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A report is given of a theoretical and experimental investigation into the degree of plasmon damping in
metals as a function of momentum transfer. A previous theoretical result by DuBois is corrected and ex-
tended by taking into account polarization eftects. Measurements are reported of the change in half-width
AE&/2 of the dispersed =15-eV aluminum plasmon energy-loss peak, excited by 20-keV electrons, as a
function of electron scattering angle 8. The results can be expressed in the form bEjg2=A+B8'+CO', and
there is good agreement between the values of 8 and Q obtained from the revised theory and those found
experimentally.

1. INTRODUCTION

S INCE Bohm and Pines' erst proposed that metal
valence electrons could be excited collectively, there

has been discussion in the literature as to the conditions
under which such plasmon excitations can exist as
well-de6ned modes. Pines' ' and Ferrell4 have shown
that plasmons may be excited by a fast electron passing
through a metal for plasmon wave vectors k less than
some cutoff wave vector k, . The existence of such a
cutoff was erst experimentally shown by Watanabe'
and a new measurement of k, in aluminum has been
recently reported by two of us. '

It is the purpose of this paper to discuss how the plas-
mon lifetime or plasmon level width varies as a function
of momentum transfer q. Using the notation of DuBois, "
momenta are expressed in units of the I"ermi momentum
qo= Mo, where ko is the wave vector of an electron at the
Fermi surface (assumed spherical). The level width is
determined in the range q;„(q&q„where q; =0„/E,
q, =k,/ko, and P is the momentum of the primary elec-
tron. The plasma frequency Qo is equal to (4nr, /3sr)'ts,
where n=(4/9')'", r, = (3/4srao'n)'t', tt is the free-
electron density, and us=res//me'.

Using a free-electron approximation, Nozieres and
Pines' have estimated AEit&/hE, the ratio of the half-
width of the plasmon loss peak AE~~g to the plasmon
energy AE, to be

AEi ts/DE =0&q (1)

DuBois~ has made a more detailed calculation of the
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t The theoretical calculations were performed by one of us
(B.W. N.) while the experimental measurements were performed
at the National Bureau of Standards.' D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953);D. Pines,
ibid 92, 626 (19.53).' D. Pines, Rev. Mod. Phys. 28, 184 (1956).' P. Nosieres and D. Pines, Phys. Rev. 113& 1254 (1959).

4R. A. Ferrell, Phys. Rev. 107, 450 (1957).
e H. Watanabe, J. Phys. Soc. Japan 11, 112 (1956).'

¹ Swanson and C. J. Powell, preceding paper, Phys. Rev. 145,
195 (1966).' D. F. DuBois, Ann. Phys. (N. Y.}8, 24 (1959).

transition probabilities for two modes of plasmon decay
and has found the plasmon level width I'(q) to be

r (q) =9.3PQ„'(1+P.785Q„)q'+2.830„q'+ . . (2)

Higher order decay processes will increase the level
width still further, but in the absence of a known
relationship between an observed half-width and the
level width predicted by Eq. (2), we will make the
assumption that f3Eits is given by -', I'(q). Thus,

AE, &,/AE= 4.650„(1+p.7850„)q'+1.415q'+ . (3)

The coefficient of q' in Eq. (3), however, is unreason-
ably high, as the contribution to AEtts/&E from the q'

term alone is about 2.6 in aluminum for q= q„where q,
has been evaluated for 20-keV electrons using the
result of Ferrell. '

DuBois' calculations leading to Eq. (2) have been
repeated, and a number of errors corrected. We have no
criticism of DuBois' method of evaluating I'i(q) or of
his excellent techniques for handling the complicated
integrals involved. The corrected result PEq. (1P)
belowj still, however, predicts an unrealistically large
coefficient of q'. It was realized that this large coefficient
was due to the omission of polarization effects in
DuBois' final result. A revised expression for P (q) has
now been obtained which contains both a realistic
coefficient of q' and a corrected coefficient of q . These
calculations are described in Sec. 2.

%atanabe' observed that the dispersed =15-eV
electron energy loss in aluminum faded avvay into the
background as q

—+ q, . Meyer' has published aluminum

loss spectra at several different electron-scattering
angles but only Kunz seems to have measured pre-
viously the loss peak broadening as a function of q (or
scattering angle t)). Kunz's result, however, is not a
good fit to either Eq. (1) or to the corrected and ex-
tended version of Eq. (2). A new measurement of the

', broadening of the plasmon loss in Al as a function of 8

has been made and is presented in Sec. 3.
e G. Meyer, Z. Physik 148, 61 (1957).
9 C. Kunz, Z. Physik 167, 53 (1962).
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Finally, the revised theory is compared with the
present experiment in Sec. 4. The agreement between
theory and experiment is found to be satisfactory.

2. THEORY

DuBois' method and notation will be followed, and
this section should be read in conjunction with DuBois'

papers, ' in particular Sec. II 8 of Ref. 7. In order to
avoid unnecessarily cumbersome equations, the
quantity l'l(q) is first recalculated ignoring polarization
effects as these can be considered at the end of the main
calculation.

The transition probability per unit time I'i(q) for plas-
mon decay by production of two electron-hole pairs is

1'i(q) = (1/22r) d'pi d'p2 d'p3 d'p4 Q ((2 pairs( M
~

1 plasmon) ('
SP 111S

X~(P2+y» —yi —p3—q)&(-', Q2'+ p4' —pl' —p3'] —00(q)), (4)
where

(X2 Xl) (X4 X3)C(pl)P2) (X2 X3) (X4 Xl)C(P3)p2)
(2 pairs ( M ( 1 plasmon) = (22r) 2 2g„(q)42rar, i/(200(q))'(2

(p» —p»)

(X4txl) (X2 X3)C(Pi,P4) (X4 X3) (X2 Xl)C(P3,P4)

(P2—P3)' (P2—Pl)'

with X; a Pauli spinor for the ith particle, X; its Hermitian conjugate, and

C(pl, p2) =Sip(pl+ q 00(pl)+00(q))+SR(P2 q (0(p2) 00(q))

q (pl —P2) q' (q pl)' —(q p2)'
+ + +o(q') .

Q„2 Q„2 Q~'
(6)

Vt)'e integrate out the momentum-conserving delta functions of Eq. (4) and make the transformations p2= pl+k,
p4

——p,—k+ q, replace P3 by —p3 and find

220„'
r, (q) =

29(2~2
d'k d Pl d'p ~(-',&'+l(k-q)'+k p+(k-q) p -0o(q))

PI &1 p3 &1
)pI+&l &1 lp~+& —

q. l »
(X2tXl) (X» X3) q' q k (q pl)' —(q (pl+k))' (X2 X3) (X» Xl)xQ +

(k—q)' 0„' 0~' Q„' (k—q)'

(q' (q k) (q q)' —(q (qi+kj)') (X'»)(k'Pxs)(q k (q qi)' —(q (qs+k —
q))')+

)k0,2 n,2 Q„' )I2 &02

(X,tX,)(X4tX,)/ (q p,)'—(q (p,+k—q))'q '
~
q'k+

I
(2)

u )Q~'

where k= (k+yl+P3). DuBois expands the denominators (k—q)', (k—q)' in powers of q, and retains only the
leading terms to obtain his equation (2.16), which contains several obvious misprints. However, when polarization
effects are included, the contribution to the integral from the corresponding q-dependent denominators is vastly
reduced, and while not completely negligible, can for our purposes be ignored. We therefore put q=0 in the de-
nominators, in the step function which restricts the region of the p3 integration, and in the delta function, to obtain

1'l(q) =
220~3q2

d k
O'X2

d'pl d3p38(k k—0,)
p3 &1

pI+hI &1 ] pa+hi &1

' D. F. DuBois, Ann. Phys. (N. Y.) 7, 174 (1959).

spins

(Xd'X,)(q'J'q;) (X,'q', )(X,'X,) ( q(q k)(q k))'-
k2 ()(0)' 4 Q,q'
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mations and make use of the equivalence of k and to ct'ons and ma e use o e
'

to combineIf wesquaret e rac e s,h b k t carryout the spin summations, andma e use o e
terms, the integral becomes

32 4 y t 2(il k)(q k)q'
d'p h(k k—,)i—0—

270~'q'
d'k1' (q)=

2'x2
d pi

P1 &1 P8 &&
iui+kt » j»+kl &1

es of k can be carried out at once. The result isThe integration over the angles o can e ca

24 32k2 4k2 3
d3p, 8(k k—0,) —+

90 'q'
1'i(q) =

24 32k 4k' 24 64 36k2 64

k2 g2 g2 k2 g g2 g2

I ps+hi )1 j pa+ki )1
~ ~

in s uare brackets is o orrder02and can enegec e .0 1 t d. To evaluate the remainingg q
s metr with respectintegral we write e ith ntegrand in square brackets, in view o e

to py and p3) as

so that Eq. (8) can be written

with
Fi (q) =90''q'(I i+I')/5 && 2'gr,

-24 64 36k'-
dk —+-

o

d'pi d'p))8(k k—0,),
8&i
f8+k) &~

d'pate(k k—0~)(pp+yi pa).d8p
3&1
P8+kt »

I2=
0„2 1&1

yi+k) &iI

h d f DuBois. We refer the reader to Eqs.s. A 1 toA(6) ofhise erformedby themet o o u oi .The integrals over p~, p3 can be pe
paper, rom w ic, f hich it follows that, for k&2

where

Ii = 2n. kdk-k —— dt exp[it(k —(0/k))] f),'(t),
0 k~ 0 0~

f),(t) = dn
1

it(l—~) &A &
—itk(2xdg e*'&~"~) =—

(
1+- )[e"&'—*)—e"]—e

—'

and
ka(20

1 8
Ig= — 2s.kdk dt exp[it(k —(0/k))] f~'(t) —fI, (t)h), (t)——

02

where

064
2m kdk dt exp[it(k —(0/k))] f„'(t)

i +1 —0+
i

—f (t)h (t),
02 p

3i 6 6iq (6 k'qI 1

h. (t) = 3dg erat(z
—km) (eA(1—k) est itkQ—

. f.,.
2 for small Q. Collecting together these expressions, we haveWe do not need the integrals for k&2, or sma

90~'q2
r, (q) =

8o o

56 64 4k' 64—f~(t)h (t)kdk dt exp[it(k —(0/k))] fg'(t)—

er ', '
h thod of evaluation shown in the ppA endix, theer tedious, and using t e me oThe remaining integrals are very

obtained:

(10)

following result is finally

I', (q) = 3.q'0n'[10 ln2+2-4. 50+0(0')].

ment in E . (7), we would have obtained
is still too large,

ee p ded eden o in), —q, ,
for the coeKcient in square brackets the value [34—22 ln2—
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and we must now modify our calculation to include polarization eGects. DuBois, in writing down the matrix
element which describes the decay process, asserts that these effects can be ignored. His justification for this
appears to be that the integral which remains converges. To see that this is not so, consider the complete matrix
element (2 pairsI3II I plasmon) which includes the modified interaction instead of the bare interaction in the
internal Coulomb line of the eight indistinguishable diagrams. ' The corrected matrix element which corresponds
to our Eq. (5) is

(2qr) '"g„(q)4m.nr, i
(2 pairs

I
M I1 plasmon) =

(20o(q))'"

(x,tx, )(x,tx,)c(y„p,)

-(P.—Pb)'+ («./~')Q. .(l P4—Pb l,k(p4' —pb'))

(X2txb) (X4tX&)C (pb, y2) (X4tx)) (X2tX4)C (y},P4)

(pq —
p&) + (nr, /4r2)Q„, (l p4 —

pk I, 2 (p4' —p42)) (P2 Pb)'+ («./qr')Q. .(l P2—pb I
k(p2' —pb'))

(X4tx,) (x,tx,)c(p„pq)

(p.—y )'+('/ ')Q"(lp —p I l(p' —p'»-

Q„ includes all types of proper polarization graphs. In the notation of DuBois, we have

Q Q(n)+Q (1n)+Q (}b)+.. .

Q„(l) and higher order propagators should be negligible for small r„being of order r, with respect to Q"', the p»r
propagator, so that we retain only the pair propagator whose explicit form is given by DuBois in his first paper, "
Fqs. (] .43) to (&.46). At the densities which concern us it is by no means certain that higher order propagators are
completely negligible, but the effect of retaining these processes should be to reduce our result still further. We
proceed as before, to find

I' (q)..=
2'q'x'

d3p

Py+kt &1

dbp, g(k k—0)
s&&
p&+k] &~

(x,tx)(xtx) — q' q k (q p)' —(» (p+k))'
+

q) q. ( r/ ')()(~k—q~,n+-', (qp, k—k')} n' n' n'

(x,'X,}(XdX,) —
q k (q p, )'—(q (p, +k—q)}')

k2+(nr /qr2)Q(k ~ (k2 2yb. k)) 02 Q3

—
/q k (q pb)' —(q (pb+k —q))'~ '

+
k'+(nr, /qr2)Q(k, —,

' (k'+2k. Pk)) E 0'

r�0~

(x,tx,)(x,tx,)

(X,tx,) (X4txb) q k (q p()' —Lq (pk+k))')

qp(nq (k—q) +(nr, /qr )Q(lk —ql,0—2(2p&'k+k2)) 0 0 03

The denominators of the terms in square brackets are of the form k'+(nr, Q(k, ))/Im' and the principal contribution
to the integral, for small 0, comes from the region 0/2(k(0. Since in our dimensionless variables we have
0„=(4nr, /3qr)'", we see that polarization effects can certainly not be ignored. The two terms, k', nr, Q(k, l)/qr',
should be at least of equal magnitude in the region of principal importance. To simplify this expression, we make
use of the restrictions imposed by the step functions and the delta function, which require that for small values
of k, the arguments of the various Q(k, l) are u= —,'0+O(0'). We can then expand the several Q(k, g) about I= —,'0,
and retain only the leading term. We obtain

1

(k—q)'+nr, Q(l k—ql $4~0)/qr' km+nr, Q(k, ~40)/qr'

k' —( —q)'+« I:Q(k, '20) —Q(lk —ql, '20))/~'
+0(q')

Lk'+nr, -Q (k/0)/qr')'

and a similar expression for the denominator in (k—q)'.
The term of order q in this expansion should be retained, but a detailed analysis shows that if we keep this term

our result is only slightly modified, so that in view of our- approximations, it can be ignored. Proceeding as before,
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following Eq. (2), we then find

270~~q2 32 4(AA+BB) ( 2
I' (q)..= d'k d'pi d'ps&(& &—O ) — — — I

1— (q'&)(e'&) IA'+B' (A'+B') (A'+B') E q'O„

where

A=A(k) =Re@ y(~r.g(k;;O)/~)]
B=B(k)=ImLnr, Q(k, -,'Q)/n ], A=A(k), B=B(k).

We are interested in k=O(Q), and in this region our step functions and delta function imply that k=2, so that
we can put A = A,", and ignore 8 entirely. Then, repeating our previous analysis, we have

90~'q'
I'i(q) „,= kdk

80 p

00 56 64 4A 64
dt expLi&(k —(Q/k))$ fi.'(t) —+——f~(&)4(&)- (A'+B') -k' O' O' Q'

We have computed the ratio k'/(A'+B') for i2Q(k(Q, using

1 ( (u q)') (u q ) u q«e(a.)=2~ ~—
I

~—
I

——
I I

»
I

—-+~
I

——
&)

2q E kq 2) ) Eq 2 ) q 2

1 ( (u q ') u q i (u q+ I1 I + I» ++1I I +
2q E kq 2 ) q 2 I kq 2

ImQ(q, u) =+ d'p 8(-,'q'+q p—u)+
p&2
I V+al &2

d'P &(2q'+q p+u)
&2
u+at &2

u 1 q I
=2- -+~ -+—~)

q q 2 q

(q u ) 1 q u )'- 1 u q (u q ) 1(u qx -I-+—1l—-+—1l -~ ——1
k2 q J 2 2 q ) q q 2 — Eq 2 2 2(q 2

1 (q u ) (q u ) 1(q u
+-nl ——1I -I ——1I—I

——1I
q k2 q I (2 q I 2(2 q ) , N&0,

and for O„= 23, which is very nearly the value for aluminum. It turns out to be very nearly constant: k4/(A'+B')
=1/36, and we can estimate I'i(q)„, at once by simply dividing our Eq. (10) by this factor. For diferent values
of 0„ the modifying factor will of course vary, but for aluminum we have

I'i(q), ,= (s./60)q'Q, '{I 10 ln2+2$ —O(Q)) .
In view of our approximations, this result must be regarded as fairly crude, and since we have neglected higher
order polarization processes, Eq. (11) represents an upper bound to the true plasmon level width. DuBois also
considers plasmon decay via excitation of a pair plus another plasmon. Unfortunately, his result for this contribu-
tion to the level width is also incorrect, the error being due to incorrect evaluation of the integral and to his dis-
persion relation, Eq. (1.10), which is incorrect and should read

Q, (q) =O,+3q'(1—-'O')/10O, + " .
For this decay process we have, from DuBois' Eq. (2.20),

(12)

a'(q)
I'2(q) =

(2~)'Qo(q)

g„'(k)
d3pi C'(pi, pi+il —&)&L(i1—&)'pi+~2(iI —&) +Qo(k) —Qo(q)). (13)

I",, ', i, 2QO(k)

If we use the expansion, Eq. (6), and the correct dispersion relation, Eq. (12), and if we change variables to
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E . 13) becomes'= »—k and drop the prime, Eq.

90' d'k

( —k)' („'„„
8(k p +-,'k'+ —(—2» k+k')),

(» k)')' 4(».p)(».

90'
r2(q) = k'dk

16q' p

p~'~pres') dx&8(k gxg+ —+—(—2» k+k'))
2 Qg, 2 (q' —2» k+k')

iqpIxgx2+4q'p ' x,'x,
20

X q' —»k—
0

p
' ndq' andEq. (14)

0

k' Q . = s anddroptermsinq an q,~ —k')/Q)]' 'IWep tuk=2q ,san p n. qx = "& k, and y= j1—(2P(2» —k Qwherexn= j k, xr=p&, an y=

+1

becomes

1

8$
9xQ'

r~(q) = s'&s .L1 Qq'(». -")/Q) jp'-dp X
, (1—4sx2+4s')

2 ' '+(4Pq'( +')—/ ))(q' (1—2sx,)'}. (15)X&(2qspixr+2q s

') 1—(2P(2» k—k')/Q)$. The

1 2

)1, and e e 'o ogether imply that ppp
will therefore give no conintegral over yl wi e

the angular integrations,

+I

d delta function arefunction an e
~ ~

0
'

d t t 1
' 6 d the remaining qua raalways satis e,

and Eq. (15) reduces to

r, (q) = 13~Qq (1—-',Q2)/4OO. (16)

m lete the calculation, asas we havep

'b ( ) i o1 h
ffectrve couph g o

expan ed d incorrectly by u oi
should read

(10 1n2+2)+0(Q)}.r (q)„= (18)

11) (16), an d (18) we have for theCombining Eqs. (
plasmon level width r (q)

r (q) = (~q'Q, ''/60) L(10 ln2+ 2)—0 (Q)j
-9 13)

q4Q~ (10 ln2+2)+ 1——
300

g'(q) 30 4 9q2

(2n.)' 8m q' SQ„'

ond term in ith s expansion t rough-If retain the secon
ou, w . ,11) that t e ah dditional term inout, we see from Eq.
q is

lpss
'

b fore that &%~~= 2r(q),Assuming as e ore

AEyp n'Qy (10 ln2+2)q

aB 120

100

ex ression for r(q) to estimate a
view of the differences e

d i and discussion of q,and (19), his evaluation an iscu
not significant.

3. EXPERIMENT
~ ~

d of the characteristicMeasurements aave been ma e o
-k.eV electrons pass'sing through a

f t' f 1 t
ca he e of the apparatus

1 t =1 d Fwas =1 eV an t e an ular reso u ion-
ns e, =q,/8=20 mrad.q

db 0 d2319 rad for scatte ng g
'n an les etwee1. mra
are shown in Fig.som

h d d =15-Vhalf-maximum in
red at each angle an p o e

Fi 2 Atth 1 tttion o
1 1 f,hcessa to assume a evanggles it was necessary

in le-electron exci a io't tions a line shapecontinuum o sing e-e
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for the undispersed peak at =15 eV, and that the
dispersed loss peak was symmetrical. ' While it is be-
lieved that these assumptions were reasonable, the
spread of the experimental points in Fig. 2 indicates the
degree of uncertainty in the measurements.

4. COMPARISON OF THEORY AND
EXPERIMENT

The theoretical expressions and the experimental
results for the broadening of the Al plasmon loss peak
can be expressed as a function of scattering angle 0 by

hE =A 80'+C84 (21)

0 mr

7.7

ll.5 m

13.4 m

15.4

172

19.2 m

Zl, l m

1/2 + 7

where the constants 8 and C are appropriate to the
primary electron energy of 20 keV. Values of the con-
stant A have been obtained recently for Al and two
other elements and have been compared with the
relevant theory. "

The data points shown in Fig. 2 have been fitted to
Eq. (21) by the method of least squares. Similarly, the
data points plotted by Kunz' have been fitted by us

v) 5.0

O
uj 4.0

n 3.0
O
Z
o 2.0

I.O

0
0 50

l I I I I

100 I50 200 250 300 350 400
8 (mrad )

FIG. 2. Plot of measured full-width at half-maximum intensity
of the dispersed plasmon loss in aluminum as a function of the
square of the scattering angle tII. The solid line is the computed
least-squares quadratic fit to the experimental points.

TAsx, E I. Theoretical and experimental values of the constants
8 and C in Eq. (20). The errors quoted for the experimental values
are the standard errors derived from the least-squares fits of the
raw experimental data; no contributions have been included for
the sources of systematic error discussed in the text.

and the two sets of experimental values of 8 and C are
shown in Table I. Two qualifications need to be men-
tioned in using these experimental values of 8 and C.
Firstly, no correction has been made to either set of
experimental data to account for the energy width of
the primary electron beam and the finite energy resolu-
tion of the analyzer appropriate to each experiment.
An unfolding operation has recently been performed on
an Al spectrum obtained at zero scattering angle from
which it was found that the unfolded half-width was
1.05 eV compared to the measured width of 1.35&0.04
eV." It might then be expected that the value of 8
found experimentally in this work could be too low by
up to 20% and that the value of C could be smaller than
indicated. Secondly, it is dificult to estimate any error
at the larger scattering angles associated with the un-
known shape and level of the continuum and with the
unknown plasmon line shape. From recent measure-
ments of the differential cross section for the Al plasmon
loss,"it would seem that any errors of the latter types
are unlikely to be appreciable.

Theoretical estimates of the values for 8 and C using
Eqs. (1), (3), and (20) are also shown in Table I. It is
seen that there is satisfactory agreement between the
theoretical and experimental results of the present

0 5 10 15 20 25 &0

ENERGY LOSS, eV

Fzo. 1. Recorder traces of characteristic loss spectra obtained
with a 1000-A, aluminum specimen for the various electron scatter-
ing angles indicated. The occasional spikes are noise pulses due to
electrical breakdown. The dashed lines indicate the continuum
levels assumed in obtaining the half-width of the dispersed peak.

"N. Swanson, J. Opt. Soc. Am. 54, 1130 (1964).

Theory:
Nozieres and Pines

LEq (1)7
DuBois LEq. (3)7
This work LEq. (19)]

Experiment:
Kunz (Ref. 9)
This work

"Reference 6, Fig. 3.

1.87 X104
1.33X105
2.96X108

6.83X107
2.25X10'

—(9 5~5.2) X10~ (1 5~0 3)X108
(3 5&1 1)X10' (1 '/&0. 3)X10'
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work. Values of 8 obtained using Eqs. (1) and (3) are
'

h r than those found here experimentaly,
e ative.h l th l i of 8 found from Kunz's data is nega ive;

this latter nonphysical result might possi y e ue

bl to assume that the discrepancies etweenreasona e o a
the theoretical and experimental vaues o

d d above, to the approximations

Sec. 2, and to the assumption AE'~~2=-', g,=-'F and to
departures from the free-electron theory caused by the
lattice.
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APPENDIX

We first carry out the t integrations in qE . ~9~ using the identity

x(—1)"
dt e "~&"&t "= La(k))" 'sgna(k),

(~-1)!
and find after some algebra that

00

dt fg'(t) exp{it)k —(0/k) j}= (2~ k' —
g

—
g/ '){—(2—k)+2g(2) —a(k+2)+2kLi(1 —lk) —i(lk+1)J}

where

and

0 l-1/0 l' 1 0
+

~

—
~

—~+
k ) 3!kk / 4! k

dt I, t kq t = 2m/k'){ —t(2 —k)+2t(2) —t(2+k)+k/s(1 —2k) —s(1+~k)1},
00

6 7-,0 ' 9 0 ' 12tQ l' 6 0
= ~-,';,~-,-) —.

, (-,-);„-,—; —.„-,—, -„-,-)

(A2)

6-

, )(
lved that it is very easy to make errors. KeTh ing integrals over k are elemen y,ntar but so many are invo ve a i

te rais
e remaini

o of Mellin transforms. We shall i ustra e ell t th technique for one of the k in egtherefore appeal to the method of e in rans o
of Eq. (9). Consider

I.(Q) =
~

— dt expLit(k —(0/k)) jf~'(t) .
' (dk

, kk

Using Eqs. (A1), (A2), and the identity

0 0 l" k"z&+"(—1)"(P—1)!e!
z Rej)0,

the Mellin transform of I.(Q) is

M(p) = n 'L, (n)de=2~(p —1)!

&&
-'2' ' 3)-4S(+4)+4f(p+&)3-*-'2"If9+3)-f8+4)3}, ~ &0, A3&&

x~'2'~' 3—
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( )r+na (1+x)™(1 x)n+-—2+(1+' . f'(p+~) =
(p+m) .f(p+~) =

(p+m)!
~ „formu»Mellin ~nHence by the e

~(~) (1/2~i)
+goo

m( )11 'dp e &0.

0 Thns, we have(A3) have a po eThe integrals over

m '.(1+.,).+-)Z*/(P+[(1—)"" 2+, 3f(p+m)dx=

(A4)„-i(p+m—2)!jdx„s +m) —x"

x f'(P+ -)
(p+m-1)—

+
(p+m —1) '

1

„2f(p+m)dx=

=(1/P(P+ -")+ [x f(P

ot Eq. (A4)»llcltly. eThe second termb t the pole exPtx otoexhl 1exp an the ln tegrand abou

2' '

where we
0. Similarly

1

dx)

rgein«ap=

write

0 "dP
-'" (p-1) t

I-(il) =-.
C—soo

1 4 4

-(+1) (p+2) (pt +3) I

22@+1

-( +2)! (p+3)!-

+4 f(p+5)
,

)——4 f(P+4)
C+soo X2

(p—1)! dx
0 (p

0 "dp.f'(P+4)+ 3)-—2&x"—' f (p+3)+

nd has single poles onlyt = —1, —2, while the secon as
'

in le poles at p= —1, —,w

e 6nd the following results.Similarly, we n

= -'vrQ' —-'vrQ'+O(04),dt exp it k —(0/k))jf/(t) =F0 —6'

k —(n/k)) jf,2(t) =-,'~n&,k3dk dt exp[it(k 0P =—-'n.Q',

it k —n k, =2~ n2(-,' —ln2)y(n'/12) j.it k —0 k)))fg(t)kl, (t) =2vr[Q' —,—nkdk dt exp[

su s i
' E . (9) to obtain Eq. (10.substituted into Eq.ma be collected and su s i
' E .The a ovh bove results may e c


