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The penetration, scattering, and absorption of electron beams of energy 10 to 20 MeV in water has been
mathematically investigated by solving the Lewis equation by the moment method under the continuous
slowing-down approximation. Two beam geometries were considered: plane infinite monodirectional beam
and point monodirectional beam, both incident on an infinite water medium. For the former, expressions
were obtained for the flux, current, rate of energy deposition, rate of charge accumulation, and angular
distribution as a function of depth, taking into account not only the incoming primary electrons, but also
the contribution of the secondaries. For the latter geometry, expressions were obtained for the root-
mean-square average of the flux and energy deposition as a function of depth.

I. INTRODUCTION

HE penetration, scattering and absorption of elec-

tron beams of energy 10 to 20 MeV in water is of

great interest to biophysicists in attempting to under-
stand the biological effects of radiation, as well as to
radiologists in planning the irradiation of malignant
tumors with minimal damage to adjacent tissue. Sources
or such high-energy electron beams are the betatron and
the linear accelerator, which have proved vital research
tools to both biophysicists and radiologists in the last
decade. These beams are nearly monochromatic. The
finite electron mass gives the beams a well-defined finite
maximum depth of penetration, as long as their initial
energies are low enough to make bremsstrahlung losses
a small part of the total losses. Knowledge of the rate
of energy absorption, the beam spread, the spectrum,
etc., in tissue-like matter is imperative in the proper
utilization of such beams. From a basic standpoint, the
problem has been mathematically explored under vari-
ous simplifying assumptions, by various authors. The
first quantitatively accurate solutions have been given
in the case of low energies (below 1 MeV) for a single
quantity, namely, the rate of energy dissipation.
Adawi? calculated this quantity also for higher energies
on the basis of the first three moments. Spencer! ex-
tended his calculations up to 10 MeV for some low
atomic number elements and for air and polystyrene,
but not water. Transmission curves in carbon and
aluminum have been obtained by Leiss e/ al® and
Perkinst by Monte Carlo methods. Our objective is not
only to expand the scope of the problem by deriving a
wide variety of physically meaningful quantities, but
also to treat it in its entirety, so as to include brems-
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strahlung production. However, the continuous slowing-
down approximation is retained throughout our treat-
ment. The pencil beam geometry has been previously
explored by Crew® using the moment method for 0.4-
MeV electrons in air, and recently by Berger® using the
Monte Carlo method for electrons up to 10 MeV in
water.

II. THE BEAM GEOMETRIES

Two beam geometries will be investigated : the infinite
monodirectional plane beam and the point-monodirec-
tional beam. Both beams are monoenergetic, and they
are embedded in a medium (water) of infinite extent.
The problem can be generalized to include beams of any
directional or spectral characteristics by linear super-
position of our solutions. The limitation to an infinite
medium enables one to solve the transport equation by
the moment method, as it is done in this paper. For a
medium whose thickness is much smaller than the total
track length, the problem is solved (approximately) by
invoking the small-angle small-depth approximation.
Monte-Carlo solutions are also possible for the above
cases as well as others: for example, for the case where
the thickness is neither very small nor very large.

III. THE TRANSPORT EQUATION

The equation pertinent to the problem of electron
penetration is

oI (r,R,Q)
—_—— V- (aD= / A orun(R,0)

X[I(I‘,R,Q’)—I(I,R,g)]-*—Q(T,R,Q) ) (1)

which is sometimes known as the Lewis equation. This
equation is simply a continuity equation in the phase-
space element dr=dV (dQdR) for the angular number
flux I(r,R,Q)I(r,R,Q) is defined so that I d2dR is the
number of electrons of residual range between R and
R+-dR moving in the direction of the unit vector  in
the element of solid angle d2 and crossing (per unit
& J. E. Crew, J. Res. Natl. Bur. Std. 65A, No. 2 (1961).

6 M. J. Berger, National Bureau of Standards Report No. 8678,
1965 (unpublished).
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time) a unit area normal to Q at the point r. The
quantity orus is a Rutherford-type cross section and
Q(r,R,Q) is the source term.

Equation (1) is based on the continuous slowing-
down approximation. This approximation arises from
an examination of the energy losses suffered by the in-
coming electron in colliding with electrons and nuclei in
the medium. The cross section for electron-electron
collisions is proportional to g%, where ¢ is the fractional
energy loss,” so it is weighed heavily toward very small
energy losses. These losses are then treated as continu-
ous rather than discrete and a function (the stopping
power) can be defined which gives the rate of energy loss
with track length.®—!! This assumption will be examined
further in the section on secondary electron distribu-
tions. The continuous slowing-down assumption is ap-
plicable to interactions resulting in excitation or ioniza-
tion, not to interactions resulting in production of
bremsstrahlung, in which case photons of large frac-
tional energies can be produced. For an incoming elec-
tron of 20-MeV energy, a total of 1.6 MeV of its energy
goes into bremsstrahlung. For 15- and 10-MeV elec-
trons, the amounts are 0.9 and 0.4 MeV, respectively
(in water). Although photons with an energy up to the
electron energy can be produced, the spectrum is
weighted toward soft photons. It was then decided to
consider the average rate of energy loss by brems-
strahlung,'? which was then added to the rate of ioniza-
tion loss. In the section on the rate of energy absorption
we will obtain the rate of photon production and absorp-
tion, and we will see to what extent bremsstrahlung
losses modify the results based on the continuous slow-
ing down approximation. From the total stopping
power we obtain the average track length R(7T) that an
electron of energy 7 will traverse. We next consider the
angular deflections due to nuclear, electron, and brems-
strahlung scattering. The relativistically correct nuclear
scattering cross section must be modified to include:
(1) the effect of screening of the nuclear field by orbital
electrons, (2) inelastic electron-electron scattering, and
(3) deflection due to production of bremsstrahlung.

The cross section that takes into account the first two
effects is the McKinley-Feshback cross section!®:

w7 & —2
2o Bu9) = 2(Z+1)(1—1) s+
234 2
¢ wBZ ¢ &
X I:l —p? sin?*—+4—— sin—(l - sin—>:| , (2
2 137 2 2

" W. Heitler, Quantum Theory of Radiation (Oxford University
Press, Oxford, England, 1954), 3rd ed., p. 240.

8 E. Fermi, Nuclear Physics (University of Chicago Press,
Chicago, Illinois, 1951), revised ed., p. 28.

9 R. M. Sternheimer, Phys. Rev. 103, 511 (1956).

©F. W. Spiers, in Radiation Dosimelry, edited by G. Hine and
G. L. Brownell (Academic Press Inc., New York, 1956), p. 27.

11 In the formula for the rate of energy loss (stopping power) the
quantity 7, the average ionization potential of the medium, ap-
pears. In this work the value =78 eV for water was used.

12 W, Heitler, Ref. 7, p. 251.

13 W. A. McKinley and H. Feshback, Phys. Rev. 74, 1759 (1948).
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where Z is the atomic number of the medium, T is the
kinetic energy of the electron in mc? units, 7o is the
classical electron radius, and 7 is the screening angle!4:15
for which Adawi’s expression? will be adopted here. Ac-
curate experimental data on such quantities as the
transmission function, and the flux of electrons may
indicate the extent to which this choice has to be
modified.

The effect of bremsstrahlung angular scattering is
about two orders of magnitude less than that of Ruther-
ford scattering.!® Its inclusion involves enormous theo-
rectical and computational complications, and was thus
omitted.

A pilot calculation, based on results of Brysk,!?
showed that, for the beam energies under consideration,
the flux of bremsstrahlung secondaries was less than 5%,
of the flux of Moller-collision secondaries and less than
19 of the primary flux. Consequently, in subse-
quent calculations, the bremsstrahlung secondaries
were ignored.

IV. THE PLANE INFINITE BEAM
Basic Considerations

The geometry of the source indicates that we should
use cylindrical coordinates for the space variables and
spherical polar coordinates to specify the direction of
the momentum. The energy is specified by the residual
range, R(E). Cylindrical symmetry considerations and
the infinite extent of the beam, reduce the space vari-
ables to one, namely, the depth 2, and the momentum
angular variables also to one, namely, the angle that
the particle makes with the z axis. Then Eq. (1)
becomes:

dI(z,R,9) dI(z,R,%)
— -+ cosd
OR 9z

= f 42 No (R,O)[I(zR,0")—1(3,R,8)]

' 8(1—cos8)8(2)6(R—Ry)

(€))
2w ’
where @, the angle between the directions Q, &/, is
given by

cos@=Q- Q'=cosd cos?’+sind sind’ cos(p—¢'),

and
dQ=sindddde.

4 N. Bethe, Phys. Rev. 89, 1256 (1953).

15 G. Moliere, Z. Naturforsch. 3a, 78 (1948).
(1;6513. Stearns, Phys. Rev. 76, 836 (1949) ; L. I. Schiff, :b:d. 83, 252

17 H. Brysk, Phys. Rev. 96, 419 (1954); D. T. Goldman and
H. Brysk, Am. J. Roengtgenol., Radium Therapy Nucl. Med. 74,
323 (1955).
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Fic. 1. The flux distribution as a function of relative depth
x=2/Ro. The total flux, curve III, is the sum of the primary flux,
curve I, and the secondary flux, curve II.

Ry is the residual range that corresponds to the initial
energy, Fo. Both z and R are expressed in units of g/cm?.
The distribution function, then, has dimensions of elec-
trons per unit solid angle, per unit residual range per cm?
per sec. N is the number of atoms per gram.

Following the procedure of Ref. 1, we redefine our
variables z and R as follows:

z=Rwx, R=Rd. 4)

Defining

1

I.()=2x / P;(cos?) sinddd / I (x,t,9)dx, (5)
0

-1
we arrive at the equations for I3, (Z):
oy, (t)
at

+S; (15)117, (t)

n
= Zl——l—lt DIy, 01O+ 1,210 ]

+8.08(1—2), (6)

where S;(f) is given in Ref. 2, Eq. (3), and else-

NIKITAS D. KESSARIS

145

where.1'18:19 The solution of Eq. (6) is

I;o(t)=exp{— /‘ 1dt’S,(t')} , @)

Iin (l) = n(21+ 1)_1110(15)/ [Izo(tl):l"l

X [(l+ 1)]1+1 n—1 (t')+l[z_1,n_1(t,)]dt’ . (8)

Setting cosd=1 in Eq. (3) (small-angle case), ap-
proximately S;(f) by

Si()=A10+1)2, 9)
and applying the Laplace operator

/  dmexp(peti—1)},

we arrive at

I(x,t, )= (27) 1 (24%)6(1—t—x)

Xexp{— (1—x)(442)78%}, (10)
from which
(32 av=4A4x(1—x)1. (11)
Equation (10) requires that
t+x=1, or x=1—t¢. (12)

Lifting the small-angle condition, we have the general
case
+x<1,

which we propose to investigate.

or x<1—¢, (13)
The Primary Distribution

We find the following quantities:

(1) The flux as a function of depth:

Io(x)= / dt / " sinddo I(xt,0)= f ldtlo(x,l). (14)
0 0 0

(2) The current in the x direction as a function of
depth:

1 T 1
I,(x)= / dt [ sinddd cosd! (x,f,3)= / dtI(x,).
0 0 0 (15)
(3) The rate of charge accumulation as a function
of depth:
Q@)=—dI(x)/dx. (16)

(4) The rate of energy absorption, i.e., the energy
per unit depth, per gram absorbed at a depth «.

18 G. Goudsmit and J. L. Saunderson, Phys. Rev. 57, 24 (1940);
58, 36 (1940).
13 H. W. Lewis, Phys. Rev. 98, 1597 (1955).
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TasLE I. Values for the parameters of Io(x), [1(%).

Ty @ A Ay Ay Ay A
Io(x) 39me? 0253 0253 0285 306 0 0
30me? 0322 0322 0374 4115 0 0
20me 0462 0462 0.569 6.63 0 0
Li(x) 39me 0295 0295 03385 0.386 0439 0.468
30me? 0340 0340 0398 0462 0.534 0.201
20me? 0410 0410 0494 059 0135 0

(5) The average angular distribution:
{(1—cos®)ay=[To(x)—I1(x)]/To(x)

as a function of depth.

(6) The average statistical relationship between
depth and track length:

®)av=To1(£)/L0o(t).

(7) The energy, or track length spectrum.

(8) The energy spectrum at various depths. The
quantities (1) to (5) will be found from their moments
(with respect to x) and the appropriate B.C.’s and their
behavior at (1—x)<1.

The moments of 7;(x), =0, 1, 2, etc., are

1
Tn= / dt I,()=
]

an

(18)

1
dx x*Ii(x),

-1

(19)

and can thus be immediately calculated from the I.(f)
which were themselves numerically calculated for all
1, n such that

I+nr<10.
The B.C. at x=0is

L,(0+)—1:(0—)=1 (20)
which under the assumption (to be validated later)

I;(x)=0, x<0, (21)

I,(0+)=1. (22)

The behavior at large depths has been shown by Wick?®
(in the case of neutron penetration) and Spencer! (who
adapted Wick’s treatment to electrons) to be

I;(x)~exp{—a*x(1—x)"}. (23)

Among the various methods of solution, the function-
fitting method proved to be the only fruitful one. A
simplified function-fitting solution, not making use of
the Gauss technique,” gave a fit to the prescribed
moments with an accuracy of better than 19, and had
the correct initial and large depth behavior. For Io(x)
and I;(x) the function was

becomes

I@)= (z Ag) exp(—ate(1—21)  (24)

» G. C. Wick, Phys. Rev. 75, 738 (1949).
2L, V. Spencer and U. Fano, J. Res. Natl. Bur. Std. 46, 446
(1951); L. V. Spencer, Phys. Rev. 88, 793 (1952).
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F1G. 2. The current distribution as a function of relative depth
x#=2z/Ry. The total current, curve III, is the sum of the primary
current, curve I, and the secondary current, curve IL

with Ao=1. The values of a2, 4; are given in Table I,
and Io(x), I1(x) are plotted in Figs. 1 and 2, curve I,
respectively, for To=39moc?. The rate of charge ac-
cumulation, Eq. (15), is readily obtained from 7:(x)
and plotted in Fig. 3, curve I. This curve, as well as
those for Io(x), I:1(x), will be considerably changed with
the inclusion of the contribution of the secondary
electrons.

The remarkable accuracy with which the moments
and the boundary conditions can be fitted by the simple
expression, Eq. (24), which ignores back scattering into
the region <0 indicates that back scattering is indeed
negligible. If the assumption of Eq. (21) is dropped and
a back-scattering term (of the form Beds/4+#) for
example) is included in the trial function, for best fit
this term must be extremely small. The back-scattered
component is likewise negligibly small for all the rest
of the primary-electron distributions that we will
investigate.

A function constructed from a finite number of
moments can, of course, be realized in many ways, with,
possibly, different results. Thus, a cross check on our
results is most desirable. Such an opportunity is afforded
by the distribution Zo(x,/) (see below) from which the
functions I;(x), Q(x), and Io(x) can be obtained inde-
pendently and compared to the results above. Such a
comparison is shown in Figs. 1, 2, and 3. Agreement is
very good.

The rate of energy absorption with depth, which finds
important applications in radiobiology and radio-
therapy, was also obtained. The details of the calcula-
tion and the results are reported elsewhere.?? This was
done by calculating the rate of total energy dissipation,
subtracting from it the rate of bremsstrahlung pro-
duction, correcting the result for the finite range of
knock-on secondaries, and adding to the result the rate
of bremsstrahlung absorption.

2 N, D. Kessaris, Radiation Res. 23, 630 (1964).
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F1c. 3. The rate of charge accumulation as a function of relative
depth, x=2/R,. The total rate, curve III, which is the sum of the
primary rate, curve I, and the secondary rate, curve II, is seen to
become negative for small depths. Experimental points are also
shown (see Ref. 20).

The quantity
{(1—cosd?)ay

has been obtained directly from the moments of
[Io(x)—I:1(x)] rather by subtracting I1(x) from Io(x),
both of which have already been obtained. This was
done because any small errors in the fit of Io(x) or 1,(x)
are magnified many times, especially near x=0 where
they are both nearly unity and also near x=1 where
they decay very fast. The moments (fon—i1n) Were
plotted on large semilogarithmic paper as a function of
(n-+2)2, The result was as perfect a straight line as the
plotting of the points permitted. This means that they
are given by the expression

ton—11n=B exp{—2d (n+2)12} .
We can then show that [Zo(x)—I1(x)] is given by
[To(x)—I:(x)]= Bdn—/2x(—Inx)~%/2 exp{d?*/Inx} . (25)

The decay constant is determined from zon—i1a, 7>>1.
B is found from

ioo—' i10= B exp{ —_ 23/2d} .

The parameters d?, B are given in Table II. The
quantity goes to zero as x— 1. This is so because the
particles that have arrived near x= 1 must have traveled

Fic. 4. The average
angular distribution,
(1—cosd)av, as a func-
tion of the relative
depth x=2/R,.

<1-c086)> av

Relative depth
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TaBLE II. Parameters of the distribution [7o(x) — 711 (x)].

T 39moc? 30moc? 20062
AN
B 1.262 1.671 2.547
d? 0.436 0.517 0.666
in a nearly straight line, so that
(cost)ay>1 or (1—cosd?)uy>0, x=~1.

The magnitude of the maximum increases and the
depth at which it occurs decreases as the beam energy
decreases, as it is expected on physical grounds. Plots
of (1—cosd),y are given in Fig. 4, for To=39m,c>.

The average depth that an electron with a residual
range ¢ has reached is given by Eq. (18). It is seen from
Fig. 5 (Ty=39moc?) that for most values of ¢, we have
(x)ay21—1.

The distribution of Io(x,t) was constructed from its
moments, the Jo,(f). On plotting (1—z)~"1o,(¢) for
any f, against (n+144)"? on semilog paper, a straight
line was obtained (with an accuracy of 1% or less)
when A4 was suitably chosen. The resulting distribution
is thus

To(x,0) =7~12d exp{2d (14A) 2} (1—£)~1—4

a2

Xx4(—Inx/1—8)~%2 exp l———} . (26)
Inx/1—¢

The parameters 4, d as functions of / are given in Fig. 6.

The energy spectrum Zo(x,T) is given by

To(e,T)=Io(x,)[dT/dT. 27)

Samples of such spectra appear in Fig. 7 for an incident
beam of energy 7.=39moc? A sample of moments
appears in Table IIL.

Normalized residual range

Fic. 5. The average penetration depth (x)ay as a function of the
normalized residual track-length, {=R/R,. It is seen that for most
of the range of ¢, we have (x)ay>21—2.
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TasiE III. Sample of the moments of 7¢?(x,t)
(round off to four significant figures).

(1 —t)_nIOnp (t)

Tn = 397}1062 To = 30’”“)02 To= 201’}'L062
n t=0 ¢=0.1 t=0 ¢=0.1 t=0 ¢=0.1
0 1.000 1.000 1.000 1.000 1.000 1.000
1 0.8048 0.8648 0.7815 0.8223 0.7378 0.8000
2 0.6591 0.7574 0.6247 0.7217 0.5638 0.6581
3 0.5468 0.6695 0.5073 0.6257 0.4401 0.5504
4 0.4584 0.5964 0.4172  0.5477 0.3499 0.4671
S 0.3878 0.5348 0.3467 0.4833 0.2821 0.4007
6 0.3309 0.4826 0.2910 0.4298 0.2304 0.3475
7 0.2846 0.4384 0.2466 0.3851 0.1903 0.3042
8 0.2467 0.3994 0.2107 0.3477 0.1590 0.2679
9 0.2146 0.3665 0.1807 0.3145 0.1340 0.2370
10 0.1881 0.3360 0.1562 0.2863 0.1135 0.2121
From Egs. (7) and (8) we have for the case [=0:

1

Ton(t=0) =n/ I, 01 ()dt 48 n0= 141, 17} Ono-
0

On the other hand,

1 1 dI(x)
/ Q@x)xrdx=— / — xrdx
0 0

dx

1
=i1,n-1F8no.

1
= n/ I1 (%)% dx—xmI 1 (%)

0 Lo

Consequently,

/ Io(x, t=0)xndx=/ Q(x)xdx
0 0

for all integral values of # such that #2>0. Thus,
Io(, 1=0)=Q(x).

Integrating this expression from «x to 1 we derive
1
/ Iy(«, t=0)dx'=1:(x).

The function 7¢(x) can also be derived from Io(x,?)

Io(x) =/ Io(x,l)dt.

Values of Io(x), I1(x), Q(x) obtained from Io(x,f) are
shown in Figs. 1, 2, and 3.

The Secondary Distribution

The integrodifferential equation obeyed by the
secondary electrons has already been quoted in its
general form in Sec. III, Eq. (1). In the case of an
infinite beam and an infinite medium, it reduces to
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The parameters d, A in |, (x,t) as functions of t
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Fi1G. 6. The parameters d, 4, which appear in I,(x,f), Eq. (26),
the path-length distribution at depth x.

Eq. (3), with the source term replaced by

Ro
)1 / as’ / dR'N p(R,R’)
ar R(2T)

X 6[“ KM (R’R,) ]Ip (Z,R,,Q,) ) (28)

where p(R,R’) is the cross section of the production of
a secondary with a residual range between R and R+dR
by a primary of residual range R’. It is related to the
Mgdller cross section by

p(R,R)dR=omgner(T,T")dT .
Also™%
r(R,R)=[T(T"+2)/T'(T+2)1",
where T is the kinetic energy of the secondary and 7"
that of the primary in moc? units. opger is given by
oMgter= 217282 T2— T'+1) (I'+ 1) T(T'—T)
F(T'= T+ (T'+1)2].  (29)

The Mgller formula has been shown to be valid for
energies up to 100 MeV.

2 C. Mgller, Ann. Physik 14, 531 (1932).
2% E. B. Dally, Phys. Rev. 123, 1840 (1961).
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Electron Energy Spectra; Tp=39 moc2
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F16. 7. The energy spectrum of electrons at various indicated
depths of penetration. The initial electron energy is 39moc?

In the reduced variables x, ¢ the equation is then

Ie) ad
[—-+cos0—]] 5 (x,8,3)
ot ox.

- / S (4, O[T+ (1,8 —I*(w,4,8)]

)1 ’ dt'G ,/ - ,/
+(2n) /“dnf“mt GO Lu—u(tt)]

le(x)tﬂy) ) (30)

where

G(t,t")=N.RoS oM T®),T'1)].  (31)

All the other quantities have been defined previously.
The equation for the Legendre-Moment coefficients is

i}
l:———-l—Sz (t)]]zn O =n(2+1)1
at

XL+ 1,01 O)FH 1,02 (O T+ R1a (@),

which has the solution

(32)

t(T0/2)
Ix* () =T (?) f [T ()T
é

X {—"—[(1+1)1m,n_1~+11,.1,n_1']+1e,,,(z'>} . 63)
20+1
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The quantities R;.(f) are given by
1
R, ()= 'GP )2 (). (34)
t(2T)
Finally, the moments are obtained by integration
1
'I:h.’=/ dtI,2(). (35)
0

Actual numerical calculation of the I;,°(f) shows that
they are extremely small at the highest energies (highest
#’s) and rapidly increase with decreasing ¢. A comparison
of the spectrum of secondaries, Ioo*(f), against the
primary spectrum, Joo?(¢), gives a quantitative estimate
of the validity of the continuous slowing-down approxi-
mation : the 109, point [70*(£)/100?(¢)=0.1] is reached
for t=0.17 for the 39moc* beam and ¢=0.160 for the
20moc? case. The 1009, point corresponds to values of ¢
between 0.0076 and 0.011 (Fig. 8). The average over-all
ranges of the secondaries as calculated from

Bav= /0 1 dt tToe* () / /; 1 dt Too* ()

are (#).,=0.0474, 0.0485, 0.0506 for the 39, 30, and
20moc? beams, respectively.

Comparing the relative magnitudes of Too* (£) to I10°(Z)
and, in general, to 7;°(¢), we see that the secondaries
are produced strongly in the forward direction, although
this trend is not as strong as that of the primary elec-
trons. Consequently, backscattering is expected to be
small.

The magnitude of moments 7;,° is at least an order of
magnitude less than the 4;,? so their contribution to the
flux, current, etc., will be correspondingly small. This
validates the perturbation-iteration procedure employed
to find the secondary electron distribution.

The moments 70,%, %1%, 4141%, Where

1
'il'nh:/ t[lns(t)dl
0

were carefully plotted and their asymptotic trend for
#n>>1 was examined. They were plotted on semilog paper
against (n-4)'2, where A was adjusted to give a linear
trend. In addition, the tentative omission of back-
scattering imposes the condition that all functions,

F1c. 8. The electron
spectrum as a function
of the normalized re-
sidual track length,
t=R/Ro.

T,39myc’

I Secondary
11 Total

Electrons/cm_‘\, sec,at interval

".0001 .00l .01 .1 1.0
Normalized residual track length
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TaBiE IV. Values of the parameters of I¢*(x),
1,5(x), Iis(x), {t cosd)av®.

103 (x) Ils (x) Ills (x) (t COSﬂ)av‘

39moc? A 0.375 0.124 0.0199 0.0532

a 1/2 1/3 1/2 0

a? 0.34 0.42 0.93 0.59
30moc? y| 0.373 0.125 0.0201 0.0540

a 1/2 0.40 1/2 0

a? 0.41 0.50 1.10 0.69
20moc? A 0.386 0.110 0.0195 0.0504

a 16/30 13/30 16/30 0

a? 0.54 0.64 1.28 0.74

I (%), I:°(x), etc., are zero at x=0, so their behavior
near x=0 is as a positive power of x:x% Under the
same assumption it can be shown that a<1.

It was then found that the moments of the secondary
flux, current, etc., together with their initial and asymp-
totic behavior, can be fitted by the following simple
expression:

Az exp{—a?x(1—x)"}.

The appropriate values of 4, a, a? are given in Table IV.
The total flux, current and charge are simply

Io?(0)+1o*(x), I1?(x)+1r*(x),
Q7 (0)+Q* (%) =— (d/dx)[11*(%)+11* (x)],

respectively. The rate of secondary charge accumulation
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becomes negative, for small values of x. This means that
charge is knocked out of this region into a region of
greater depth. So for x<1 we have a region of positive
charge. This actually has been confirmed experimentally.

The quantity I;'*(x) was constructed in order to
obtain {f cosd).v?, the average component of the residual
range in the x direction. It is used to correct the rate of
energy absorption, to take into account the finite range
of secondaries.

In view of the small contribution of the secondary
electrons to the various quantities under investigation
(except the energy spectrum) the contribution of the
tertiaries will be in turn, much smaller than the second-
ary. Consequently it was not calculated.

The secondary flux, current and charge are shown by
curves IT in Figs. 1, 2, and 3, respectively. The total
flux, current and charge is shown by curves IIT of the
same figures.

V. THE POINT MONODIRECTIONAL BEAM

The geometry of the problem indicates the use of
cylindrical coordinates (r,¢,2) for the position variables
with the z axis lying along the line of fire, and spherical
coordinates (&, ®+¢) for the direction of momentum;
the angle ® is chosen in a way that ®=0 refers to a plane
defined by the z axis and the point (r,¢,2). Finally, the
magnitude of momentum is given again in terms of the
residual track length, R(f). The transport equation in
the reduced variables, 7= Rop, 2=Rox, R= Ry, is

a d 9 a
I:—-——!-cosz?-——}-sim? cosd——p~! sind sind)—:ll (0,9,%,t,®)
0o

ot x dp

= / aQ'S (t,0)L1 (o, ,2,1,2") — I (0,8, ,,8) I+ (2m) 1578 ()8 (1 — cosd}) 6 (x)6(1—1),  (36)

where

I(p,’l?,x,t,@) =Rl (rydaz7R:¢)7 S(t)®) = RoS(R,@) .

Applying the operator

1 1 2w T
L= / pPpdp / x"dx / exp (im®)dd / Py, (cosd) sinddd
0 -1 0 0

to Eq. (36), and defining

LI(p0x,t@2)=I1,m™?(f),

there result the equations for I;,,»?(f):

[—(©/3)+S:() 11, m™? () =1 24 1)7[(—m+ DI 1p1,m™ 2 () + (+m) 1w 7 (1)]
+ @2 (p+m)[(—m+1) Q—m+2) 111, ma™ 27 () — (+m—1) (+m) g, ms™P 2 (D) ]

— @42 (p—m) [ y1,mp1™ 7 ()~ T1o1,m41™ 77 (£) ]H8 00 n0dmod (1 —12) ,

where S;(¢) is already defined. Here m=—p, — p+2,
—p+4---p—4, p—2, pand 1> |m|. The I} ,»2(f) were
obtained for all values of /, %, p such that

<10, p<a
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Equations (37) are solved chainwise starting from
p=m=0. Then one proceeds to p=1, m==1, and then
to p=2, m=—2, 0, 2, etc. The I;,,»?(#) decrease
rapidly with increasing values of p, so only values of
p< 4 were considered.



F1c. 9. Point mono-
directional beam. The
mean-square radial de-
viation of the flux
{p?ay! as a function of

the relative depth,
x=Z/Ro.
0 2 4 6 .8 10
Relative depth
The integrals
1
= / oo (O)dt,
0
(38)

1
fomtr= / SO L2 (0)dt
0

were obtained. From these moments a variety of
quantities can be constructed. Here we report on only
two:
(1) The mean-square average of the flux as a function
of depth:
(p%)av! =T 0,07=2(x) /T 0,07="(x) . (39)

(2) The mean-square average of the rate of energy
dissipation:

(p2)av? =T o0,0?=2(x) /T 0,07~ (%) . (40)

The moments of Io,0?=% Jo,0?~2, plotted on semilog
paper against (#-+4)Y?, indicate that JIo,0?=%(x),
Jo,0*=%(x) behave exponentially for |1—x|<&1 [see
Eq. (23)] and as «® for #<1, the latter agreeing with the
small depth, small-angle approximation.?%:26

The functions Io,0?=2(x), Jo,0?=2(x) are of the form

Fr)=As3(1—x)7exp{—a*x(1—x)"1}. (41)

The parameters 4, v, a? are given in Table V. The
{p2)av!, (p¥)av” are plotted in Figs. 9 and 10, respectively.
They exhibit a maximum at moderately large depths,
decaying to zero as x— 1. This is expected, since the
particles that have arrived near =1 must have suffered
practically no deflections. The quantity {p?)av’, Fig. 10,
is compared to the same quantity obtained from
Berger’s Monte-Carlo calculations for the quantity
F(J,M) (Berger’s notation), the energy dissipation at
various depths as function of lateral position, by calcu-

TaBLE V. Values of the parameters in Jo?™2, Joo?=2

NIKITAS D. KESSARIS

TooP2 Joo?~?

T 4y @ 4 oy @
39moc? 0.226 —1 0.57 0.188 —1 0.57
30moc? 0344 —1 0.68 0.297 —1 0.68
20mc? 0.801 —% 0.75 0.879 0 0.57

25 B. Rossi and K. Greisen, Rev. Mod. Phys. 13, 240 (1941).
26 [, S. Snyder and W. T. Scott, Phys. Rev. 76, 220 (1949).
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lating the sums
2o {paYF (T, M)=23" ar 5 (o2 paer i) F (T, M) .

Some error is expected in substituting % (pa®+pas1?)
for (pu?), especially for low M values. Agreement at
most points is satisfactory.
It is of some interest to write the generalization of
Eq. (13):
ot (10 (42)
In particular:

<x2 (l) >8V+ <P2 (t»av
=[10,0%(8)+ 10,02 (t) ]/ L0,0"°(1) < (1—1)2,

({(@2(0))av)avt (s (O))av)av < 3.

VI. CERTAIN COMMENTS ON THE
NUMERICAL CALCULATIONS

from which

The solution of our problem has proceeded along
exact analytical lines up to the derivation of a mathe-
matical expression for the quantities I;,.(f) and
I1,m™?(¢). The last step, the evaluation of this expres-
sion, had to be done by numerical methods. The
numerical work proceeded in the following way.

First the rate of ionization and radiation losses was
carefully recalculated and checked against calculations
of other authors. Next the range was computed by
means of

R(T)= / ' dT/S(T)

and plotted against energy. The result is very nearly a
straight line for 7"> 2m,c%.

Then the quantities S;(¢) were computed as a function
of the kinetic energy T (7" is expressed in moc? units, as
usual) and then plotted against the variable ¢, to
obtain S;(¢). The method of derivation of S;(f) imposes
the restriction 7l<<1. In m0c? units this becomes:

3N NT(TH+2)T*K1.
This condition is amply obeyed by all the quantities

0.081 Pencil Beam: Average Radial Spread of the Energy
Dissipation: Ty=20mpc?
0.07+
0.06}- + From Bergers Monte Carlo
Results
005}
ﬁ)
s -
“é} 0.04
v oo3t-
oo2t- ST
001~ oa
o i ! 1 1 1 ] 1 ! )
[¢] Ol 02 -03 04 05 06 07 08 08 10

Relative depth

Fic. 10. Point monodirectional beam. The mean-square radial
deviation of the rate of energy dissipation {p%)ay’ as a function
of the relative depth, x=2/R,.
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that were calculated. The S;(¢) and /3! Si(f)dt are in-
creasing with decreasing #, so the I(f) are all equal to
unity at =1 and decrease monotonically for ¢<1. The
rate of decrease becomes faster with higher values of /.
The quantity I;0(#) was calculated for all ¢ such that
I10(¢) > 1075 except for I=1, where I1o(f) >10-2. Thus,
for To=39moc? and I=1, we have {eyiox=0.0002,
T cutoi=0.06moc?, and nl= (48.2)~1. For =10, we have
teutoff =0.3, T cutori=10.5m10c? and gl= (156)_1 The Sl(t)
and all subsequent quantities were obtained for a large
number of closely spaced values of ¢, with the aid of a
desk calculator. The I1,(f), 11,m™?(@), 1,0, i1,m™P Were
calculated by an IBM 7090 computer.

Finally, the construction of the various functions
from their moments was done with the aid of a desk
calculator and tables of the various standard functions.
A computer was not found particularly useful in this
situation because of the changing algebraic structure of
the trial functions from one trial to the next.

VII. COMPARISON WITH EXPERIMENT

In a comparison with experiment, it is desirable that
the experimental conditions closely approximate the
theoretical boundary conditions. For comparison with
the plane parallel beam results, a wide, monodirectional,
monoenergetic beam of uniform cross-sectional intensity
is desired. The dimensions of the medium should be
larger than the maximum electronic range. It is difficult
to satisfy all these requirements experimentally. The
experimental requirements are made less stringent
when the principle of reciprocity between source and
detector is taken into account; for example, data on the
plane parallel beam of a given finite (or infinite) size
can be obtained from information on a narrow (pencil)
beam: an integration over the pencil sources constitut-
ing the finite (or infinite) beam is equivalent to an
integration over the appropriate range of p, at the
depth of observation, of the results of a single pencil
beam. The nonuniform cross-sectional intensity of the
finite beam can also be taken into account by use of an
appropriate weight factor in the integration over p.
However, to the author’s knowledge, there are no
experimental data at points off the central axis.

If the experimental beam is not initially monochro-
matic but possesses a known spectrum, comparison with
theory is still possible by appropriate superposition of
theoretical curves with various T'.

However, the methods of obtaining an electron beam
of a given cross-sectional area introduce into the beam
certain undesirable features. In order to obtain a wide
beam of reasonably uniform cross-sectional intensity,
the emergent betratron beam which is very narrow is
scattered by thin foils of aluminum and/or lead. This
changes the monochromatic nature of the beam by
creating a spectrum of electrons with less than the
maximum energy. It also produces a small but notice-
able amount of bremsstrahlung x rays (a 20-MeV
electron traversing a foil of 0.027 in. of Al and 0.010 in.
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of Pb loses an average of 0.86 MeV to x rays; this is to
be compared with the 1.6-MeV bremsstrahlung loss in
the water medium itself) which tends to extend the
deep penetration tail of the distribution.

The scattering foils also destroy the monodirectional
nature of the beam. Without the foils the beam already
has divergent properties and is contained in a cone of
half-angle of about 5°. The foils strongly increase this
divergence. Even though the beam is subsequently
collimated by a Lucite cone of the desired cross section,
the beam emerging from the cone still contains many
strongly divergent components. The result is that the
maximum of Jo(x) will be shifted towards lesser depths
and will display a less steep decay after the maximum.
The functions 7;(x) will also display an earlier and less
steep decay, which means that

Q(x)=—dI(x)/dx

will exhibit a broader maximum. This is experimentally
observed.

The production of bremsstrahlung has a similar effect
of decreasing the steepness of the curves at large x and
of extending the tails beyond the maximum electronic
range. The statistical nature of radiative energy losses
means that there will be some electrons that have
suffered more losses or fewer losses than the average.
Those which lose less by this process will be able to
travel more and thus slightly extend the deep penetra-
tion tail of the distribution.

A set of experiments was performed at Memorial
Hospital to obtain the quantity Q(x) and compare it
with theory. The experimental points are shown in
Fig. 3.2 As already anticipated, the maximum is
broader, but still very near the theoretically predicted
depth. The experimental data also confirm the existence
of a region of positive charge at small depths.

The existence of a rather narrow region of charge
accumulation at relatively large depths has also been
observed in dielectrics by various authors.28

A set of current distribution (transmission) curves
was calculated by Leiss® by Monte-Carlo methods,
taking into account ionization, scattering, and radiation
straggling. The medium was carbon. The results are
closely similar to ours; the effect of radiation straggling,
while noticeable at 20 MeV, is again seen to produce
simply a small stretching of the curve toward larger
depths.

Experimental current and charge distributions have
been obtained in Plexiglas and aluminum for low-energy

electrons (2-3 MeV).? It is seen that qualitatively the

curves are similar to ours. For the low-energy beams
considered, one would expect the current to decrease

2 ]. S. Laughlin, H. Astarita, J. Reisinger, and M. Danzker,
presented at the 48th annual meeting of the Radiological Society
of North America, 1958 (to be published).

(1;2];). Gross, Phys. Rev. 107, 368 (1957); J. Polymer Sci. 27, 137
® J. G. Trump, K. A. Wright, and A. M. Clarke, J. Appl. Phys.
21, 345 (1950). I Apn v
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much faster with depth, and the region of maximum
charge accumulation to be at a smaller relative depth
than ours. This is indeed what was observed. However,
the region of positive charge for x<1 was passed un-
noticed, probably because at these energies it is confined
to a very thin slice near x=0, and it is thus difficult to
detect experimentally.

A set of Monte-Carlo calculations were performed
recently by Perkins? to obtain transmission curves in
aluminum for electrons of energies between 0.4 and 4.0
MeV. Although there can be no quantitative comparison
between these results and ours, Fig. 2, the curves are
qualitatively similar.

NIKITAS D. KESSARIS
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This paper reports the results of a low-temperature NMR experiment on Eu!® in EuO. The data, which
are assumed to be linear with magnetization, are compared with calculated values using spin-wave theory.
Values of J1/ks=0.75020.0025°K and Jz/ks=—0.0975-+0.004°K are found to give a good description
of EuO. This paper also reports the results of NMR studies of the ligands F9 and Cs%%” in EuF, and CsEuF;.
These experiments indicate that there is a reversal in sign of the unpaired spin density of the europium ion.
The same results are obtained with europium-bearing glasses. This effect is discussed in terms of
the Freeman-Watson model of Gd®* and in terms of a virtual 5d state in Eu?t.

INTRODUCTION

HIS paper presents the experimental results of

some nuclear resonance experiments on the Eu!%
resonance in ferromagnetic EuO and on the Cs'¥, F9,
and B! resonance in some paramagnetic Eu salts and
glasses. Since the two experimental techniques are
different and since the results given are in a limited
sense different they will be discussed separately in the
paper. On a more general level, however, the NMR
experiment, whether done on the magnetic ion in a
ferromagnet or on a ligand in a paramagnet, always
measures the local field at the nucleus involved. This
local field differs from any external field by the amount
of electron-spin polarization at the nuclear site. The
electron-spin polarization results ultimately from the
amount of unpaired spin on the magnetic ion (the 4f
electrons of the europium ion in this case). The spon-
taneous magnetization of a compound results from a
favorable alignment of this unpaired spin distribution
throughout the crystal. In the magnetic metals the

* Work supported in part by the U. S. Air Force Office of
Scientific Research under Contract No. AF 49(638)-1230.

t Present address: IBM Systems Development Division,
Poughkeepsie, New York.

conduction electrons are slightly polarized and bear the
magnetic information from atom to atom. In the in-
sulators, such as EuO, there is a polarization of the
core which results in the large hyperfine interaction
and a polarization of the valence electrons which results
in the exchange and thereby the magnetic alignment.
By probing with nuclear resonance one learns some-
thing about the spatial variation of this polarization
of the nonmagnetic electrons.

NUCLEAR MAGNETIC RESONANCE IN
FERROMAGNETIC EuO

Uriano and Streever! have found the nuclear reso-
nance of Eu'®® in EuO at 4°K by using the spin-echo
technique. They report echoes over a 20 Mc/sec wide
frequency range from 125 to 145 Mc/sec with a maxi-
mum intensity at a frequency of 138 Mc/sec. The study
of this resonance by cw techniques is reported in this
paper.

The most striking difference between the two experi-
ments is the cw linewidth which is =80 kc/sec at 4.2°K.
Uriano reports values for 7' (9X10~3 sec) and T, (40
X 1078 sec) obtained from the spin-echo experiment which

1 G. A. Uriano and R. L. Streever, Phys. Letters 17, 205 (1965).



