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The frequency response of the output power of a single-mode He-Ne gas laser has been studied in detail.
This has been. done in order to obtain information on the effects of atomic collisions on the frequency re-
sponse of the individual atoms. At the operating pressures, the collision widths were considerably smaller
than the Doppler width. From these measurements we Gnd that in addition to pressure-dependent broaden-
ing due to hard collisions, there exists appreciable broadening due to soft collisions. Furthermore, we And
the atomic collisions lead to an asymmetry in the average frequency response of individual atoms. It is
shown that this slight asymmetry of the atomic response leads to a sizable shift of the frequency of the
minimum of the Lamb dip where the effect of saturation is maximum. This shift has been obtained and is
found to be pressure-dependent.

l. INTRODUCTION

ASEOUS lasers (optical masers) make a powerful~ tool in spectroscopy by providing a coherent,
monochromatic light source of high intensity. Thus,
many of the techniques of microwave spectroscopy can
be transferred to the optical region of the spectrum. In
this paper some measurements are reported concerning
the behavior of the output power of a He-Ne gas
laser. The work is a continuation of that reported in
previous letters. ' '

Just as the ammonia maser provides information on
the spectrum of ammonia itself, the He-Ne gas laser
may be used to obtain spectroscopic information about
the line shape and pressure broadening of the 1.15-p,
transition of Ne responsible for laser action, 2p'('Erts')
X4s(7=1)—+ 2P'('Eqtse)3P(J= 2). The method used
is to measure the output power of a gas laser as a
function of its frequency while the laser is operated in a
single longitudinal mode (single-cavity resonance) and
its frequency is tuned by changing the distance between
the mirrors comprising the cavity.

As the frequency approaches that of the peak. of the
atomic transition (atomic resonance), the gain of the
medium increases and the output power may be
expected to rise. However, it has been predicted by
Lamb' that in a gas, at short wavelengths, the power
output of the laser is limited by saturation to a value
which is smaller at resonance than on either side of it.
The frequency interval of the "power dip" where the
excess saturation occurs is of the order of the atomic
linewidth, inclusive of pressure broadening, but not
including Doppler broadening. This power dip was
initially observed by the authors' and by McI'"arlane,
Sennett, and Lamb. ' Details of the atomic line shape are
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2. EXPERIMENTAL

I'igure 1 is a block diagram of the apparatus. A
He-Ne laser of sturdy construction was used. It had
internal plane mirrors coated for high reactivity at the
1.15-p, transition of neon. The discharge was maintained
by a radio-frequency transmitter delivering approx-
imately 30 W at a 14-Mc/sec frequency. The mirror
separation was about 50 cm and could be changed
slightly by sending current through coils wrapped
around four Invar spacers, thereby causing magneto-
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FrG. 1. Block. diagram of the apparatus for measurement of the
power output of a gas laser as a function of its frequency.

e Notwithstanding the warning issued in Lamb's paper LRef. 3,
p. A1448, Sec. 18$.
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manifested in the exact shape of the dip and can be
inferred by numerical analysis of it. Experiments have
been repeated at several different gas pressures; this
way collision cross sections have been obtained.

In order to get this information, Lamb's theory of
the optical maser' must be generalized to include
arbitrary line shapes and eRects of distant atomic
collisions causing an "inhomogeneous" line broadening.
A restatement of Lamb's theory in simple terms will be
given, ' and a generalization to include the above
e6ect oRered.
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FIG. 2. Actual recording of power output of a gas laser as a function
of cavity length. The multitude of traces is explained in the text.

striction. ' In order to ensure stability of the laser
frequency over a period of a few minutes while the data
were taken, it was important to insulate the laser
acous lcacoustically and thermally from its surroundings. This
was achieved by putting the laser on a heavy tab e1

which was placed on top of inQated airplane inner tubes.
The table had a resonant frequency of approximately
5 cps. The room was temperature controlled and
magnetostrictive currents, as well as the excitation of
th plasma, were kept as constant as possible. The
laser was 6lled and sealed off to a relatively high initia
pressure at the desired composition of He and Ne".
Enriched Ne22 isotope was used throughout this work.
In order to change the pressure of the active gas while
maintaining its composition, evacuated bottles of known
volume were attached to the active volume of the laser
via break seals. This allowed changing the volume of the
gas in several steps after each filling of the laser. The
initia] gas pressures were measured with a membrane
manometer during Ailing of the lasers and were accurate
to about 10%. Greater accuracy in gas pressure meas-
urement would involve taking samples of the gas during
the actual running of the experiment since there is
penetration of the gas into the walls. (After a full

purnpdown cycle, including baking of the tube, as much
as 2 j~ of the previous neon content still remained!)

The ouptut power of the laser was measured using an
RCA 7102 multiplier phototube without any attenua-
tion and was displayed on the I' axis of an X-F recorder.
The X axis was proportional to the current across the
magnetostrictive coil, and so, indirectly, the frequency
of the maser was recorded on a recurrent scale as
successive cavity resonances entered the frequency
region of high gain of the Doppler-broadened transition.
An actual recording is reproduced in Fig. 2.

The laser was operated in a single longitudinal mode
of the cavity and all transverse modes were eliminated.
This was achieved by accurate alignment of the mirrors,
low excitation powers, and short discharges. There was

6 9l. R. Bennett and P. J. Kindlmann, Rev. Sci. Instr. 33, 601
(1962).

indirect evidence of single-mode operation since the
laser, when tuned, stopped oscillating between intensity
maxima. The absence of irregularities of any kind in the
data, and their excellent fit to the theoretical expres-
sions, also confirm single-mode oscillation.

Care was taken to eliminate the Zeeman effect due to
the earth's or stray magnetic fields by providing p-metal
shields surrounding the discharge tube. The output of
the laser was linearly polarized. The direction of
polarization remained entirely fixed throughout the
range of laser tuning.

In order to study the inherent asymmetry of the
neon line shape, some sources of spurious asymmetry
were carefully eliminated. The isotope Ne" was chosen,
because the presence of Ne" in the gas mixture would
cause an asymmetry opposite to the one observed
experimentally. For this very reason the results on
asymmetry are lower limits. Also, it can be estimated
that spurious resonances within the interferometer
mirrors or coating themselves can cause asymmetries
which are smaller by at least an order of magnitude
than the observed values. Moreover, these asymmetries
were obtained with at least two different sets of mirrors,
which tend to rule out any accidental coincidence in
this direction.

3. ANALYSlS OF MEASUREMEHTS

Results were analyzed on a digital computer. Curves
similar to those in Fig. 2 were fitted to a theoretical
formula containing 6ve free parameters. This theoretical
formula, the outline of the calculation, and various
experimental correction factors are presented in this
section.

In Pig. 2 there are many tracings of various heights,
corresponding to different discharge intensities. Later-
ally, each tracing is made up of three repetitions. These
arise from three consecutive modes of the Fabry-
Perot cavity characterized by 2J/X=m+1, n+2; where
I.is the cavity length, ) the wavelength of the light, and
n is of the order of 10'. This repetition calibrates the
X axis in terms of frequency, the spacing between
modes being known. As the length of the laser increases,
the frequency of oscillation of a given mode decreases
until the next mode has higher gain and begins to
oscillate. Then the laser frequency jumps to its highest
value (in single-mode operation) and as the length
continues to change, the frequency starts to decrease
again. Only the central mode was analyzed; the two
others served as checks and were also used to correct
slight distortions due to the apparatus. It was important
to eliminate these distortions in order to arrive at
valid parameters, especially in measuring asymmetric
line shapes. '

There are two experimental imperfections for which
corrections have to be made, both connected with the
magnetostrictive tuning technique. The X axis of

~ K. Shimoda and A. Javan, J. Appl. Phys. 36, 718 (1965).
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Y=A LB—exp(x')1 1+ . (45a)
C+(*—Z)2

Ordinates from the center portion of each trace were
read o6 in arbitrary units, one for each small division on
the X scale, and were fed into the computer. The
computer program Gtted experimental data with five
free parameters, ABCDE, calculated the mean-square
error, and tried to reduce that error by choosing better
parameters. As the equation is nonlinear, an iterative
procedure was adopted. As a function of the Gve free
parameters, the mean-square error determines a surface

Fig. 2 is proportional to the current in the coils, and
hence to the B field which causes magnetostriction.
Unfortunately, the length of the spacers does not depend
linearly on this B field; rather it follows an S-shaped
curve. All experiments were done on the straightest
portion of this curve. The remaining nonlinearity in the
frequency scale was corrected for in the numerical
analysis by fitting a third-order polynomial to four
well-defined points ELMS in Fig. 3. The linear part of
the scale was obtained by noting that the distance in
frequency between two adjacent modes is c/2L.
Frequency pulling is not taken into account, as it is
always smaller than other experimental errors. The
third-order correction turned out to be small.

For actual analysis of the data the frequency on the
X scale is needed in units of the Doppler linewidth Aor

Lsee Eq. (18)j.It was assumed that v2hco =450 M%ec,
as theoretical analysis showed the frequency dependence
of the output power of a laser operating slightly above
threshold is insensitive to the exact value of the Doppler
linewidth.

Another small but significant correction stemmed
from the fact that we were unable to keep the mirrors
exactly parallel while changing the distance between
them. About 1 sec of arc misalignment gives a signif-
icant increase in the losses of the cavity and thus a
decrease in the output power of the laser. It should be
pointed out that we were able to reduce the actual
deviations from parallel movement to a very small
amount. The remaining inQuence of this mirror tilt was
corrected from our Gnal data. This correction was
assumed to be a quadratic function of the sweep
current. The constants of the quadratic were determined
from points OI'Q on Fig. 3. All told, 6ve experimental
parameters were used to account for the various
distortions along the coordinate axes. These were
manually computed as described above —the distortions
of the X scale for each page of graph (e.g. , the whole
of Fig. 2) and the distortion of the Y scale for every
trace on a graph. There were about 80 traces analyzed
in the whole experiment.

According to the theory expounded in Sec. 4 of this
paper Eq. (45) was used to fit experimental data. This
equation is reproduced here in the form it was actually
used after the removal of all experimental distortions.

C'D
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Fxe. 3. Schematic representation of a trace of Fig. 2, at a single
excitation level, in order to demonstrate the way the distortions
were rectified. Distortions shown are exaggerated.

in six-dimensional space. Starting at an arbitrary point,
the direction of the gradient of the surface was found.
Two steps of a predetermined magnitude were taken
along the gradient, and a parabolic extrapolation was
made to find the minimum in this direction. At the
newly found point the procedure was repeated. Results
were considered satisfactory if the new values of the
parameters were within a prescribed small distance from
their previous values. This program proved to be very
eScient, probably because of the general smoothness of
the surface. Usually a standard deviation of 1%%u~ ofI", was considered satisfactory. The fit was so close
that it is impossible to distinguish between experimental
and fitted curves on the scale of a Physical Bedim page.

It should be stressed that the results do not in them-
selves check the validity of the form of Eq. (45a). The
experiment confirms only that a family of curves can be
fitted with essentially the same values of A, 8, C, D, E,
and it is used to obtain their numerical values.

4. THEORY

A. SinpIest Version

In this section, a simplified theory of the operation of
a gas laser will be given. In spite of its limitations and
the existence of a more fundamental theory, ' this model
is given here because of its simiplicity; it emphasizes
some of the physical assumptions and limitations
common to all existing theories. In particular, this
formulation will allow the e8ects of collisions between
atoms to be included with fair ease.

Consider a gas consisting of a collection of atoms in
thermal motion inQuenced by an electromagnetic plane-
wave Geld. It is assumed that this electromagnetic field
has a frequency ~ near that of one of the atomic
transitions oro so that a11 other atomic transitions can be
ignored. The atoms will be characterized by their



A. SZOKE AND A. JA VAN

populations in these two states of interest ei(v), ms(v),
where e denotes the component of the atomic velocity
along the axis of propagation of the field. The quantities
ei(v), n, s(v) denote populations per unit volume per
unit velocity. It is the difference between these numbers,
lv(v) =Ni(v) —m&(v), which enters the simplified theory.
It is stipulated that for an inverted population, e(v) )0.
Only stimulated emission will be taken into account,
and even that in its simplest form. Thus the intensity
I, emitted per unit length by the gas atoms under the
inQuence of a traveling electromagnetic field wave
vector k and frequency co, is

dI(k, co) c
rs(v) ~(v, k,cs)E'(k, co) dv,

dx Sx

where o-(v,k,co) is a cross section for emission of light
by an atom with velocity component v and stimulated
by an electromagnetic wave with frequency cv and wave
vector k. Specifically, o (v, k,~o) represents an ensemble
average of the response of those atoms which have
velocity v. This ensemble average may already include
certain pressure effects to be described later.

In case the applied electromagnetic wave is of a
more general nature than a simple traveling wave,
Eq. (1) may still be applied after the wave is expanded
into traveling wave components and written in the form

E=g E(k,(o)cos(kx—cot).

The general form of the response function including the
Doppler effect is

v (v, k,oi) =F(coo—coL1+ (k v/ i
k i c)j),

Ii being an arbitrary function, peaked around cop. In
order to be more specific, at some points a Lorentz line

shape is assumed,

In steady state, the total gain equals the total loss.
While the gain is distributed within the medium, the
loss is usually concentrated at the ends of the laser.
Though it is easy to write down the requisite equation,
it is simpler to assume an "equivalent" loss per unit
length L. In a steady state this implies that the electro-
magnetic field is constant over the length of the tube.
Thus the discussion is limited to lasers with small end
losses: mirrors of high reQectivity, and low diffraction.
Thus, the equation describing the energy balance may
be written as

J-=G(k,co) = n(v)o (v, k,co) dv.

In a laser oscillator, the optical frequency field is
essentially at the resonance frequency of the cavity
(see Appendix). Because of the saturation effect, N(v)
is dependent on E'. Once this dependence is known, (6)
may be used to obtain the laser output.

The energy balance for the atomic system is given by
the Boltzrnann equation. In steady state this is

dn(v) (Be(v) )
~ collisions Ti

n(v)

more general validity, as will be seen in greater detail
in the next section.

In a maser oscillator, E(&o) and e(v) have to satisfy
two equations. One is the expression for the energy
balance of the cavity. The other one is a Boltzmann
equation for the energy balance of the atomic system.
First, it is noticed that if there is population inversion,
the medium has an exponential gain G(k, o&) for a travel-
ing electromagnetic wave of intensity I, having the
proper frequency. It is given by

d ln/
G(k,co)= -= e( )v~( vk, c)odv.

v (v,k,oi) =o o 1+ " «I 1—
I

&&', (3)
]k/cf

where T2
—' is the half-width of the resonance in radians

and

The transition is assumed of electric dipole type of
moment ls. Note that the Doppler effect in (3) is written
in a form giving an appearance of a shift of the resonance
frequency of the atom. This form is very closely related
to that used in the above expression for F where the
shift is introduced on the frequency of the applied field.

The above approach to calculating the nature of
emitted light from a cross section is certainly valid if the
atoms are moving in a straight line with constant
velocity during their time of coherent interaction. with
the electromagnetic field, i.e., for low pressures and
moderately high electric fields. Actually, it also has

The first term on the right-hand side is the collision
term. Two different types of collisions can be distin-
guished: inelastic collisions in which the total population
difference changes and elastic collisions which involve
only a change in velocity. The former includes processes
which populate or deplete the levels in question, like
pumping light or atomic and electron impacts. The
latter type are those collisions in which the number of
atoms in each atomic-energy level remains unchanged;
however, the collisions lead to changes in velocity of the
colliding atoms. The third term describes the inQuence
of stimulated emission.

In the absence of an applied electromagnetic wave,
the velocity distribution of atoms in an excited state
will become Maxwellian. if the excited atoms. suffer a
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isp(p) = Ptp/n, (27r)'i') exp( —p'/2u')

where I'=kT/m with k as the Boltzmann constant, T
as the temperature, and m, the atomic mass. Thus to
this approximation,

0= LBNp(p)/c)/) ii;; n
—[isp(ti)/Tr). (9)

In the presence of the laser field, the change in the
collision rate may be written as

LC)fp(P)/C)f)coiiisions LC)tip(&)/Cf&)coiiisions

= —L~(.)—~o(p))PW„(10)

where pW, is a "cross relaxation" rate, proportional to
the pressure P of the gas. It should be noted that the
underlying assumption leading to (10) is the fact that
the rate of approach of the velocity distribution to
thermal equilibrium is taken independent of velocity
and an exponential approach to the equilibrium is
assumed. In an actual case, this assumption may not
hold over a large range of velocity. However, using (10)
a great deal of simplification will result.

Subtraction of (9) from (7) and substitution from
(10) yields:

number of elastic collisions within their lifetimes. For
atoms in the 2s2 level of Ne, the velocity distribution
may be somewhat different from Maxwellian. However,
as long as the velocity distribution is such that the
resulting Doppler width is appreciably larger than the
natural or collision width of the atoms, the exact form
of the velocity distribution is not of major importance
in our consideration. Accordingly, we assume that in the
absence of the optical maser Geld, the velocity distribu-
tion of the population difference np(p) is given by

Substitution yields

L= np(p)o. (p, k, cp) dp

—Tr'E'(k cp) Np(n)o'(p k,cp) dp. (13)

where

iso(p) = — expI(2s.)'i'
(CP

—
Cop)

26m)~

hco =

coo�(N/c)

.

It is useful to introduce the notation'.

Go(k,co) =Go expl (cp cop) /26cp )

Gp —— — o (p, k,cop) dv.
u (2sr) 'is

Finally the laser output is

The operating frequency of the laser is determined by
the phase equation, discussed in the Appendix. For
most practical cases it is near the frequency of the
unloaded cavity. The 6rst term on the right-hand side
is the gain of the medium in the absence of the output
power. The second term is negative and it describes the
decrease in gain as a consequence of depletion of the
upper maser level, i.e., a decrease in population inver-
sion caused by the electromagnetic 6eM. The frequency
dependence of this equation can be evaluated easily if
Doppler broadening exceeds the atomic linewidth:
Ts '((kl. Then np(p) is a slowly varying function
compared to either cr or f72 and it can be replaced by its
value at the peak of 0.,

fs(p) —tip(p) 2 C

n(p) o—( kp, )cpE'( k, c)p. (1—1) c ( c
8s- I=—(1—E)AE'(k, co) =

~

—
i

g
*

kg~)

(1—E)A

L(k,co) = fs(p)o(p, k,cp) dp, (12)

e(p) = ep(p) (1+T", E' (p, k,~))-'
= tip(p) P1 Tr'E'a(p, k,cp)7. — .

Here (Tt') '= Tt '+PW, is a total re—laxation rate in
the presence of laser action.

At this point Eqs. (6) and (11) can be solved for
ti(p) and E'(k,co) which may then be used to estimate
the laser output power.

The solution of Eqs. (6) and (11) will now be worked
out for a traveling-wave laser and for a standing-wave
laser, both operating on a single frequency. For a
traveling-wave laser Eqs. (2), (6), and (11) take the
following simple form:

E=E(k,cp) cos (kx—cpf),

Tt o (v,k,pop) dp

M —
COO

X Gp —Lexp +
2d,co'

where (1—R) denotes the transmission of the mirrors,
and A is the effective area of the emerging beam. This
result can be compared to the exact calculation' for the
saturated laser. A positive exponential appears in the
frequency dependence of the output power, and thus
the power falls to zero with an ever increasing slope as
the cavity is detuned. The maximum frequency range
of oscillation in a high-gain gas laser gives a good

8 There is an apparent discrepancy in the exponential which
stems from an approximation made in Ref. 3. The integration in
Eq. {71) of Ref. 3 can be carried out even if exp/ —1/4{kg)sX{r"'—r')sg is not substituted by a delta function, and the
result is identical to ours.
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indication of the gas kinetic temperature of the excited
state.

A standing-wave laser emitting a single frequency
will be treated next. The electromagnetic field can be
decomposed into two running waves propagating in
opposite directions:

E=E(k,oo)cos(kx —cot)+Z(—k, co)cos(—kx—cot),
(17)

E(k,a)=E(—k, co).

In place of Eq. (6) we write

I.= I (v) fo (v,k,oo)+o (v, —k, &e)j dv.

This is more accurate than Eq. (6), as it takes into
account the fact that losses as well as gain are associated
with cavity modes, and these in turn have been de-
composed into running waves. For more details see the
Appendix. Equation (11) is written next and solved:

e(v) =ep(v)
1+2,'Zp(k, ~)f~(v, k,~)+~(v, —k, ~)j

=e (v) (1—2'&'8'(k, oo) fo (v, k,oo)+o (v, —k, oo)1). (19)

Analogously to the running-wave case, Eq. (18) gives

~,(v)f. (v,k, )+ (., —k, )&dv

—Ti'E'(k, s)) mp(v) fo (v,k,co)+0 (v, —k, co)$' dv. (20)

The 6rst term on the right can again be identified as
the unsaturated gain, and denoted by Gp(&o). The
second term is negative and it describes the saturation.
The coeflicient of E' is an effective coupling between the
light and the inverted population. Its frequency
dependence is evaluated next for a line with strong
Doppler broadening and a Lorentzian line shape:

ep(v) [o (v,k,oo)+o (v, —k, ~)]' dv

Arr p=eo(vo) 1+
MpTp- 1+(oo—cop) Tp

~ (21)

The first term of the result is similar to the running-
wave case, but the second term shows an additional
feature. If the frequency of the electromagnetic Geld

is near that of the atomic resonance, some of the atoms
emit into both running-wave components; thus they
are acted upon by a larger effective 6eld or, equivalently,
E has a larger coupling to the population. Finally the

laser output power is obtained:

I(co)= (c/8v) (1—R)AE'(k, (o)

o (1 R)AI(2v)'"~o&p

4n- 2Ty cx'g p s
t'G —«~ f+ ( —o)'/» 'j~

(22)
1+f1+(co—cop)P2 o) l

This equation shows the dip; in fact it is completely
equivalent to Lamb's Kq. (96) P

In the Appendix it will be shown that by taking the
proper phase angle in 0., the frequency part of the laser
equations can also be obtained correctly. Our treatment
is completely equivalent to Lamb's to the second order.

' P. %. Anderson, Phys. Rev. 76, 647' ($949}.
'0 Apart from terms vrhich are very small in all practical cases.

B. Pressure Broadening

The stimulated emission cross section o(v,k,co) has
been introduced so far as a phenomenological parameter.
In this section an attempt will be made to clarify its
shape in terms of the physical processes involved,
natural decay (radiative and nonradiative) and colli-
sions of the radiating atom. It will also be shown that
certain aspects of the atomic collisions are not properly
accounted for in the theory as presented so far, namely
the inhuence of collisions of large impact parameter,
when the radiating atom is deviating but little from
its original course. Some approximate ways of doing
this will be shown, and the theory will be compared to
experiment in the last chapter of this paper.

It is clear from the outset that a quantum-mechanical
line-broadening theory like Anderson's' may be used
to treat the problem, if used in conjunction with Lamb' s
theory of the laser, ' but such treatment is outside the
scope of this paper. Instead, our concern here will be to
give a simple picture pointing out the physical approx-
imations. The task is simplified by the fact that for any
reasonable power level, stimulated emission into the
cavity mode alone determines the power output of a
laser. 'P

Consider an atom in an "inverted state, "i.e., entering
the higher of the two energy levels involved in the laser
action. It will interact coherently with the electro-
magnetic field present until one of the following
happens: (a) it emits a photon; (b) it suffers an
inelastic collision fsee Eq. (12)j; or (c) it changes its
velocity appreciably. First, note that the line-broaden-
ing eGect due to stimulated emission may be ignored if
the laser 6eld is small and only conditions close to the
oscillation threshold are considered. However, sponta-
neous emission of a photon leads to a linewidth, because
it interrupts the stimulated emission. This can be
calculated using Fourier transformations and sub-
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sequent statistical averages (ensemble average), and
it turns out to be Lorentzian with a full width at half-
intensity Ro =2r ' if the probability of ending the atom
in the excited state after a lapse of time t is exp( —t/r).
Similar considerations hold for b. (Inelastic collisions
cannot usually be described by a single time constant,
but the Fourier transform of the interrupted radiation
properly averaged still gives a peaked, symmetric line
shape. ) As for elastic collisions )see Eq. (12)$, collisions
causing large angular deviations must be treated
separately from "soft" collisions of a large impact
parameter involving only a small angular deviation of
the radiating atom. If in a collision there is a large
change in velocity, the corresponding Doppler shift
being large, there will be no interaction with the laser
field after the collision and stimulated emission is
effectively interrupted. On the other hand, if the angular
deviation is small and the collision is soft, the atom in
question may continue to interact coherently with the
laser field. ( A collision is considered soft if the phase of
the wave function of each atom suffers only small
changes during the collision. ) The change in velocity,
Av, is large enough to interrupt coherent interaction if
hp/c)1/MpTp where Tp ' is an effective linewidth
determined by T&

—' ——(evZ)z„~z„+r '. The symbol
(eve) denotes a mean collision frequency averaged over
those collisions which give a change in velocity he
larger than a prescribed value 6~0, where Amp may be
determined from

atom of velocity e disappears because of a small-angle
collision, the atom which appears subsequently with
velocity v+Av does not start its coherent interaction
with the electromagnetic 6eld at a random phase. In
the extreme case that Av is very small,

o (v,k,pi) =o (v+Av, k, p )

and the atom continues to emit light at the same rate
as before. In a more accurate theory, a density matrix
or a dipole moment is the quantity dealt with. These are
6rst-order quantities, and conservation of phase enters
the theory naturally. In order to incorporate the effect
in the equations of this paper too, note that the Doppler
effect is symmetric in v and pi; Rp= (k/~k~) (ppv/c).
Therefore if there is no loss of phase memory during the
collision, a change in the velocity of the radiating atom
is equivalent to a change in the frequency of the
stimulating electromagnetic 6eld. It will in fact be
assumed that for such small-angle collisions there is zo
loss of phase upon collision (for discussion, see end of
this section). The rest of the calculation is straight-
forward. Denote the component of atomic velocity
along 0 by e(t); pp'(t) =pi{1&)v(t)/cj) is the effective
frequency of the electromagnetic 6eld in a coordinate
system moving in the direction of the light with velocity
it(t). This frequency-modulated wave can be Fourier
analyzed, and the above time dependence of ~' sub-
stituted by a statistical distribution of frequencies,

Avp (eve)~„)g„,+r-'
C00

(23)

1 T2

P((a")= — pi'(t)cospi"t dt
~2 0 Av

This is an integral equation for the unknown Avp but it
can be looked upon as a requirement for the consistency
of the picture. If Amp determined from the equation is
smaller than the average atomic velocity (in other words,
if pressure broadening is smaller than Doppler broaden-
ing), the picture is consistent. In the experiment dis-
cussed in this paper, a velocity change of 10' cm/sec or
an angular deviation of about 10 ' rad (for an atom of
average velocity) is enough to stop stimulated emission.
After h~p has been determined consistently, the actual
shape of o. can be obtained similarly to cases (a), (b)
above.

Two more remarks are in order: First, interaction
among atoms causes not only interruption of radiation,
but also certain frequency shifts and asymmetries, in
principle all calculable, but here introduced phenom-
enologically. Asymmetry and shift are generally closely
related quantities. Second, spontaneous emission and
inelastic collisions also determine T~ in the Boltzmann
equation LEq. (7)j, while elastic collisions inhuence
only 0, its magnitude and shape.

The effect of small-angle collisions on the emitted
radiation cannot be described by a cross section alone,
because during such collisions the phase of the radiating
dipole is partly conserved. In other words, when an

P(p~") dpp"=1. (24)

The output power can now be obtained after Eq. (22)
is averaged over the above statistical distribution. The
width of the distribution function P (p~) is expected to be
proportional to the gas pressure. For simplicity, let us
assume a Lorentzian line shape'.

P (I' cu) =2s/$s'+ (pi—'—M)'). (25)

This leads to the following expression for the power
output:

I= P(pi')I(pi') dpi'

Gp LexpL+ (a)—pip)'—/2As&'j
(26)

1+{vv'/I:7"+( — )'j&
where

y= Tp ', y'= Tp '+s. —

Thus it is seen that the extent of excessive saturation on
exact resonance decreases, and the width of the dip
broadens in analogy to inhomogeneous broadening of a
resonance line. The additional linewidth s is the
reciprocal of a "soft" collision time, s= 1/Tp'.
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Finally the phase shift of the radiating dipole will
be estimated in a collision involving a small angular
deviation. An inverse power interatomic potential is
assumed, U= Vo+Ar ", where Vo is the unperturbed
energy of the level, and r is the distance between the
radiating and the perturbing atom. For large m,

approximate integration gives for the angular deviation
Ao.

de= (eA/mn')b "

where b is the distance of closest approach and m and v

are the mass and velocity, respectively, in the center-of-
mass system. It is assumed that a momentary radiation
frequency can be defined, deviating from the un-
perturbed frequency by

A(o= AVy —AV2,

Vi, U~ being the energies of the upper and lower levels
of the transition, respectively. It will also be assumed
that AU2 is proportional to hV~ which leads to

from experiments on pressure broadening that atomic
line shapes are usually asymmetric functions of co —Np.

Specifically the ensemble average of the frequency
response of atoms with velocity e will now be assumed
to be asymmetrical because of pressure effects. In this
section, the consequences of asymmetry in 0- are
explored in the framework of Eq. (14) in the running-
wave case, and Eq. (21) in the standing-wave case.
The problem is merely that of integration of these
equations for a generic asymmetric line shape. Here, as
in Sec. 48, an additional distribution of frequencies
smears out the result.

In the running-wave case the result is a shift in
frequency of the maximum gain. This is very similar to
the shift in the peak. of the Doppler broadened line in
emission or absorption spectroscopy. Referring to Eq.
(14) for a running wave, the integral

G= eo(w)~(v, k,(o) dv

AVE —d, Vg= kA Vg. (30)
can be evaluated for~a line shape

Aq = (kgb "/k) (b/-v) (31)

The total phase shift on collision can be evaluated
approxima, tely, o-(v, k,(u) = 1+&(M—Mp)

-7 + (~ ~o)—
Op. (33)

and the ratio of phase shift to deviation angle is

6p/Dn= bkmn/km= L(k/m), (32)

C. Asymmetric Lice Shapes

Explicit use was made of the symmetric shape of
0.(v,k,&u) in Eq. (17) and thereafter. It is well known

where L=mnb/k is the relative angular momentum of
the collision in units of h.

The assumption of no phase shift for a small-angle col-
lision is good if k g&&1 for a collision with hn ( (A~T2) '.
The quantities involved are calculabI. e from first
principles, but let us test the experimental parameters
as obtained in the last chapter of this paper by using
them in (33) to obtain h&p. In effect, the cross section for
hard collisions is Z=~b'; therefore the formula to be
used is

/g '12kmn 1

k 7I ks AMT2

Using the value of b obtained from our measured cross
section for He—Ne* collision, we obtain an average
value of I.= 20. Assuming that for this collision K= 10 ',
v=5, we obtain d, &p&&1, hence the approximation is
valid. On the other hand, for collisions between a Ne
atom in the ground state and in a 2s2 level (radiatively
connected to the ground state), we obtain L=400.
Assuming now that m= 3, and k is comparable to unity,
Dq becomes of the order of unity for he= 10 '. For this
case, the approximation of small Ap is not quite valid.

This line shape is assumed merely as an example for an
asymmetrical average response of an individual atom.
This is done in order to examine the influence of slight
distortion; (small n), on the over-all Doppler response.
For this we obtain

(2')'" e——expI
(co —cup)

~

(co—cvp) /22 co

X 1+ e*'dx . (34)
2Ã p

This has a maximum at approximately

(u =(oo+ny(2/s)'I'her. (35)

This result has to be compared to the value of co for
which 0- has its maximum,

CO =Mo+ ~Q'P. (36)

Thus the maximum of a Doppler-broadened line is
shifted considerably more than the shift of the response
of the individual atom because of asymmetry. The
emission of a low-gain running-wave laser is shifted by
an amount similar to this, as the term quadratic in r has
a frequency dependence similar to that of the term
discussed above.

In the standing-wave case, the relevant equation is
Eq. (21). Here both the linear and the quadratic terms
have to be considered. In the right-hand side of Eq. (21),
the saturated gain can be written after some rearrange-
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ment as

2 2
G(~) =- ~pl lf(x) dx —2'iP--'

k k k l k

/x —
Ay

apl
k o&0—

tLI

O

He: Ne = IO:I
o He:Ne - 51

SOFT
L INEWIDTH

Xf'(x) dx+ tripl
—

If(h+ x)f(h —x) dx, (37)
(kJ

where k=(p p/c, d, =(pp —
pp, and x is a frequency variable.

The function f is connected to the cross section p- by the
relations

X
l-
—20
I

Z

HARD
L IN E W I DTH

f(h —ke)=0. (i),k,(p); f(a+ke)=o(p, —k, (p). (38)

For a frequency deviation h«h~ the integrand can be
expanded around 6=0. Keeping in mind a small but
generic asymmetry, f(x) can be divided into a sym-
metric and purely asymmetric part, the origin being
chosen in such a way that the maximum (modal) value
of f(x) is at x=0.

S(x)= 1/2L f(x)+f(—x)$,
A (x) =1/2Lf(x) —f(—x)j;
A (0)=A'(0) =A" (0)=0,

(39)

where primed and double primed symbols represent
6rst and second derivatives. By a straightforward
calculation one finds that the first integral in (31) has a
maximum at A=A&'):

x
A(x)ep' ——

l
dx

k

S(x)ep"
I

—— dx
k

(4o)

and its frequency response has a width hen. The rapidly
varying part, the third integral in (31),has its maximum
at 6&».

S(x)A'(x) dx — S(x)S"(x) dx. (41)

Assuming that the functions eo and 5 differ only to the
extent of their characteristic width parameter, the ratio
of the line shifts is estimated to be of the order

g(&)/g(&) —+M/p (42)

This leads to a conclusion similar to that in the running
wave case. More specifically, the integrals (41) and
(42) can be evaluated for the line shape (34), and the
result is

6(') =up(2/pr)')'happ, (43)

g(2) +~2

This is similar to (36) and (37), i.e., the "center of the
dip" moves by a small amount only, while the maximum
of the unsaturated gain is displaced by a fraction which

IO—
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FIG. 4. Experimental results for linevridths and asymmetries
of the Ne transition.

is h(p/y larger. It can also be shown that for a small

asymmetry, O.y((1, The shape of the quadratic term is
quite symmetric. Thus in a standing-wave laser in the
presence of an asymmetric line broadening the output
power, Eq. (27), has to be modified to

G()—I.expt+ (pp
—ppp

—6(') ) '/26(p')'
I((p) =E

1+vv'/I v"+ (~—~p)'1
(45)

This is the equation used to fit the experimental points,
the 6ve free parameters to be varied by the computer
being E/I =A; Gp/I. =8; y'/6(pv2 =C; p/p'= D;
—6")/App&2= E.

Y 7%+~Ne()Ne —He)PNe++He()Ne —He+Hei
I I- I-

P++Ne ()Ne—Ne'+Ne+~He ()Ne—He'+He ~ (46)

Here y~ is the contribution due to the natural lifetime
of the upper excited level 2p'('Pl/pp)4s(J= 1), vNe N, -

"A. C. G. Mitchell and M. %. Zemansky, Resonance Radhution
azd Excited Atoms (MacMillan and Company, Ltd. , London,
1934), p. 170.

S. RESULTS AND I5'TERPRETATION

It was found that Eq. (45) describes experimental
results to within the expected accuracy. Experiments
were carried out with two different gas mixtures,
He:We=10:1, 5:1 and in the pressure ranges He:
0.4—1.0 Torr and Ne: 0.05—0.13 Torr. Results are
summarized in Fig. 4. Vertical bars denote standard
deviations, the actual fit of the experimental points to
the straight lines being much better.

Pressure broadening of the line, as described by
parameters p, p', can be accounted for by collisions of
the radiating atoms with other atoms in the gas. The
general formula is"
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and SN, I, are the mean relative velocities of the atoms,
and nN„mH, are their concentrations. Four types of
collisions have been taken into account: collisions of the
excited Ne atom with a ground state Ne atom —this
can be "hard" ZN I, or "soft" ZN, N,

' and collisions
of the excited Ne atom with a ground-state He atom,
ZN, H, and &N H,

' respectively. The results are

ZN N, = 1.6X10—'4 cm',
ZN~N, '=8X10 '4 cm',
ZN~H, =5X10 "cm',

Hg =4.5X10 cm

(47)

6. CONCLUDING REMARKS

In the past, studies of pressure effects at optical
frequencies were limited to high-pressure regions where
collisional broadening of a spectral line becomes larger
than its Doppler width. With our experimental ap-
proach, however, we are able to detect the effects of
collisions at much reduced pressures. This has been
made possible because our measurements are partic-
ularly sensitive to saturation behavior of an atomic
transition. This saturation effect, in turn, depends
primarily on the average response of individual atoms.
Accordingly, we are able to observe the average response
of individual atoms at much reduced pressures where the
width due to collision is much less than the Doppler
width. It should be pointed out that details of collision
effects at elevated pressures are theoretically complex
and somewhat involved. This is generally the case
because at high pressures the contributions of many-
body collisions become sizable and effects such as

These cross sections are of the right order of magnitude.
It has to be borne in mind that the upper laser level is
radiatively connected to the ground state of Ne, and
therefore reabsorption of the uv photon is an important
mechanism for energy transfer. A more thorough study
of this effect will be given in a forthcoming paper.
Collisions with the He atoms are also near-resonant as
there is an excited state of He(2'5) within kT of the
Ne state. This may explain the large ratio ZN &,'/
ZN H„which could be expected to be 2 for a pure
dispersion-type force.

The frequency shift is towards higher frequencies in
the sense that in Eq. (34) n is positive. Assuming that
this shift is proportional to the pressure and using
Eqs. (44) and (45), one obtains a shift associated with
the response of individual atoms given by

6&'& = (y/her)d &'&~200 kc/sec Torr. (48)

This estimate can be somewhat too low because the
exact ratio of 6&'~/ho& depends critically on the details
of the actual asymmetry. Furthermore, it should be
noted that the shift as measured in our experiment
does not give the absolute shift of the over-all atomic
resonance and it is only a measure of that introduced
by the asymmetry.

screening of two colliding atoms by other atoms need
to be taken into account. Hence, the eventual interpre-
tation of experimental data in terms of the actual
interactomic forces may be dealt with more readily
once the observations are done at reduced pressures.

It should also be pointed out that in double-resonance
or level-crossing experiments, the observed width of a
resonance is also associated with the average response
of an individual atom. However, a number of interesting
pressure effects, such as the inhuence of asymmetry of
the line shape as described in this paper, do not appear
directly in double-resonance or level-crossing line shape.
These latter experimental techniques also provide
useful information. At this time, however, the observed
line shape at optical frequencies and at reduced pres-
sures reveal novel features of perhaps new theoretical
interest.

An individual atom while interacting with an applied
optical field is constantly disturbed by the presence of
other atoms. In a detailed theory of pressure effect, an
excited atom may not be considered as a freely interact-
ing system during any portion of its lifetime. The
object of a theory to explain our present experimental
results is not merely to treat the linear response of the
atomic resonance. The major goal is actually to deal
with the effect of collision on saturation behavior of the
Doppler-broadened transition. Furthermore, this needs
to be done for an optical field in the form of standing
waves. Already, considerable information exists on the
general inhuence of the collision effect on the linear
frequency response of an atomic line shape. The point
of view and the approach adapted in this paper have
been based on utilizing our general knowledge and
expectations on the average linear response of individual
atoms, and from them to construct a Doppler line shape
which includes the saturation term. In this treatment,
we have assumed that the ensemble average of the
response of individual atoms with a given velocity v is
known in the presence of perturbing fields due to
interatomic interactions; this average may have an
asymmetrical frequency response. The reasons for such
an asymmetry are well known. One interesting result
which comes out of this treatment is an account of the
way in which the asymmetry leads to an observed
frequency shift considerably larger than that associated
with the shift introduced on the response of an individ-
ual atom. In other words, we find that if an average
asymmetrical response introduces a shift of the order
of op', the frequency corresponding to maximum satura-
tion of the over-all Doppler response is shifted roughly
by npAcv. While our treatments adequately account for
this effect as well as those collisions which are classified
as "hard" collisions, our treatments of "soft" collisions
require considerably further refinements.

On the experimental side, it is extremely important
to exercise utmost care so that distortions introduced
by measuring techniques are kept at a minimum and
are fully allowed for in extracting the actual line, shape.
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In our experiments, we find that the expression (45)
fully accounts for frequency behavior of the output
power after all instrumental distortions are reduced
below our other experimental errors.

These experiments are continuing using other
frequency-tuning techniques and applied to other laser
transitions.

APPEÃDIK

In the Appendix a more formal development of the
theory will be given. The frequency equation of the
laser operation is also derived along the lines of Sec. 4,
and it will be shown to be equivalent to Lamb' s'.

The electromagnetic held of the laser cavity is
expanded in cavity modes in a one-dimensional stand-
ing-wave cavity:

E(x,t) =E„(t)u„(x),
E„(t)=E„(')cos~„t,

U„(x)= sink„x; k„L=N~.

(A1)

Maxwell's equations of the cavity in cgs units are

(d'E./dt2)+ (~./Q„)(dE„/dt)+n„2E„=4~~„2Z„(A2).

Here Q„=k„c,Q„ is the quality factor of the cavity and
E„is the projection of the macroscopic polarization of
the medium on the nth mode. It has in-phase and
out-of-phase components,

1'„=C„cos~„t+S„since„t. (A3)

Substitution in (A2) yields the amplitude and frequency
equations

(A4)dE„/dt+ (co„/2Q )E„=—2nco„S„,
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The development so far parallels Lamb's the only
diGerence is in the units used. The individual atoms of
the amplifying medium are described by a complex
electric susceptibility X(v,k,&o). The velocity dependence
comes from the Doppler effect, and it is assumed that
the electromagnetic 6eld is decomposed into running
waves. This susceptibility satis6ed the Kramers-
Kronig relations, so its imaginary part is in principle
calculable from its real part, o (o,k,&o). For simplicity it
will be assumed that 0 has a Lorentzian line shape and
it is an isolated resonance. Under these assumptions

S„=E„)o(v,k„,co„)+o(v, —k„, ar„)je(v) dv, (A7)

C„=E„|p( kv„,(o„)+p( , v—k„, o&„)je(v) dv. (AS)

It can be seen that with this substitution Eq. (A4)
reduces to Eq. (6) in the text. In order to find N(v) a
Boltzmann equation, Eq. (7) will be used, and in
particular Eq. (19):

e(w) = exp—
N(2m)'t'

(&—«)
{1—Tg'E'(k, o))

25co2

XEo'(o, k,~)+o (v, —k, co)g} . (A9)

The expressions for S„may now be obtained by using
the above equation in (A7). The resulting expression in
conjunction with (A4) gives a result identical to our
Eq. (22) for L=~„/2Q. The expression for C„may be
estimated similarly by integrating (AS) using (A9).
This expression will not be given here since the result is
exactly identical to that estimated by Lamb.

In terms of C„and 5„, the frequency equations in
the steady state can be written in the form

x(v,k,(u)=oo 1+i (o—coo 1— —
i

Tg
[k)ci

=o (v, k,(o)+ip(v, k,a)) .

In order to get the susceptibility for the gas as a
whole, Kq. (A6) has to be integrated over the velocity
distribution:

(o)„—0„)E„=—2m'&„C„. (A5) [((u„—0„)/co„]2Q„=C„/S„. (A10)


