally obtain
the following expression for the spin current density:

p(12) is obtained in the following form:

p(12)({(r}(12)) p(12) ({(r)(12))(1+h10'1 +h20'2 +6) ~ (3.6)

where P(»&' is given by (2.3) and 6 involves only 02,
04, ~ ~ ~, 0-». This is a consequence of the fact that by
Axing the SpinS 0-3, 0.4, , 0~2, the SpinS r~ and 02 are
shielded from spins outside (12). Equation (3.6) is to be
substituted into (3.1) to evaluate the spin current
density.

In calculating the spin current density, it is con-
venient to re-express (2.1) as

W12({o}(»&)=—2'(2(coshl( ) '(~')
Xexp(X(&12—Eo io 2), (3.7)

where X(&12 is obtained from XI&, (2.4) by interchanging
a& and r2. Since in the spin current density only the case
a&= —02 contributes, we consider only this case. Then,
clearly

0'i =&i &i 0) (3.3) J=C(hi —h2), (3.1O)

with the angular bracket ( . ), denoting the average
over the equilibrium state. h; is a fictitious external
magnetic field acting upon the spin on the jth site
to produce a given inhomogeneous average magnetiza-
tion m, =(o ). In other words,

(3.4)
where

(3.5)

Using (2.6), (2.7), and (3.2), the local equilibrium

"H. Reiss, J. Chem. Phys. 40, 1783 (1964).

where

C=— P ex'.
a2t (cosh&)2(' —') f~)(„)

(3.11)

It should be noted that the current is proportional to
the difference of the exterrIal fictitious fields h's, which
do not contain any molecular field coming from sur-
rounding spins.

When the spin density is slowly varying in space, we
have

(3.12)
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FrG. 2. A Bethe
lattice of coordina-
tion number 4.

D= Ca4/X. — (3.15)

Let us now discuss the behavior of the diffusion
constant near the Curie point. First consider the
quantity

P/4 P gx' —P exo+x'/ P gx'

(~I ~»~ ('}(»)

which can be regarded as an average of e0 with the
weight function ex'. Since the magnitude of X3, (2.4),
is limited except at the zero temperature this quantity
cannot be zero or infinite at any 6nite temperature.
Other factors in C are well behaved. Therefore, the
temperature dependence of the diRusion constant near
the Curie point is determined mostly by the magnetic
susceptibility X in (3.15), and in particular, the diffusion
constant vanishes like X ' at the Curie point. This is in
complete agreement with the conclusion of various
arguments discussed in Sec. 1 except that of Kocinski.
It should be noted that this result is obtained with the
local-equilibrium approximation only besides the

specific choice of the model. No other statistical ap-
proximation has been used. In fact the greatest ad-
vantage of this method is the complete separation,
under the local equilibrium approximation, of the
dynamics of the problem from the complicated statistics
of the Ising spin problem.

where X is the dimensionless differential magnetic sus-
ceptibility, and

hl —h2
———X-'a'(a/ax)nz(r), (3.13)

where we have introduced the continuous spin density
ns(r) per unit volume. Equation (3.10), then reduces to

~= —D(8/Bx)m(r), (3.14)

with the diffusion constant

By the same manipulations as in Sec. 2, (4.1) reduces to
the same form as (3.10) and (3.11) except that a2

is missing:
7=C(hl —h2), (4.2)

An explicit expression of C is given below in (4.10). hl
and h~ can be calculated from the knowledge of m s
and p(12)({0.}(u), t), which takes the following simple
form for the Bethe lattice:

P(12)({&j(12)) P(12) ({&j(12))

8—2

X p+hl&1+h2&2+h3&3+h4&4+ Q (hlj&lj+h2j&2j)$ p

(4.3)

where we have denoted the nearest-neighboring sites of
the sites 1 and 2 in the sheets intersecting sites 1, and 2,
respectively, by 1j and 2j(j=1, 2, , s—2), respec-

approximation becomes exact.""As an illustration
a Bethe lattice in which each spin has four nearest neigh-
bors is shown in Fig. 2.

In order to adapt a Bethe lattice in which each spin
has s nearest neighbors to the problem of spin diBusion,
we arrange a Bethe lattice in the following special way
in three-dimensional space (Fig. 3). First, choose a
chain of nearest-neighboring spins out of the Bethe
lattice and arrange them on the x axis (spins, o3,
01, 02, o.4, in Fig. 3). Next set up a plane parallel to
the ys plane intersecting at every spin on the x axis,
and arrange the remaining spins of the Bethe lattice on
these planes. Thus, each spin on the x axis has s—2
nearest neighbors on the plane (sheet) because two are
already on the x axis. A typical spin arrangement on a
sheet is illustrated in Fig. 4 for the case of s=4.

Let us now suppose that the spin-density gradient
exists only in the x direction and consider the spin cur-
rent along the x axis. The magnetization density is
uniform in each sheet and there is no net spin Qow

within the sheets at least in the local equilibrium ap-
proximation. The spin current along the bond con-
necting 1 and 2 takes the same form as (3.1) where we

dlop 8

~*(~)= p (&1—&2)~12({&j(u))p(u)({&j(u),'~). (4.1)

4. BETHE LATTICE

In this section we shall present a slightly different
treatment which does not use the magnetic suscepti-
bility explicitly. This method is more closely related to
Kocih.ski's treatment than the previous one and thus
facilitates the discussion of his theory. Since the method
is only approximate in general lattices corresponding to
the Bethe approximation we shall consider the special
lattice called the Bethe lattice in which the Bethe

2

FIG. 3. Three-dimensional arrangement of a Bethe lattice.

'4 C. Domb, Advan. Phys. 9, 149, 245 (1960).
"M. E. Fisher, Physica 28, 172 (1962).
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tively, and A's in general differ from h's because they
include the effects of spins outside the cluster (1,2).
In the following discussion, we only consider the region
above the Curie temperature. The h's as well as 6's
are determined by relations somewhat analogous to
(3.4):

m, =hlgl, ;+h2$2,+h3$s,;+k4$4;

Fto. 4. Lattice
sites in a sheet of
Flg. 3.

+ Z (~114'll, j+li2l4'2l, j) ~ (4.4)

This equation is considerably simpli6ed by assuming a
uniform spin-density gradient in the x direction with
the zero spin density at the midpoint of the sites 1 and 2
and by noting that if the sites j and t' are separated by
e bonds, we have'4 "

and og) and neglects the dependence of the transition
probability W» on the spin configuration {a)~i2] ~ Thus,
instead of (4.1) he starts essentially from,

J,(/) = p Wis(ai —a2) pig(alagit), (4.12)

(4.5)
where pls is the reduced distribution function of the
spin pair 0~ and 0.2. The local-equilibrium approxima-
tion, which is also implicit in his treatment, gives for

12

Therefore, by symmetry, we can assume that

) A

pig(aia2, &) = ply'(a&a2) L1+hiai+h2ag), (4.13)
A

where hi and fi2 are not the same as the external
fictitious 6elds, but contain the effects of outside spins,
and are determined by

—m3= —'Am,
—h4, fi4 ———k, ,
—A&, = independent of j.

m4

h2— (4.6)

A2=

Thus, (4.4) reduces to the following set of equations:

ml= ——,'&m= (1—y)hi+(s —2)y(1—y)~11+7(1 7)~3,

mll ————,'~=y(1—y)hi+ L1+(s—3)y'—(s—2)y'jhll
+v'(1-v)&3, (4 7)

ms= —$&m =y(1—v) hi+ (s—2)v'(1.—v)4i
+ (1—y')As.

(4.14)——,'Am= ml ——(1—y)h, l,
where we have used the facts that m2= —m~ and
A2 ———i'i& by symmetry. In the same way as we have
done in our exact treatment, (4.12), (4.13), and (4.14)
lead to the following diffusion constant D'.

(4.15)O'= 8"y2.
This can be solved to yield

hl ———h2 ———L1—(s—1)yjhm(2(1+ y) .

Substituting this into (4.2), it reduces to

J=—D'4m,

with the "diffusion constant" D' given by

D'—= L1—(s—1)vlc!(1+v) .

Because X'=0 for the Bethe lattice above the Curie
point, we can give an explicit expression for C, S. CONCLUDING REMARKS

This result indicates that the effects of nearest neighbors
of the pair al and a2 on the transion probability for
the spin exchange 0.~+-+ 0.2 are essential in the problem
of spin diffusion near the critical point. Thus Kocinski's
result that the spin diffusion constant of the Heisenberg
spin system does not vanish at the Curie point seems to
be due to the crudeness of his statistical treatment, and

(4.9) the agreement of his theoretical values with the recent
experiments" appears to be fortuitious.

C=-', ne x (coshE)" ' (4.10)

Since the Curie point for the Bethe lattice is deter-
mined by" "

1—(s—1)y,=0, (4.11)

the diffusion constant again vanishes like g ' at the
Curie point.

Let us now discuss Kocinski's treatment of spin
diffusion. Although he treats the Heisenberg spin
system rather than the stochastic Ising spin system,
his treatment of statistics can be adapted to the present
problem. He considers only the pair of spins (our al

In preceding sections, we have presented two cal-
culations of the spin diffusion constant for time-depend-
ent Ising models. In both cases, the spin diffusion
constant vanishes like X ' near the Curie point. This
is a consequence of the fact that the thermodynamic
driving force which causes the spin current between
the adjacent lattice sites 1 and 2 is proportional to the
difference between the extemu/ fictitious magnetic fields

"B.Jacrot et al. , in Inelastic Scattering of Eeltrons irl, Solids and
Jiguids (International Atomic Energy Agency, Vienna, 1963);
L. Passel et al. , J. Appl. Phys. BS, 933 (1964); Phys. Rev. 139,
A1866 (1965).
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on these sites which maintain the given spin-density
gradient. Namely, these fields are connected to the
average inagnetization by (3.12), whereby introducing
the magnetic susceptibility X. This gives rise to the
factor X ' in the diffusion constant. This, in turn, is a
consequence of the fact that in our treatment, by
fixing the spin states on the nearest-neighboring sites of
1 and 2, {o)ii2i, the spins or and o2 are "protected" from
outside spins. This sort of "protection" or "shielding"
gives rise to the so-called critical slowing-down which
causes the diffusion constant to vanish at the critical
point.

Although the present treatment cannot be applied to
the Heisenberg spin system, any approximate treat-
ment which is expected to be valid for this system
must give the correct result when applied to our simpler
models. Thus, in Sec. 4 we have discussed Kocinski's
treatment as an example of an approximation in which
the spins 0.

~ and 0.2 are not "shielded" from the outside
of (12) and fails to give the critical slowing-down near
the Curie point.

In the present paper we have been concerned only
with the diffusion process, whereas the master equation
certainly allows more general types of processes. '
However, if we restrict ourselves to the very slow proc-
esses which take place over very large spatial regions,
the diffusion equation should normally give the good
description of the process because in our model the
only constant of motion is the total spin. In the im-
mediate vicinity of the critical point, however, the
simple diffusion law may not be valid if the range of
spatial correlations of critical spin-density fluctuation
exceeds the scale of inhomogeneous disturbances. "
Thus the diffusion constant near the critical point is
meaningful only if the scale of inhomogeneity of spin
density is sufficiently larger than the range of critical
fluctuation of spin density.

In a subsequent paper we shall examine the local
equilibrium approximation employed in this paper, and
shall show that the approximate diffusion constant
obtained in this paper provides a rigorous upper bound
to the true diffusion constant, thus establishing the
existence of the critical slowing-down. The method put
forward in this paper can be applied to other irreversible
cooperative phenomena, as we shall demonstrate in
subsequent papers.

'7 S. P. Heims (private communication)."R.Mountain, J. Res. Natl. Bur. Std. (U.S.) 69A, 523 (1965).
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APPENDIX

Here we shall discuss the master equation (2.11)
in the absence of spin correlation, ~=0, which is
written as

(d/dt) p~((o) v) = —P w;,p&({o)~)

+ p w, &p~((o)~"). (A1)

Using the definition of the average value of spin 0;,

m, = o., ~ 0

(d/dt)m;= P, w;—)m;+ P( ,w, (m (A2)

By substituting the expansion

m~=m, +(r~ r;) V—;m;
+-,' (r~—r,) (r,—r,):V;V,m, +

into (A2) and noting that w, ~
——wq;, we have, for a simple

cubic lattice,

(d/dt)m, =DVP m, +
where the diffusion constant D is given by

D= ', Qt (rg —r;)'w, g. -

(A3)

(A4)

Using the definition of w;& which is given by (2.1) where

we set y=0, this reduces to

(A5)

This agrees with the result of Sec. 3 when y=E=O,
as one can immediately check.

(Here we assume that the average spin vanishes in

equilibrium. ), we obtain

Q o,p~({o)x")=Q o&p~({a)~)=m&.
I tr} X {0}X

Therefore, multiplying (A1) by o; and summing over all

the spin states, we obtain


