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look for the reaction

E +d -+ 2E++3Ito+bi-0 —.
:

. We now wish to show that it is not at all unreasona-
ble to expect the bi-0—to be stable. Indeed, it is well
known that the stablest particles of triangular SU(3)
representations are those with lowest isospin. For in-
stance, the 0 is the only stable particle of the baryon
decuplet, while the deuteron is the only stable particle
of the 8=2 antidecuplet. 2' Both have zero isospin.

Likewise, the four-baryon system, which belongs
(according to our criteria) to the 490* representation'"
of SU(6), has three stable states, namely the cr particle,
and the ~H' and qHe' hypernuclei. ' They are, respec-
tively, the isosinglet and isodoublet of the spin-0 anti-
28-piet. The analogy of the n particle with the bi-0
(which is the isosinglet of the spin-0 28-piet) is striking.

A further search for stable hyperstringe compounds
can also be made among 8=3 systems. The 1atter
consist of nine quarks (always in s states) and belong
to the 48620 representation of SU(18). Again, SU(3)'
must be a singlet, and its Young diagram is (003), so

'0 This antidecuplet belongs, of course, to the 490 representa-
tion of SU(6).

» H. Bebie and S. Iwao, Berne (unpublished report)."R.Levi Setti, Endeavour 24, 119 (1965).

that the Young diagram of SU(6) is (00300), yielding
the 980 representation. '4 ""When the latter is reduced
with respect to SU(2)QxSU(3), we find 15 distinct
representations, the most interesting of which seem to
be a spin--,' 35-piet and a spin--,' anti-35-piet. The anti-
35-piet contains three known stable particles, namely
H' and He' (an isodoublet) and the xHs hypernucleus's
(an isosinglet). Correspondingly, we may expect the
35-piet to contain a stable isodoublet with strangeness—6, and a stable isosinglet with strangeness —5. Their
production, however, is hardly conceivable with current
techniques —the simplest possibility would be to use a
bubble chamber with liquid He'.

Finally, we must mention that all these SU(6)
representations were, of course, known long ago."
The only novelty here is that we have found a way of
selecting those representations which are physically inter
esting, thus showing us where to look for hyperstrange
compounds.
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A generalization of the Lee model, due to Bell and Goebel, which allows the existence of double poles on the
unphysical sheet of the 5 matrix, is considered. The time behavior of wave packets formed in the infinite past
is investigated for two cases, (i) two distinct complex poles, and (ii) a single double pole, both being cases in
weak coupling so that the unstable state formed is long-lived. It is claimed that the type of process con-
sidered represents a typical experimental situation in which the eBects of double poles would be investigated.

I. INTRODUCTION

'HE problem of consistently defining the physical
properties, such as energy and lifetime, of an

unstable particle or decaying state has been a matter
of interest for some time. ' ' The essential di%culty is
that an unstable particle is not a well-dined state but
must be considered as a somewhat arbitrary super-
position of scattering states. However in scattering
theory we are concerned with relating definite asymp-
totic states in the distant past to similar asymptotic
states in the distant future whereas in a theory of un-
stable systems we are principally concerned with the

' G. Kallen and V. Glaser, Nucl. Phys. 2, 706 (1956).
2 M. Levy, Nuovo Cimento 13, 115 (1959); 14, 274 (1960).' M. L. Goldberger and K. M. Watson, Collision Theory (John

Wiley 8r Sons, Inc., New York, 1964), Chap. 8, which contains
further references.

behavior of the systems over Qnite periods of time. The
general conclusion is that unstable states are associ-
ated with complex poles or zeros in the second Riemann
sheet of the complex energy plane into which the 5
matrix, Jost function or props, gator can be continued
analytically. Except for very short or very long times
the dominating term in the probability amplitude for
finding the system in its initial state has a pure ex-
ponential form as a function of time. This gives rise
to the usual exponential-decay law, provided only the
poles or zeros are assumed simple.

Recently4 ' attention has been focused on the possi-

M. L. Goldberger and K. M. Watson, Phys. Rev. 136, B1472
(1964), which is herein referred to as A.' J.S.Bell and C. J.Goebel, Phys. Rev. 158,B1198(1965),which
is herein referred to as B.

6 R. J. Eden and P. V. Landshoff, Phys. Rev. 138,B1817 (1964).' C. J. Goebel and K. W. McVoy, Ann. Phys. (N. Y.) (to be
published).
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bility of other than pure exponential decays. There is no
a priori reason why higher order poles or zeros should
not occur and in A4 the consequences for decay curves of
higher order complex poles of any order in the S
matrix were considered. In 8' calculations based on a
generalization of the Lee model showing the existence
of double poles and their consequences for the time be-
havior of the system were studied. In this paper the
model is reconsidered in a different way.

The main part of the paper consists of four sections,
II and III are only of a preliminary nature, the main
results are in Secs. IV and V. In Sec. II the model is set
up and the time behavior for an arbitrary initial state
considered in Sec. III. In Sec. IV the whole process is
looked at more carefully in terms of relationship to
experiment and transition to momentum rather than
energy variables is made. In Sec. V a point source only
is considered and the decay laws for two distinct poles
in weak coupling and a single double pole found. Con-
clusions are drawn in Sec. VI and a few mathematical
details presented in three appendices.

II. THE MODIFIED LEE MODEL

The model considered is an obvious generalization of
the Lee model, ' the generalization amounting to the
introduction of an additional internal state, but it is
also applicable to systems which to some approxima-
tion can be considered as a single state coupled to one
other discrete state and also to continuum states. This
case might arise in some atomic problems. Nonrelativis-
tic kinematics is assumed and as is usual in the Lee
model a form factor is introduced to supply convergence
for the various integrals. Since there is no need here,
details of renormalization are not considered.

The system consists of two particles in which the
state vector space for the relative motion is spanned by
free-particle states Ip) of momentum p and two dis-

crete states Ixi) and Ix2&.
The orthonormality and completeness relations are

&x;lx,&=8;;, (x;Ip)=0, i, j=1,2

(ql p) = ~(q-p),
(2 1)

I U(p)l'«2l
(2~)' pm/2m —H+i~

GR (p2
IU(p)I2s, 'I +i~ I, (2.7)

(2~) ~ (2m

1
S,'(s) = &x I I

x,
s—H

(2.8)

S2'(s) would be the propagator of the X2 particle in a
6eld theory. It is easy to see from (2.7) that the scat-
tered wave is spherically symmetrical so only s waves
are present.

Writing in the usual way
1

(q I
s

I p) =2 I',„(0)I',.'(p)—s&(p) a(q —p),
lm

we have S~(p) =1 for /=1, 2, 3 ~ since there is no
scattering, and

So(p) = 1—4s.27ri(G'/(2m. )')
Xmp I U(p) I

'S2'(p'/2m+is) . (2.9)

G, g are real coupling constants, and U(p) is a form
factor.

The scattering state for outgoing waves is as usual

1
I
p&'= lp)+ H, lp&,

p'/2m —H+ic

where t. is real, positive, and infinitesimal. For in-

going waves

I q) =
I
q)++2~i'(q'/2m —H)Hr I q) (2.5)

The S-matrix element for plane waves, using (2.4)
and (2.5), is

(»is lp)= (ql p)+=)(»—p)

—2m i8(q'/2m —p2/2m) (q I

2'
I p), (2.6)

1
«ITlp&=«IH lp)+&»IH. H lp)

p'/2m —H+i~

Thus the propagator S2'(p'/2m+is) plays an essential
role in the model, its poles determining those of the S
matrix.

In Appendix I it is shown that

1= II'&(I'll+ Ix2)(x2I+ I p)dp(PI

The free Hamiltonian H0 is
p'

Ho=
I
~i&&i«il+ I x2%2«2 I+ IP&dP (PI (2 2)

2m G2 ~ h2I U(h) I

2--i
dk

g2

z—h'/2m8—Ey 2' 0

S I

The interaction Hamiltonian Hr introduces a coupling
so that

Hl—
(2~)'i'

I xi&~ I
x,&~ I p),

dp(U*(p) lp&« I+U(p) lx &&pl)

+g( I xi&«2 I+ I ~2&«il ) . (2 3)

ho(s)
(2.10)

L. Fonda, G. C. Ghirardi, and A. Rimini, Phys. Rev. 133,
8196 (1964) consider the classical Lee model in a way similar to
that here.

X
2x' 0

G2 - hmlU(p)I2-
tQ

s—h'/2m
—g' (2.11)
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The term in square brackets is just the V-particle
propagator in the ordinary nonrelativistic Lee model.
kp(z) is analytic in the 6nite s plane cut along the real
axis from s=0 to s= ~.

kp(s) z' as
I
s

I
~~,

(p' . l (p'
+ip

I

—kpl
(2m ) (2m

)'p' —Eg I2s imp I U(p) I

'. (2.12)
~2m 2 2m. P

Using (2.12) in (2.9), we have

Sp(P) = hp(P /2m ip)—/hp(P'/2m+i p) = e 'PP (2.13)

This exhibits the unitarity of the S matrix in this
model and shows how So can be continued analytically
to the erst sheet in the complex-energy plane. In
Appendix II it is shown that So can only have poles on
the negative axis and that at most there can be two

poles corresponding to two bound states which are
strictly separate, i.e., this model cannot give a double
pole describing bound states as is expected generally.

Ie(t))=e '~'Ie(0)). (3.1)

By using the method of Laplace transforms' we can
obtain

I% (t))= — dE e 'E~ -I@(0)& (3 2)2zi.„EH+i p—

Suppose the initial state is given by

Ip(p))=))'il "z)+No)X,)+fdka(k))k). (33)

III. TIME BEHAVIOR FOR A GENERAL STATE

We now proceed to a discussion of the time evolution
of the system from an arbitrary initial state Ik(0)&
at t=0

In Appendix I it is shown that

Ix,)=
s—II

1
Ix,&=

2'—H

G
Ix,)+ Ix,)+

s Ej (2s)"'

g
Ix,&+ Ix,&,

2'—Eg 8—a

U*(k)
dk Ik) Sp'(z),

s—k'/2m

(3.4)

Ik)+ U(k)
s Hs —k—'/2m (2z.)Pi' s H—

Using (3.2), (3.3) and (3.4), we obtain

I y(t)) =N, e
—'»~

I
x,)+ dk g(k) e

—~ &P'&P~) ~

I k)— dz e
—'~~Sp'(z)

27l Z oo+ig

g&z G
X +&p+

z—Eg (2z)'I'

U(k)
dk u(k)

s—k'/2m

G
Ix,)+ I

x,)+
s—E1 (2z)'t'

U*(k)
dk Ik) . (3.5)

s—k'/2m

The probability amplitudes of ending the system in the various possible channels at time 3 is

1 "+"
x,(t) =(x, le(t)&=K&,-' )'—

2X L oo+ig

g
dz e

—'"Sp'(z)Gp(s)
z E]

Xp(t) = (xp
I +(t))=— ds e '"Sp'(z)Gp(z)

23 Z ~+gg
(3|)

where

@(k t) —(k I @(t))—e(k)e
—f(p2/pm) t

2%/ —op+A

gag G
Gp(s) =

s—Eg (2s)"'

U~(k)

U(k)
dk a(k) .

s—k'/2m

G
dz e '"Sp'(s)Gp(z)

(2s)"'s—k'/2m

(3.7)

' Reference 3, p. 433.
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62 - k2~ U(k) ~2 G U(k)
dk +g 1V2+ — dk a(k) t

s—k'/2m (27r) 372 z—k'/2m f

oo+ie —izt-e
Xi(&)= — ds Ni s E2-

27ri „+;, hp(s) 27r2 0

By suitable manipulation Eqs. (3.6) can be cast into simpler form:

oo+t', e g
—t'zt—

X2(t) = — ds Nig+(s —Ei) N2+
27ri „+;, hp(s) (27r)"'

U(k)
dk a(k)

s—k'/2m
(3.8)

m+t6 e izt G— U4(k) G
y(k i) a(k)e—t(!'tt/2m) t 1Vig+ (s—Ei) N2+

27ri „+t. h()(s) (27r) "' s—k'/2m (27!)3/2

U(~)
a(y)

s—p2/2m

The probability amplitude of 6nding the system in its initial state at a time t is

& (/) = (+(0)
~
+(i))=Ni*xi(i) +N2*x2(/)+ dka*(k)y(k, i)

oo+is ~
—i zt— G2 k2~ U(k)

~

2

dk + IN. I'g( -E.)
z—k2/2m

dk~a(k))'e """""— ds ~N2~2 s E, —
27ri p;, hp(s) 27r'

G2

+(Ni*N2+NiN2*)g+
(27r)'

U*(k), U(P) G U(k)
a*(k) dy a(p)+ g Ni* dk a(k)

z k'/2m — z p'/—2m (27r) 'I' s—k'/2m

U*(k) G U(k) U*(k)
+Ni dk a*(k) +(s—Ei) N2* dk a(k)+N2 dk a*(k) . (3.9)

s—k'/2m (27r) 3~2 s—k'/2m s—k'/2m

The above expressions are rather complicated but
the essential behavior at different times is brought out
by manipulating the contour in different ways. It is
easily seen that the only factor which can produce poles
in the integrand is Lhp(s)] . This has, as shown in

Appendix II only real bound-state poles on the first
sheet, but in the usual way the unstable states are de-
fined by the poles of Lhp(s)] ' on the second sheet.
Assuming the analytical continuation of Lhp(s)] ' and
the other terms in (3.8) and (3.9) from Ims)0 across
the real axis cut into the second sheet is possible, then
the poles of fhp(z)] ' may be made to occur explicitly
when the integration contour is transformed as shown
in Fig. 1. Poles in this region give rise to exponentially
decaying factors for t&0 when the above integrals are
evaluated along the contour Co'. The integral along the
contour C~' gives a contribution which depends on the
nature of the initial state. This behaves after a long
time like some inverse power of t and so eventually will

always dominate the exponentially decreasing terms
but this is proportional to some power of G' and so for
weak coupling is quite small. The nature of the ex-
ponentially decreasing term thus depends on the nature
of the zeros of hp(s) in the lower half of the second
Riemann sheet.

IV. CONSIDERATION OF A WAVE PACKET

to consider different special cases leading to different
decay laws. This is done in B Lthe 6rst two of Eqs.
(3.8) are the parallel of the first two of Eqs. (9) in B]
but this procedure is rather artificial. To obtain greater
realism and to reduce the complexity of the integrals
somewhat it is necessary to inquire more carefully
about what is actually measured in any practical in-
vestigation of such unstable states as occur here.
Essentially the preparation apparatus is used in the
distant past to form a wave packet of continuum states
with the two interacting parts spatially separated and
moving toward each other with a fairly well-de6ned

energy and momentum. Thus it is possible to de6ne an
approximation time of collision when the interaction
occurs. After interaction the probability that the system
decays to a continuum state with momentum and
energy in some predetermined range, depending on the
"bandwidth" of the detection instruments, is measured
as a function of time.

The initial wave packet is assumed to be formed at a
time to with the relative coordinate of the two inter-
acting particles fairly well defined at a value b. The
amplitude in momentum space is a(y)e """"'"(the
phase of the amplitude is brought out explicitly so a(y)
is essentially real and is peaked around some value pp].
Initially at t= to the state vector is

The results of Sec. III give the time evolution from
an arbitrary initial state and it would now be possible

I& )= dy a(y)e """'"'"lp& (4.1)
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functions. Ke do not intend to try to justify any of
these since we are dealing only with a special model.

Suppose U(p) is analytic in imp)0 or at least its
singularities are farther from the real s axis than those
of a&(s) and a&(s) has some de6nite analytic properties
in the complex s plane, in particular no cuts near the
real axis and no essential singularity at infinity. For a
particular case we might suppose ar(s) to be the result
of a set of high-order complex poles" which contrive to
make ar(pp) as co varies along the real axis peaked around
~=Pps/2m. If ar(co) is sharply peaked the poles will be
close to the real axis, if it is fairly smooth they will be
some distance away.

For t(0 the contour in (4.10) can be completed in
the upper half plane by a semicircle at infinity on which
the integrand vanishes. The bottom part of the con-
tour can be shifted upwards in the direction of in-
creasing Ims until it encounters the first singularity of
a&(s). If this is an ordinary pole the integral will give
the residue in the usual way and the factor e '" will

supply a damping factor such that gp(k, t) vanishes at
t ~ —~. The broader the wave packet and hence the
farther any pole in a&(s) from the real axis the more
well defined is the moment of collision. For the case
when ar(s) has no singularities in Ims)0, Pp(k„t) is
rigorously zero for t&0 and the moment of collision can
be exactly defined.

For t)0 it is assumed that kp(s) is analytically
continuable into the second Riemann sheet of the com-
plex s plane through the cut along the real axis from
Ims&0 and then the contour can be modified as in
Flg. ]..

e
—2Zt

@,(k, t) = ds (s—E&)
k, (s)

G' U*(k)
X — U(g(2 )) (). (4»)

(2s.)P s—k'/2'
We can also go one stage further in our assumptions

and require that hp(p'/2m) is an analytic function of p
in the uncut complex p plane. This is valid for a wide
range of cutoff functions U(p) and corresponds to two
Riemann sheets in the complex s plane being sufficient
to contain the function hp(s).

The integration contours then become as shown in
Fig. 2, and

Fro. 2. Integration contours transferred from Fig. 1 to complex
p plane. The upper half represents the first sheet in the complex s
plane. The && indicates a resonance pole.

Q2
Eg"——E2—m-

7i

dki U(k)i'. (5.2)

If the limit U(p) =1 is taken F&" diverges linearly,

Inn p

V. DECAY LAWS FOR TWO DISTINCT POLES
AND ONE DOUBLE POLE

We now specialize the model even farther to the
limit of a point source, U(p) =1 for all p, so that an
explicit form for kp(p'/2m) can be obtained for use in
(4.12). The limiting case U(p)=1 introduces a linear
divergence but this can be removed by one renor-
malization. By manipulation of (2.11),.we obtain

k.()=( -~)
G' "

i U(k) i'
&& s Fsn+s2re—' dk — —g', (5.1)

o &'—2m~

yp(k, t) = p e i (y&/sm) t —
ps

dp — — -Z,
~

m kp(p'/2m) 2m

G' U*(k)
X U(p)~, (p/2m) (4.12)

(2s.)' p'/2m —k'/2m

' Perhaps the simplest form would be the Lorentzian shape
ag(s) = (a/p. )p(s —pp/2m)'+(9) '

which has poles at equal distances 6 on either side of m =po'/2m.
This form (in momentum variables) is considered by Goebel and
Mccoy (Ref. 7).

/
l

FIG. 3. Complex p plane. Modi6cation of contour from Fig. 2
for evaluation of I~. The uncircled &('s represent singularities of
o~(p'/2m). The dashed line represents 2 Rep Imp =Imtrp =const.
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but assuming it to remain Gnite then

h2(P2/2m) = (P'/2m —Ei)
X{P'/2m —E2s+iPmG2/22r) —g', (5.3)

where Imp)0 on the first sheet of the complex s plane.
The expression (5.3) corresponds exactly to A(co) in B
but here the explicit expression for energy in terms of
momentum has been introduced. It is convenient to
multiply (5.3) by 4m' and define a new expression

f(p) = (p' —2mEi)

X (p' 2m—EH+ ipG'm'/ 2)r4m—'g' (5 4)

As required, this is analytic throughout the complex p

plane. The same properties as are proved about h2(s)
in Appendix II can be proved about f(p); the principal
property that f(p) can only have zeros in the upper
half plane on the imaginary axis, so these zeros cor-
respond to bound states, is proved in Appendix III.
Since f(p) is a quartic there are only four roots, and
since f(p)*=f(—p*) if p=qi is a root then so is
p= —qi*. Consequently complex roots occur in pairs
either side of the imaginary axis, and if two corre-
sponding to unstable states are assumed to lie in the
bottom right-hand segment of the complex p plane we
do not in (4.12) have to worry about poles on the
imaginary axis. (4.12) now becomes

y, (k, t) =
400

$00 6'
dp 2pe '&"'& &' (p' —2mEi) 2m ai(p'/2m)

f(p) (22r) 2 p' —k2

1 t"2

+ dp 2pe '&~'t' &' (p —2mEi) 2m ai(p'/2m)
f(p) (27r)' p' —k2

=Ii+I2

We initially investigate the first term Ii in (5.5). Putting p=iq this becomes

(5 5)

Ij.= 4m
(22r)2

1 q'+2mEi
dq gi (2 /2m) tq al( q2/2m),

f( iq) q2—+42
(5.6)

f(—iq) = (q'+2mEi) (q2+2mEP —qG2m2/2r) —4m'g'.

By further manipulation, since a& is a function of q,

(5 &)

Q2 262m2
Iy= 4m

(22r) 2 2r p

(q2+ 2mE, )2

dq ~4(q2&2m)iq2 a ( q2/2m)
f( iq) f(iq)—(q'+&')

(5.8)

It is at once apparent that a factor G2 has been gained in (5.8) and to this extent for weak coupling Ii is smaller
than the second term, I2, in (5.5). The asymptotic form of (5.8) for large t is found by integrating by parts as-
suming ai(0) is not zero:

Q4 1 1
Ii~ m'(2m)'t' e'&~ ' &) ai(0)— +O(1/t'") .

(22r) 2 (E&EP—g')' k2 t2&2
(5.9)

This term will eventually dominate any exponentia1ly damped terms but for weak coupling, G small, this will

only occur after a long time.
The second term I2 in (5.5) can now be dealt with. The contributions to this are from the pole at p=k, the

poles due to the zeros of f(p) in the bottom right-hand quadrant, and the singularities of ai(p /2m) in this region. If
f(p) has zeros at qi, q2 where both Reqi, Req2) 0 and Imqi, Imq2(0, then it has the form

f(P) = (P—qi)(P —q2)(P+qi*)(P+q *) (5.10)

If f(p) has a second order zero at q2, Req2) 0 and Imqp(0, then it has the form

f(P) = (P—qo)'(P+qo*)'. (5.11)

Assuming form (5.10), the contour C2 in (5.5) can be modified as shown in Fig. 3. If the singularities of ai(2)
in Ims&0 are the same distance away from the real axis as those in Ims&0 then they produce terms which cut
off as rapidly for increasing positive t, t) 0, as the terms resulting from (4.10) cut off for increasing negative t,
t(0. In the limit when ai(z) has no singularities in Ims(0 there are no terms except those due to the pole at p= k
and the zeros of f(p). If 6 is the distance of the closest singularity of ai(s) to the real axis then for t(—8/6,
Qo(k, t) is essentially zero (e =1/3000) and for t) 8/6 I2 is found by evaluating the residues at the poles k, qi,
and q'2 in the usual way, assuming of course these are closer to the real axis in the complex energy plane.
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Remembering the restrictions on f, we have

I2=—
(2qr) 2

2ql(ql' —2mE1)
(k'—2mE1)al(k2/2m)+e '«1'/' )' al(q12/2m)

f(k) (ql q2)(ql+q2 )(ql+ql )(ql k )
4~mi e

—'&"I' "

Assuming from (5.11), we get

+e
—i(q22/2m) t

2q2(q2' —2mE1)
al(q22/2m) . (5.12)

(q2 ql)(q2+ql )(q2+q2 )(q2 k )

I2=—
G2 d 2q(q' —2mE1)

4qrmi e '(2'/' )' (k' 2—mE1)al(k'/2m)+ e—'«'/2~)' al(q'/2m) I q=- (5 13)
(2qr)2 f(k) (q+qq')'(q' —k')

8=k'/2m, 81——2,iF1=g12/2m, 82——,'iI'2= q22/2m,

81,2= 21 (El+EP)+2 $(EP—El) 2y 4g2]1/2 —(1/2m) p1,22

then

We now consider two distinct cases, when there is a double pole and for contrast, when there are two simple
poles and G' small, dealing with the latter erst. For this case we vrork to first order in G2 throughout. The equation

f(p) =0 is solved to erst order in G' in Appendix III.
Suppose

L(E2'—El)'+4g']"'

G'm (E2s—El)w L(E2s—El)'+4g']"'
F1,2=& p2'

27r
(5.14)

where the first subscript corresponds to the upper sign of the & and the second subscript to the lower sign.
The probability amplitude for ending the system in a continuum state with energy in the range 8 to 8+d8 at

time t is then, neglecting I~ since this is of order G,

y(B,t) =— h —z,

E,—8,+-,'iF, 4mgg
exp Li(8 81)t———,

' I'lt] al(81)
(ql q2)(ql+q2 )(ql+ql )8—81+-,'iF1

G2 k+ql k+q2
i(4nkm) 1/2 expL( —iBt)] al(8)

(2qr)' (8—8+-,'iF )(8—8 +,'iF ) k+-q *k+q *

El—82+-2'ZF2

8—82+-', iI'2

4mq2
expLi(8 8,)t———,

' I"lt] ai(82) . (5.15)
(ql —q2) (q2+ql*)(q2+q2*)

With further approximation, one obtains

y(B,t) =—Q2 g jV, El 81+ iF1
i(4qrkm)'/' exp( —iBt) al(8)+

(2qr)2 (8—81+—zFl)(8—8 +—zF2) (8—8 +—iF )(8 —8 ——i{F—F })
El—82+-', iI'2

XexpLi(8 —81)t——,'I'lt]al(81)— exp(i(8 —82)t——,'F2t]al(82) . (5.16)
(8 8 + zF2)(81 8 ——i{F—F })]

If El—81, El—82 and 81—82 are not small compared with" Fl, I'2 which are of order G2, it is possible to go even
further to the same degree of approximation as in (5.16):

y(B,t) = — i(4~km)'/2e al(8)
(2qr)' (8—8,+-', iF,)(8—8,+-', iF,)

g~ jv~ b2 jv~
e((2 u)l (rlla (8—)- e((e—22)1—', rq&a (8 ) (5 Iy)

(8—81+-',iF1)(81—82) (8—8+-,'iF )(8 —8 )

If
~
81—82 ~&&h, where though & has been defined previously it can now be regarded as a measure'of the width

of al(8), and also Fl, F2«h, then the two unstable states are quite distinct and can only be observed separately.
Suppose we are only looking at the unstable state at energy 81, then, assuming al(8) is centered on the energy
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8» and is substantially constant over a width I'» about 8», we obtain

0(B,t) =—G2 8»—E»
i(4zrkim) "'exp( —iBt) — ai(Bi) {1—expLi(8 —8,)t——;r,t]) .

(2zr)' Bi—Bq 8—Bi+-',zI'i
(5.18)

This is the usual decay law for a single unstable particle. "In particular after an in6nite time the energy dis-
tribution is governed by a factor $(8—Bi)'+~riq] ' and the total probability of finding the system in a con-
tinuurn state varies with time according to a factor (1—e r"].This shows the usual exponential decay law with
lifetime 1/I'i. For 6))

~
Bi—Bq

~

if we are only interested in energies in the range Bi to Bz and approximately equal
amounts

~
Bi—Bz

~

either side then if ai(8) is substantially constant over this range, ai(8) =ai(Bi) =ai(Bq) (5.17)
becomes

g(B,t) =—G2 (8 Ei)
i(4zrkm)"'e iq'ai(8 )

(2zr) ' (8—8,+-,'zr, )(8—8,+-,'zr, )

(Bi—Ei) (Bz—Ei)
exp Li(8—Bi)t——,

' I"it]— exp Lz(8—82) rzt] . (5.19)
(8—Bi+-', iI'i)(Bi—Bz) (8—Bz+-,'zrz) (Bq—Bi)

b, is some average value of the energy between 8» and h2. After an infinite time the energy distribution is given by

4 (8 Ei) q

~y(8, ~)~ = 2km~a, (8..)~'
(2~)' L(8—Bi)'+-,'riq]L(8 —Bz)'+-'r '] (5.20)

The total probabi]ity of finding the system in a continuum state varies with time, once more considering only
the leading terms in G2, according to

G' /Bi —Ei)' 1 (Bq—Ei)' 1
E(t)= 2k, m~ai(8, ~)~'

~

—
~

(1 e—r)—+~
~

—(1—e
(2zr)' 5 Bi—BzJ I'i k Bi—Bzi r,

(5.21)

We h3ve neglected the variation in k and put it equal to some average value, k, .There are some oscillating terms
in the result but these are smaller by a factor G' (it must be remembered that ri, r& are of order G') and in any
case would average to zero over a very short interval. The result is clearly the superposition of two simple ex-
ponential decays. The factor 8»—82 which often occurs in the above equations is given in terms of E» and E2~ by

Bi Bz—L(Ez& Ei)q+4g&]i/&

It now remains to consider the case of a double pole and see how it divers from the above. The conditions re-
quired to ensure that f(P) =0 has a double root are found in Appendix III. From (C11) and (C12) it can be seen
that we can again assume weak coupling, G small, and this gives poles dose to the real axis in the complex energy
plane. This latter condition is necessary for the decaying state to give rise to observable effects which are not masked
by effects due to the poles of ai(8). To first order in G', when the conditions for a double pole are satisfied,

qq = (2mEi) '/' —iG'm'/4zr
(5.22)

qqq/2m = Bq ,'i r q
=Ei ,'—i(2—mEi)'/'G—'m—/8zr .

We are here implicitly assuming EQ)G4m'. Since G' is again small we can neglect as before the term I». The
probability amplitude for the energy distribution of the decay products is given by

g(B,t)= — i(4zrkm) / e '~'

(2zr)'

Working to 6rst order in G', we have

» Reference 3, p. 451.

d n —E» 4 0
gist g

—int

k+qp ) ' d 4qqp

k+qp*/ dq (q+qp*)' q=„

gg
ai(&)

~
a=q'/qm=&q —~~rq (5 25)

8—n (q+qq*)'
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Remembering that 8p E——q in this order of approximation, we obtain

Q2

$(8,t) = — i(4irkm)'t' exp( —i8t) aq(8)— expI i(8—Eg)t ——,'Fotjag(Er)
(2m)' (8—Eg+-,'iFp)' (8—Eg+-,'iFp)

~2r0 1
X 1—-', F,t— ,'-iF-p —ag((x) I =~, . (5.24)

(8—Eg+-', iFp) ag(Ei) dn

We can assume that the width of the wave packet h))Fp, that a&(8) is substantially constant over a wide range
centered on the resonance energy E», and that its derivative at this point can be neglected. The derivative term is
in any case multiplied by a factor Fp which is of order G . Within the range of energies in which a&(8) is nearly
constant,

Q2 8—Eg+-', iFo
i(4irkm)'"e "'ai(Ei) — 1— 1——',Fot

(2~)' (8—E~+oiFp)'- b jv»
expI i(8—Eg)t ——,'Fot] . (5.25)

There are two special cases which are of some interest. For energies such that
I
8 E~I is gre—ater than a few

times F0

p(8, t)= —(G /(2m)')i(47rkm)'t'e '"aq(Eq)(8 —Er+ —,iT'p) '[I—(1——,'Fpt) expLj(8 —Ei)t——',Fptjt. (5.26)

The energy distribution after an infinite time is the
same as that for a simple resonance but the decay law
is that given generally in 8 for excitation of the un-
stable state by a wave packet of continuum states.

The other special case is when B=E». All the terms
except one proportional to t vanish.

g(Eg, t) =—(G'/(2') ') (4vrkpm) 'I'

Xt: '~"ax(E&)te *"" (5 2'7)

This is quite distinctive
I
it is similar to the decay

laws (14) and (15) in Bf. This energy does not occur
in the spectrum of the 6nal decay products after an
infinite time. This is shown in the asymptotic energy
distribution

I y(8, ) I

'= 2km
I ag(Ei) I

'
(2~)'

(8 E)o
X (5.28)

I (8—R)'+~Fo'j'

The total probability of 6nding the system in a
continuum state varies with time, once more con-
sidering only the leading terms in 62, according to

P(t) = «'/(2~)')kimI a~(E~) I'(1/F.)
XL1—(1—I" t+-,'I'o't')e r"j. (5.29)

We have here neglected the variation in k and put it
equal to kz= (2mE&) 'Ip. The dissimilarity between
(5.29) and (5.21) is obvious.

VI. CONCLUSIONS

We now appear to have added another decay law to
the list of those associated with double poles. What re-
lationship does this bear to those given in A or BP In 8

the conclusion drawn is that double poles give rise to a
continuously variable rather than a unique decay law,
in practice the amplitude is some arbitrary linear com-
bination of e ' and r/e '. This is true and to obtain
any greater degree of definiteness it is necessary to
make some kind of assumption about the initial state.
In A a de6nite decay law is obtained by requiring that
the initial state is strongly localized spatially. Here we
assume that the unstable state is formed, as referred to
in 8, by excitation from a wave packet of states in one
of the decay channels coupled to it. At erst sight our
decay law is slightly diferent from that in 3 since in
the corresponding case the decay law given there by
Eq. (16) is Ifo(t) I

=(1—xoFt)e '*r', where go(t) is the
probability amplitude for finding the system in the X2

particle state. However, these results can be reconciled
since we have calculated the probability that the system
has actually decayed into the final continuum states.
The corresponding quantity is then

Iy, (t')
I
'dt'=

I I—(1—Fty-', F'») &-'q
0 2r

which agrees with our results.
If physical systems with double poles are ever in-

vestigated it is very unlikely that the unstable states
will be particularly long-lived, and the unstable states
will have to be formed in the course of the experiment.
There are only two possible ways of forming an unstable
state, by excitation from a decay channel which is
essentially considered here, and by decay of another
unstable state. The model considered here obviously
does not extend to the latter case, but in such cir-
cumstances peculiar energy dependences of the various
parameters might in any case be expected.
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There is one other diKculty about the formulas
given here. As they are given, the probability amplitude
for finding the systems in a final continuum state of
definite energy at a definite time violating the un-
certainty principles and also the usual result that the
energy distribution at a resonance can only be ob-
served if the time behavior is not observed and vice
versa. The reason is that we have only considered half
the experimental situation, neglecting the final de-
tection instruments. If these only detect a small band

of energies they will not be able to de6ne the time be-
havior. The case when all energies are detected gives
rise to the decay laws (5.21) and (5.29) given here.
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APPENDIX I
~e are here initially concerned with the evaluation of the propagator 52 (s) for the X2 particle:

This is achieved by using the expansion"

Ss'(s)=(x2I Ixg).
s—H

(A1)

Hc
s—H s—Hp s—Hp s—H

(A2a)

+ Hz + Hz Hz
s—Hp s—Hp s—Hp s—Hp s—Hp s—H

Inserting (A2b) in (A1) and using (xm I Hz I xs) =0, we obtain

(A2b)

S2'(s) =
1 1

1+(xslHz Hi lx2)
S—E2 s—Hp s

1+«2I az Hzlxt)(xt
I IX2)

S—E2 s—Hp s—H

1
+(x,la, H, lx,)(x, l

s Hp
I X2)+ (X2I Hz Hzl k)dk(k I I x,), (A3)

s—H s—Hp s—H

where the completeness relation (2.1) has been used. Since

we get

(X2laz Hzlxt)=(xnlaz H, lk)=0,
s—Hp s—Hp

1
S2 (s) s E2 (Xm

I
Hz Hz

I
X2)

s—Hp
(A4)

By further use of the completeness relation, we obtain

(x, la, H, lx,)=
s HQ

So finally, using (A5) in (A4), we have

g2 Q2

s—Eg 2+2 p

dk k21 U(k) I

'
s—k'/2yg

(AS)

S,'(s)= s—Z,—
z Ej 2z p

O'I U(k) I' —'
dk

s—k'/2nz
(A6)

~ These expansions hage been used in similar contexts in A. Messiah, Qgantgyg ~gqjgalzqg {~orth Holland publpQQQg Cpm
pany, Amsterdam, 1961), Vo1. II, p. 995.
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The other matrix elements of the resolvent (s—H) ' can be evaluated in terms of Sp'(s). Using (A2a), we obtain

(&~l
s—H

1
(x~llI l~p&=

2'—El s—H
Sp'(s),

8—A~1
(A7)

1 G U*(k)
(kl I

x,&= S, (z).
s II — (2s.)'~' s—k'/2m

Using the completeness relation and (Ai), (A7), and (AS), we Qnd

(AS)

1
I
xp) =

s—B
Again using (A2a), we get

g G U*(k)
Ixg&+ lx,&+ — dk lk) Sp'(s).

-s—E1 (2s)"' s—k'/2m
(A9)

1

s—LI

1 1
I xi&+ &r lx~&

2'—E1 2 —B

lk)=
s—H

g
I &~&+ I xp&,

S—E1 S—H

1 G
I»+ U(k)

z—k'/2m (2s)PJ' z—H

(A1o)

(A11)

APPENDIX II

We here study the properties of hp(s) on the Grst sheet of the complex s plane

Gz - kpI U(k) I

p-

dk
s—k'/2m

hp(s)=(s —Eg) s Ep-
27i 0

~g2 (B1)

As noted before, this is analytic in the Gnite s plane cut along the real axis from s= 0 to s= ~.By taking the real
and imaginary parts,

Reh p(s) = (Res—Eq) Res —Ep—
s—k'/2m

k'IU(k) I'
Re dk

2x Q

—g' —Ims Ims+Ims
2Ã Q

kpl U(k) I

p

dk (B2)
Is—kP/2ml'

G2
Imhp(s)=Ims Rez —Ep-

27r2

G2

2%2 0

kPI U(k) IP-
Re dk +(Res—E~) Imz+Imz

p s—k'/2m

k'IU(k) I'—
dk

I s—k'/2m
(B3)

If hp(s) has a zero the real and imaginary parts must be separately zero. By putting the right-hand sides of (B2)
and (B3) equal to zero and substituting from (B2) and (B3), then

Gp - kplU(k) Ip
o=I~ g'+Is —E, IP 1+

I.—kp/2ml p

From (B4) it is clear that necessarily Ims=O for hp(s) to have a zero. Further, for p'/2m real,

Imhp(p'/2m&ip) = &(pp/2m Eq)(G'/2—~)mpl U(p) I

'.

(B4)

(B3)

If U(p) does not vanish then hp(pp/2m&ip) has no zeros. Hence the S matrix Sp only has poles on the erst sheet
of the complex energy plane on the negative real axis. These correspond to bound states in the usual way.

Suppose x, where x is negative and real, is a zero of hp(s); then

2x 0

G' " kPIU(k)IP
dk

k'/2m —x Eg—x
(B6)
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The left-hand side of (86) is a monotonic decreasing function of x starting from +~ at g= —~' and continuing
at x=0 to E2~ where

2 oo

EP=E, m——dul U(u) l
m.

7l ()

The right-hand side of (86) is a monotonic increasing function of x increasing from zero at x= —~ to g2/E~ at
x=0 if E&)0 or if E~(0 to ~ at x=E~ and then from —~ to g'/E~ at x=0. Thus if E~)0 the two curves can
intersect and produce a zero of ho(s) only if EP (g'/E&. If E&(0 the two curves always cross at least once and if
EP(g2/E& they cross twice. The conditions for the number of zeros of ho(s) on the negative real axis are thus

Qo. of bound states

E»0
E2~)g2/Eg Ep(g /Eg

0

E,&0

E2r )g'/Ex E2~(g'/Ei

or alternatively

E BP0

E )g2/E 8 E (g2/E 8
E,~&0

Eg) g'/E2 Ey(g'/E~

No. of bound states

f% g

&g E,i x, I,x,)' (88)

where the physical state is

It is clear that there can be at most two bound states and that these must always be distinct since the corresponding
zeros of ho(z) must occur either side of E&, i.e., where there are two bound states one has an energy greater than
and the other less than E~. This conforms to the usual rule that double 5 matrix poles describing bound states are
forbidden.

The above conditions on the number of bound states can also be summarized that if E~E2~&g' there is one bound
state, if E~E2~&g' and both E~, E2~ are positive there are none, and if E~E2~&g' and both E~, E2~ are negative
then there are two. The significance of these conditions becomes more transparent in the limit G' ~ 0 when
E2~ —& E2. In the absence of any coupling to the continuous states the matrix representative of the Schrodinger
equation is

The eigenvalues of the energy are given by

l~&=»lx, &+»lx2&. (89)

E=—,'(Ey+ E/) &L-,'(Ey —E2)'+g'j'~' (8i0)

As g' is increased from zero the separation of the energy levels is increased. This "repulsion" of energy levels is of
the same nature as that which occurs in P-co mixing. If g') EqE2 then the square root term is greater than —,'(Eq+E2),
so one energy level is positive and the other negative. On coupling to the continuum state the positive energy
level immediately becomes unstable and is no longer an exact energy eigenstate. For g'&E&E2 then either both the
energy levels are positive or both negative depending on whether E&, E2 are positive or negative. The positive
energy eigenstates naturally disappear on coupling to continuum channels.

APPENDIX III

We study here the properties of the function f(p) analytic everywhere in the finite complex p plane

f(p) = (p 25zE1) (p' 2mEP+i—pG m'/7r) —4m'g— (Cl)

As in Appendix II we take the real and imaginary parts

Ref(p) = {(Rep) 2—(Imp) '—2mE, }{(Rep) 2—(Imp)' —2mEp —Imp(G'm'/7r) }
—4m'g' —2 Imp Rep{2 Imp Rep+RepG'm'/~) } (C2)

Imf(p) = {(Rep)'—(Imp)' —2mE~}{2Imp Rep Rep+Rep(G'm'/~)}
+2 Imp Rep{(Rep)'—(Imp)' —2mEp —Imp(G'gg'/~)}. (("3)
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If f(p) has a zero (C2) and (C3) are separately zero. By substituting one such equation into the other and after
some calculation we obtain

0= RepL83332g2 Imp+
~
p2—2223E1~ 2{2 Imp+G22232/2r}7

For Imp &~ 0 the only zeros of f(p) occur for Rep =0, i e., on the positive imaginary axis. These correspond to bound
states. It is easily shown that there are at most two such zeros and that they are strictly separate, being on either
side of p= (2mE1)'~2. The same conditions on the number of bound states as in Appendix II still apply in this
special case.

We now solve the equation f(p) =0 for small G' to see what kind of unstable states occur for weak coupling. For
G'=0 the roots are essentially given by (B10):

p1,2' ——223(E1+E2R)+mL(E2 —E1)2+4g'$'I' (C5)

f(P1,2) G'm' 233(E2R—E1)&223)(E2 —E1)'+4g'j"'
gl, 2 P1,2 P1,2 ZP1, 2

f'(p1, 2) 2r f'(P1,2)a'=0

It is assumed here that g'&E~E~~ and both E~ and E~~ are positive so that on coupling to the continuum states
there are no stable but two unstable states. We are here only interested in the two roots with positive real part
since the other two can be found by reflection in imaginary axis. For 6'40 but small the correction tp the rpots
can be given by Newton's method. If q1 and q2 are the exact roots in ReP) 0, then, working to 6rst order in G2,

G2m (E2 E1)&[(E2—R E) +4g j—I

=Pl,2+3
42r L(E R E )2+4g2]1/2

(c6)

The result is to give the roots a negative imaginary part, and it is easily seen from (C5) and (C6) that there can be
no double root in this approximation.

Finally we consider the conditions required for f(p) to have a double complex root. Since f(p) is a polynomial, in
fact a quartic, this is a straightforward algebraic problem and results in an equation of constraint on the coe%cients
of the powers of p in f(p). For a quartic equation

g(x) = apx +4a1x +6a2x +4apx+a3= 0
q ap/0

the necessary and sufficient conditions for a double root to exist is that the discriminant D shall be zero:

a0 (91 02) (01 03) (01 04) (~2 |3) (02 ~4) (03 04)

where 8&, tI2, 03, tI4 are the roots of the above equation. If

I= apa4 —4a1a3+3a2

apa2a4+2ala2a3 apa3 a4a1 a2

then D=256(1 237J2). In this case, putting n=G2m2/vr, p=nzE1, y=mE2R, 8=m2g2, we obtain

f(p) =p'+ 'p' 2(0+7)p' 2—P p+4(PV —&)—
Thus here we have

I=4(~v —~)-! '~+l(~+&)',
~= —:0+&)(~v-~)+-'.0+&) '~--: '~+(1/27)(~+&)'.

Putting I'= 27J' for a double root and then simplifying, we have the tediously long equation

2P3np+ {8(P—y) 2/2 —16P3y+ 12(P—3y)$8+2752}u'+8{(P—y)'P —8(P—y) 2P2y —(P+y) (P—y) 28

+16(P y) 2P8+—32Py28+12(P 3y) t'12}n—2 64(PP —8){(P—&—)2145}'= 0. (C8)

This does not appear to factorize except in artificial cases such as +=0 or 8=0 which cannot be used here since we
require complex roots. (C8) can be regarded as a cubic in n2 and hence in G'. Since G must be real it is necessary
to restrict the roots in n to real positive values. Since the equation is a cubic there is always one real root. This root
is positive if the value of the cubic at n'=0 is negative. This requires

Py) 8 or g2(E1E2R (c9)

which if E1, E2R are positive is the condition for the existence of complex roots in weak coupling. Thus if (C9) is
satisfied, for some value of G, there is a double root. By suitable manipulation of the coefficients in (C8) &t would
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be possible to 6nd the exact conditions under which there are one, two, or three values of G which for given values
of the other parameters produce a double root. However, this is too complicated and to obtain more information
about double complex roots we adopt another approach.

If p= g2= a i b (—a, b positive) is a double root of f(p), then all the coeKcients and hence u, p, 7, and 8 are de-
termined in terms of a and b, and thus the required inter-relationships are found:

f(p) = (p a+—ib)'(p+a+ib)'
p4+42bp8 2(3b2+a2)p2 4$b(b2+a2)p+(a2+b2)2 (C10)

By comparing coefficients, we have

n= 4b P= -'(b'+a') y= '(a'+-Sb') 8=-'(b'+a')b'

Choosing 6' and E& as independent parameters, the values of a and b and of E2~ and g' for a double root are given by

b =G2m2/42r, a'= 2mE2 —G4m4/162r 2

Ep=-2' (Eq+G4m2/8n') g'= (G4m2/324r2)E2= -2'E2(E2'2 ——2'E2) .
The position of the double pole in the complex energy plane is given by

(C11)

go'/2m= 8o ,'iI—'o,—8=Er— =~E2 E2", —
16x~

I'&= 52mE2 —G4m2/162r 2j' 2G2m/82r .

The only condition on the parameters for the above solution to be valid is

E2)G4m2/322-2

but for the double pole actually to give rise to a resonance it is necessary that

E2)G4m2/16vr2.

(C12)

(C13)


