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A report is given of a theoretical and experimental investigation into the degree of plasmon damping in
metals as a function of momentum transfer. A previous theoretical result by DuBois is corrected and ex-
tended by taking into account polarization effects. Measurements are reported of the change in half-width
AEy; of the dispersed ~15-eV aluminum plasmon energy-loss peak, excited by 20-keV electrons, as a
function of electron scattering angle 6. The results can be expressed in the form AE;.=A-+B6*+C#, and
there is good agreement between the values of B and C obtained from the revised theory and those found

experimentally.

1. INTRODUCTION

INCE Bohm and Pines' first proposed that metal
valence electrons could be excited collectively, there
has been discussion in the literature as to the conditions
under which such plasmon excitations can exist as
well-defined modes. Pines?? and Ferrell* have shown
that plasmons may be excited by a fast electron passing
through a metal for plasmon wave vectors % less than
some cutoff wave vector k.. The existence of such a
cutoff was first experimentally shown by Watanabe®
and a new measurement of £, in aluminum has been
recently reported by two of us.®

It is the purpose of this paper to discuss how the plas-
mon lifetime or plasmon level width varies as a function
of momentum transfer ¢. Using the notation of DuBois,”
momenta are expressed in units of the Fermi momentum
qo="k,, where ko is the wave vector of an electron at the
Fermi surface (assumed spherical). The level width is
determined in the range ¢min < ¢<gq,, where gmin=x,/P,
¢c=ke/ko, and P is the momentum of the primary elec-
tron. The plasma frequency ©, is equal to (dar,/3m)1/2,
where a= (4/9m)13, r,=(3/4nrain)'3, n is the free-
electron density, and ao="7%/me?.

Using a free-electron approximation, Noziéres and
Pines? have estimated AE;;s/AE, the ratio of the half-
width of the plasmon loss peak AE;;; to the plasmon
energy AE, to be

AEllz/AE=qu2. (1)
DuBois” has made a more detailed calculation of the
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transition probabilities for two modes of plasmon decay
and has found the plasmon level width I'(¢) to be

I'(q)=9.302,2(1+0.785%,)*+2.83Q,¢*+ - - . (2)

Higher order decay processes will increase the level
width still further, but in the absence of a known
relationship between an observed half-width and the
level width predicted by Eq. (2), we will make the
assumption that AE;, is given by 3T'(¢). Thus,

AEy )/ AE=4.650,(140.785Q,) ¢+ 1.415¢*+ - - - . (3)

The coefficient of ¢% in Eq. (3), however, is unreason-
ably high, as the contribution to AE;;s/AE from the ¢
term alone is about 2.6 in aluminum for ¢=g¢., where g.
has been evaluated for 20-keV electrons using the
result of Ferrell.4

DuBois’ calculations leading to Eq. (2) have been
repeated, and a number of errors corrected. We have no
criticism of DuBois’ method of evaluating I'1(g) or of
his excellent techniques for handling the complicated
integrals involved. The corrected result [Eq. (10)
below ] still, however, predicts an unrealistically large
coefficient of ¢?. It was realized that this large coefficient
was due to the omission of polarization effects in
DuBois’ final result. A revised expression for I'(g) has
now been obtained which contains both a realistic
coefficient of ¢2 and a corrected coefficient of ¢ These
calculations are described in Sec. 2.

Watanabe® observed that the dispersed =~15-eV
electron energy loss in aluminum faded away into the
background as ¢ — ¢.. Meyer® has published aluminum
loss spectra at several different electron-scattering
angles but only Kunz® seems to have measured pre-
viously the loss peak broadening as a function of ¢ (or
scattering angle 6). Kunz’s result, however, is not a
good fit to either Eq. (1) or to the corrected and ex-
tended version of Eq. (2). A new measurement of the

.broadening of the plasmon loss in Al as a function of 6

has been made and is presented in Sec. 3.

8 G. Meyer, Z. Physik 148, 61 (1957).
9 C. Kunz, Z. Physik 167, 53 (1962)
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Finally, the revised theory is compared with the papers,” in particular Sec. II B of Ref. 7. In order to
present experiment in Sec. 4. The agreement between avoid unnecessarily cumbersome equations, the

theory and experiment is found to be satisfactory. quantity I'y(g) is first recalculated ignoring polarization
effects as these can be considered at the end of the main
2. THEORY calculation.

DuBois’ method and notation will be followed, and The transition probability per unit time I';(g) for plas-
this section should be read in conjunction with DuBois’ mon decay by production of two electron-hole pairs is

spins

I'i(g)= (1/2m) d3P1/ d%z/ df‘ps/ d*ps 2 |(2 pairs| M |1 plasmon)|?
<1 p2>1 »3<1 P4>1

X8(p2tps— p1— Ps— QG2+ p2— p2— p]—2(g)), (4)

where
(XX ) (X{IX)C(p,p2) (X' X5) (X4 X1)C (ps,p2)

(2 pairs| M |1 plasmon)= (27)~""2g,(q)4warsi/ (ZQo(q))”zl:

(pa—p3)? (pa—p1)?
B (X4'X1) (X' X5)C (p1,p4) | (X4 X3) (X' X1)C (Ps,P4):| )
(p2—ps)? I (p2—p1)? ’

with X; a Pauli spinor for the ¢th particle, X, its Hermitian conjugate, and
C(p1,p2) =Sr(p1t+a,0 (1) +20(9)) +S r(p2— q,0 (p2) —20(q))
@ (p=p) ¢ (@p)’—(a-p)
Q2  QF Q3

+O(¢%). (6)

We integrate out the momentum-conserving delta functions of Eq. (4) and make the transformations p,= p;-+k,
ps=ps—k-+q, replace p; by — p; and find

27Q,7
Ti(g)=—r / &k /; o d*ps ﬁ . &@p0(GE 43 (k— @)*+k- pi+- (k—q) - ps—Q0(g))

29 2.2 3 <
g [pibk| >1 Ipstk—q| >1
(X' Xy) (Xsz)/ ¢ qk . (‘I’Pl)z_(Q°(P1+k))2>_(XzTXa)(XJXl)
spins (k—q)2 \sz sz ] Qp3 (E_q)2
y <q2 (a-k) (a-ps)’—(q- (p1+k))2>_(XJX1)(X2TX3){ ‘1'1_‘, (q-pl)z—(q-(ps+k—q))2>
o F Q,? 2 \gz2 o
(X' X 1) (X4 X5) (q+ps)*—(q- (ps+k—q))*\ |?
4 (q-k+ i =)\
k2 8

where k= (k-+p;+ps). DuBois expands the denominators (k— q)?, (k— q)? in powers of g, and retains only the
leading terms to obtain his equation (2.16), which contains several obvious misprints. However, when polarization
effects are included, the contribution to the integral from the corresponding ¢-dependent denominators is vastly
reduced, and while not completely negligible, can for our purposes be ignored. We therefore put q=0 in the de-
nominators, in the step function which restricts the region of the p; integration, and in the delta function, to obtain

27Q,%¢?
= &
Ti(g) o2 / k4/1“<1

|p1+k| >1

d*py ff Bpsd(k-k—p)

3 <1
ps+k| >1

> I: ‘ (X' X0) (X4 X5)  (XeTXG) (X4TXY) } <1 2(q-k)(q- 1_()>2]
spins| k2 (]E)2 qu2 ‘
D, F. DuBois, Ann. Phys. (N. Y.) 7, 174 (1959).
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If we square the brackets, carry out the spin summations, and make use of the equivalence of k and k to combine

terms, the integral becomes
4 2(q-k) (q-k)\?
1(q)— B4 /dak/ d3p1/ - Bpsd (k-k— Qp)( - 2)(1 (@b )> .
|Pa+k| >1 K EE 9291;

The integration over the angles of k can be carried out at once. The result is

dapl/a <1

pst+k| >1

P +k[ >1

I‘1(‘I)‘

24 32k 4k 3
Ppick—)| —————=].

@ R ©

SX 2 p +kl>1

The last term of the integrand in square brackets is of order 92 and can be neglected. To evaluate the remaining
integral we write the integrand in square brackets, in view of the delta function, and the symmetry with respect
to p; and p;, as

Eﬂz Q2

24 32k 4R 24 64 36k 64
I: ]_[kz f P o +Q2 (P12+D1'Da):l ’

so that Eq. (8) can be written
T'1(q) =923*(I1+12)/5X 257,

® 24 64 36k? —-
I= / dk[—-}-————] / d3p1 Ppidk-k—Qy),
o Q2 1 1

L bkl >1 7 fouctl >1
zz—— dkf o[ | PpaEek—0) i tpen),

;s+kl >1
The integrals over p1, ps can be performed by the method of DuBois. We refer the reader to Egs. A(1) to A(6) of his
paper, from which it follows that, for £<2

2 24 64 36k ©
I=2r /0 kdkl:g—i-—ﬂ———ﬂT:I /_ el /NS0,

with

px+k| >1

where . . ) ’
& = o it(z—ka) — Pt (1—2) — pit | —’itk/2’

10 [’d o xdx et kt2(1+ >[e eit] t2e

and
g=— / 2wkdk / dt exp[it(k— (Q/k))][ 20— fk(t)hk(l)———- —( sz(t)):l
64 r2 © B2 Q2
X =5;/0 2wkdkﬁwdt exp[et(k— (Q/k))]':fk (t)<1+-2——9+5;—2—>——fk(t)hk(t):|,

where

1 1 3t 6 61 6 k2
hk(l)=/ da/ w3 eit(z—er)_.._~(ezl(1—k)_ezt)<1+______ )+<___>e—itk/2.
) ka/2 [ #o42

We do not need the integrals for 2> 2, for small Q. Collecting together these expressions, we have

64 4F*7 64

Qp3q2 2 ) . \ 56
= / ki /_ K eXth(k—(ﬂ/k))]{fk (t)[;; E—g]——fk(ohk@} ©

9
Ti(g)=

The remaining integrals are very tedious, and using the method of evaluation shown in the Appendix, the
following result is finally obtained:

I'1(q) = 2r@2,3[ 10 In2+42—4.50+0(22) . (10)

Had we expanded the denominators in (k— )%, (k— q)? of the matrix element in Eq. (7), we would have obtained
for the coefficient in square brackets the value [34— 22 In2—4.524-0(©?)]. This result [Eq. (10)]is still too large,
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and we must now modify our calculation to include polarization effects. DuBois, in writing down the matrix
element which describes the decay process, asserts that these effects can be ignored. His justification for this
appears to be that the integral which remains converges. To see that this is not so, consider the complete matrix
element (2 pairs| M |1 plasmon) which includes the modified interaction instead of the bare interaction in the
internal Coulomb line of the eight indistinguishable diagrams.” The corrected matrix element which corresponds
to our Eq. (5) is

(2 pairs| |1 plasmon)= (2m)~"2gy(g)4mar, i (X' X 1) (X4 X5)C (p1,p2)
Q@)% L(pa—pa)*+(0r/m)0-(| ps— 1l (2 p22)
(X3t X3) (X4 X1)C (ps,p2) ~ (X4 X1) (X2'X5)C(p1,ps)
(o p0*+ (ars/7)Qr (| ps— P15 (P2 —213))  (D2—3)*+ (ars/7%)Qr (| p2— 03| 5 (p2*— )
| (X' X'3) (X' X1)C (ps, ps) :|
(P2— p1)*+ (ars/7*)Qr(| P2— 01| 3 (22— £12))

Qr, includes all types of proper polarization graphs. In the notation of DuBois, we have
0r,= 0O 40, 4040, 4. . -,

0., and higher order propagators should be negligible for small #;, being of order 7, with respect to Q©, the pair
propagator, so that we retain only the pair propagator whose explicit form is given by DuBois in his first paper,?
Eqgs. (1.43) to (1.46). At the densities which concern us it is by no means certain that higher order propagators are
completely negligible, but the effect of retaining these processes should be to reduce our result still further. We
proceed as before, to find

I‘I(q)r,=2mp7 f @ / d*p: / Bpsd (k- k—Q)
29q21r2 in< -(Ekl >1 %ﬁk[ >1
(X' X0) (X' X3) ¢ ak (¢p)—Lla (ptk)P
spins[(k—q)z—l—(ars/'lrz)Q([k—-q],9—%(2p1-k+k2)):|<92 @ o )
I (X3 Xe) (X X) ] <§ ok @G (pl+k>)f)
(k— @+ (ars/m)Q(|k—q| 2+3 2ps-k—E) N2 @2 »

[ (X4 X1) (X' X5) ] <q-l?¢(q'pl)2—(q- (ps+k— q))2>
Rt e/ m)0Ck, 3 (B—2ps- KD I\ @2 o
+[ (X' X1) (X4'X5) ] <q-k (@ pey’—(q- (ps+k— q))2>
4 (ar,/7)QCk3 (2 42k p)) I\ @2 h

The denominators of the terms in square brackets are of the form %2+ (ar,Q (%,#))/#® and the principal contribution
to the integral, for small Q, comes from the region 2/2<k<Q. Since in our dimensionless variables we have
Qp= (4ar,/3m)'2, we see that polarization effects can certainly not be ignored. The two terms, k2, a7,Q(k,u)/=?,
should be at least of equal magnitude in the region of principal importance. To simplify this expression, we make
use of the restrictions imposed by the step functions and the delta function, which require that for small values

of k, the arguments of the various Q(k,%) are #=3Q-+0(Q?). We can then expand the several Q(k,%) about »=1Q,
‘and retain only the leading term. We obtain

1 _ 1 = (k=@ +or[Q(£,30)—Q(|k—q| 30) ]/
(k— @ +or.Q([k—q| 30)/7* B+arQ(k30)/x* [#+arQ(k39)/* T

and a similar expression for the denominator in (k—q)2.
The term of order ¢ in this expansion should be retained, but a detailed analysis shows that if we keep this term
our result is only slightly modified, so that in view of our approximations, it can be ignored. Proceeding as before,

2

+O(¢) ,
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following Eq. (7), we then find

(9) 279,,3q / a°k f & / Bped (k-k—Q,) 52 4(44+55) K (q-k)( k))2
"= k— —— ——(q-k)(q-
e Pt >1 o Petl >1 b “larg B (4+B%) (A*+B?) ¢

where
A=A (k)=Re[k*+(ar,Q (k,32)/ ,,z)] )
B=B(E)=Im[ar.Q(k,30)/7%], A=Ak), B=B(%).

We are interested in 2=0(Q), and in this region our step functions and delta function imply that k=2, so that
we can put A=%2, and ignore B entirely. Then, repeating our previous analysis, we have

" s explitCe— (Q/k))][(AiBz)]‘sz()[if o T S nomo).

We have computed the ratio &4/ (424 B?) for 1Q<k<Q, using

o] 1= (1-(-3) ) ol G-5+1)/ G-5-)

I‘l(q),, kdk

—00

and

ImQ(q,%)= wﬁ -

Ip+al >1
.| 1 /9 u
=2m {—+—n(—+——1
g ¢ \2 ¢
- )]
2 q 2\2 ¢ ;7 qg 2 g 2 2\q 2
1 1 2
)] o
2 gq 2 q 2\2 ¢

and for Q,=%, which is very nearly the value for aluminum. It turns out to be very nearly constant: &4/ (42+ B2)

=1/36, and we can estimate I';(¢),, at once by simply dividing our Eq. (10) by this factor. For different values
of @, the modifying factor will of course vary, but for aluminum we have

I'1(g)r,= (7/60)¢2,*{[10 In2+2]—0(@)} . (11)

In view of our approximations, this result must be regarded as fairly crude, and since we have neglected higher
order polarization processes, Eq. (11) represents an upper bound to the true plasmon level width. DuBois also
considers plasmon decay via excitation of a pair plus another plasmon. Unfortunately, his result for this contribu-
tion to the level width is also incorrect, the error being due to incorrect evaluation of the integral and to his dis-
persion relation, Eq. (1.10), which is incorrect and should read

0(9) =+3¢(1—12°) /1024 - - . (12)
For this decay process we have, from DuBois’ Eq. (2.20),

@p dGP+a-p—u)+ / @?p 8(3¢*+q- p+u)

p+qI >1

£ (9) 2.2 (k)
T:(0)= C*(p1,p1+a— K)o (a—k)- pr-+3 (a—K)*+20 (%) — 2o 3
0= (z,r)sszo@/ / i g @R P )00 (19

If we use the expansion, Eq. (6), and the correct dispersion relation, Eq. (12), and if we change variables to
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k’=q—k and drop the prime, Eq. (13) becomes

Iu(g)= ;j; / (qd_si)z oo @

Pl >1
\ (q-k)%\? 4((1-171)(q-k)/2
e e G

where 8= (3/10) (1—10?).

NINHAM, POWELL, AND SWANSON

145

B (q-k)“’> ,4(ap1)*(a-K)?

B
| ]a(k-pl+%k2+—(—zq-k+k2)>,
02 Q

The step function, |p;+k|>1, and the delta function together imply that p:2>[1—(28(2q-k—#2%)/Q)]. The
integral over p; will therefore give no contribution unless 2q-k—%2>0, and we have, after carrying out one of

the angular integrations,

9927'. 2q 1 dx2 1 +1 k2 B
To(g)=— Rk —ee— 2d 2/ dx16(kproer+—+—(—2q-k+-k2
=i [ ] B [ ptipnon [ a4 20k

0

k)2 4q-k k k)2 1—22) (1—ax2?
N {[qz_q.k_(q )]_ {T (qz_q.k_(q Q?1x1x2+4q2p12(q92)<x12x22J|( %) xz))}, (14)

Q

=)

2

where xy=4-k, 1= p1-k, and y=[1—(28(2q-k— 2)/2) ]2, We put k= 2¢3, and drop terms in ¢° and ¢%, and Eq. (14)

becomes

Iy Wfﬂd/l o / [1— (B ar— 2%/ Tpi2d x/
n= 2 oz i . (1—4zx,+422) ,,n 7T pich 1

For small g, the step function and delta function are
always satisfied, the remaining quadratures are trivial,
and Eq. (15) reduces to

T's(g) = 137Qg* (1—102)/400.

This does not yet complete the calculation, as we have

+1
dxl
X 8(2gzp101+2¢°2+(4B¢* (— z2+22) /O {¢* (1—222)%} . (15)
Assuming as before that AE;,,=1T'(g),
AE]/: WQ;?(].O 11’12+2)q2
16 AE 120
T 13 ?
—I——[lS ln2+3+—<1——>]¢+' <. (20
100 8 4

so far neglected the ¢* dependence of I'1(g),- The matrix
element [Eq. (5)7, which prescribes I';1(¢) involves the
effective coupling of the plasmon, g,(g), which has been
expanded incorrectly by DuBois [Eq. (1.15)] and
should read

= @an

8 (9)_3910 [1+2g_+”'} .
(2m)?

srel 50,2

If we retain the second term in this expansion through-
out, we see from Eq. (11) that the additional term in
q*is

g
Ta(g)re=——((10In2+2)4+-0(2)} . (18)
300

Combining Egs. (11), (16), and (18) we have for the
plasmon level width I'(g)

I'(g)= (r¢°2,*/60)[ (10 In2+-2)—0 (@) ]

i’ 10 1n24-2 13(1 92)] 19
o] — om0+ (1) [+ (9)

DuBois” used his expression for I'(g) to estimate a
value for ¢.. In view of the differences between Egs. (2)
and (19), his evaluation and discussion of ¢, are now
not significant.

3. EXPERIMENT

Measurements have been made of the characteristic
loss spectra of 20-keV electrons passing through a
1000-A film of aluminum as a function of electron-
scattering angle.® The energy resolution of the apparatus
was ~1 eV and the angular resolution =1 mrad. For
Al and 20-keV electrons, 6,=g,/P=20 mrad.

Spectra were measured at angular intervals of about
1.9 mrad for scattering angles between 0 and 23 mrad;
some of the spectra are shown in Fig. 1. The full-width
at half-maximum intensity of the dispersed =15-eV
loss was measured at each angle and plotted as a func-
tion of 62, as shown in Fig. 2. At the larger scattering
angles, it was necessary to assume a level for the
continuum of single-electron excitations, a line shape
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for the undispersed peak at =15 eV, and that the
dispersed loss peak was symmetrical.® While it is be-
lieved that these assumptions were reasonable, the
spread of the experimental points in Fig. 2 indicates the
degree of uncertainty in the measurements.

4. COMPARISON OF THEORY AND
EXPERIMENT

The theoretical expressions and the experimental
results for the broadening of the Al plasmon loss peak
can be expressed as a function of scattering angle § by

AE1/2= A +B02+C04 ) (21)

where the constants B and C are appropriate to the
primary electron energy of 20 keV. Values of the con-
stant 4 have been obtained recently for Al and two
other elements and have been compared with the
relevant theory.!!

The data points shown in Fig. 2 have been fitted to
Eq. (21) by the method of least squares. Similarly, the
data points plotted by Kunz® have been fitted by us

O mrad

N

7.7 mrad’

VA

115 mrad
!\

l

13.4 mrad \\

15.4 mrad

17.3 mrad

'”""i‘v[f,lf_fﬁj;,/\

211 mrad
| T T PR FY TN ENR T FEawe

9] 5 10 15
ENERGY LOSS, eV

Fic. 1. Recorder traces of characteristic loss spectra obtained
with a 1000-A aluminum specimen for the various electron scatter-
ing angles indicated. The occasional spikes are noise pulses due to
electrical breakdown. The dashed lines indicate the continuum
levels assumed in obtaining the half-width of the dispersed peak.

1L N. Swanson, J. Opt. Soc. Am. 54, 1130 (1964).

PLASMON DAMPING IN METALS

o
o
T

!

o
o

»
o

o
o

n
o

HALFWIDTH OF DISPERSED LOSS (eV)

o
T
1

o

bl ! 1 1 1
o 50 100 150 200 250 300 350 400

02 (mrad®)

F1G. 2. Plot of measured full-width at half-maximum intensity
of the dispersed plasmon loss in aluminum as a function of the
square of the scattering angle . The solid line is the computed
least-squares quadratic fit to the experimental points.

and the two sets of experimental values of B and C are
shown in Table I. Two qualifications need to be men-
tioned in using these experimental values of B and C.
Firstly, no correction has been made to either set of
experimental data to account for the energy width of
the primary electron beam and the finite energy resolu-
tion of the analyzer appropriate to each experiment.
An unfolding operation has recently been performed on
an Al spectrum obtained at zero scattering angle from
which it was found that the unfolded half-width was
1.05 eV compared to the measured width of 1.35+0.04
eV.1 It might then be expected that the value of B
found experimentally in this work could be too low by
up to 209, and that the value of C could be smaller than
indicated. Secondly, it is difficult to estimate any error
at the larger scattering angles associated with the un-
known shape and level of the continuum and with the
unknown plasmon line shape. From recent measure-
ments of the differential cross section for the Al plasmon
loss,'? it would seem that any errors of the latter types
are unlikely to be appreciable.

Theoretical estimates of the values for B and C using
Egs. (1), (3), and (20) are also shown in Table I. It is
seen that there is satisfactory agreement between the
theoretical and experimental results of the present

TaBLE I. Theoretical and experimental values of the constants
B and Cin Eq. (20). The errors quoted for the experimental values
are the standard errors derived from the least-squares fits of the
raw experimental data; no contributions have been included for
the sources of systematic error discussed in the text.

B C

Theory:

Nozieres and Pines

[Eq. (1)] 1.87X10*

DuBois [Eq. 3)] 1.33X108 6.83X107

This work [Eq. (19)] 2.96X 103 2.25X107
Experiment:

Kunz (Ref. 9) —(9.545.2) X103 (1.5+0.3) X 108

This work 3.5+£1.1)X108  (1.740.3) X107

12 Reference 6, Fig. 3.
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work. Values of B obtained using Eqgs. (1) and (3) are Sec. 2, and to the assumption AE;,,=3I'(g), and to
much higher than those found here experimentally, departures from the free-electron theory caused by the

while the value of B found from Kunz’s data is negative; lattice.
this latter nonphysical result might possibly be due to

random errors in Kunz’s data points or to a systematic ACKNOWLEDGMENTS

error in his selection of a continuum level. It would be One of the authors (B. W. N.) wishes to acknowledge
reasonable to assume that the discrepancies between helpful discussions with Dr. N. Takimoto and to thank
the theoretical and experimental values of B and C the Commonwealth Government of Australia for the
found in the present work are due to the experimental award of a Queen Elizabeth II Post-Doctoral

errors discussed above, to the approximations used in  Fellowship.

APPENDIX
We first carry out the ¢ integrations in Eq. (9) using the identity

f ) dt e""“<k)t*"=7r(— 1)n[:a (k)]™'sgna(k),
— (n—"l) !

and find after some algebra that
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and
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where
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The remaining integrals over % are elementary, but so many are involved that it is very easy to make errors. We
therefore appeal to the method of Mellin transforms. We shall illustrate the technique for one of the & integrals

of Eq. (9). Consider .
L@)= [ (;) f v explitCh— @/R) 1S 0).

—o0

Using Eqs. (A1), (A2), and the identity

® Q\ /Q n krartr(—1)*(p—1) In!
/ Qp—1n< __..)(..__ ) dQ= , Rep>0,
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the Mellin transform of L(Q) is

M(p)= / i QIL(Q)d=2x (p—1)! / dx

X {227 f(p+3)—4f(p+4)+4f(p+5)1—2>22Lf (p+3)— f (p+4) 1}, Rep>0, (A3)
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where
pm) (1—x)rtm—24(14-x)Ptm P ptm) (1—z)rtm— (14x)rtm
prm)= s f(ptm)=
(p+m)! (p+m)!

Hence, by the Mellin Inversion formula

C+ie0

L(@)=(1/2m3) M(p)ardp; C=Rep>0.
C—in

The integrals over x in Eq. (A3) have a pole at p=0. Thus, we have

[ I e T (A 2]

—(1/p(ptm—2) )+ / L3 (p-m)— -1 (p-+-m—2) e, (A4)

where we have expanded the integrand about x=0 to exhibit the pole explicitly. The second term of Eq. (A4) is
regular at p=0. Similarly
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so that we can write

L(m%- / C_+ (p;l) el (pim (P;)ﬁ(p;)}rzpﬂ[(p;)!_(P;)J}smp

+21- :r: =1) !/01 dx{z%xﬂ([f ®+3)- (pfl) J“‘*[f e (pf@ 1]+4[f 3= (pfs) :D
o (P (Pj_xz) - <p+4>+zﬁ%])}wdp.

The first integral has a double pole at p=0, and single poles at p=—1, —2, while the second has single poles only
which concern us. Evaluating the residues at these poles, we have

L(@)=4r(1—In2)+-0(2).

Similarly, we find the following results:

/ kdk / " a explit(k— (@/E))1f:2(t) = 3r— 1n 03 +0 (%),
f Kk / " i explit(k— (/k))1fi2 (1) =2r2,

f kdk / dt exp[it(k— (Q/E))1fu ()i (f)=2n[ 22 (3—1n2)+ (28/12)].

The above results may be collected and substituted into Eq. (9) to obtain Eq. (10).



