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Elementary-Particle Spectrum*
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The relativistic quantum theory of the symmetric top implies that the spin J of a particle state can be
represented as the sum of three commuting spin operators of lengths given by the positive integers or half-
integers n, n', (l+l'). lf (l+l') is identified with the isospin, (l' —l) with Ip, 2(n' —n) with the strangeness,

(—1)'"' with the parity (for baryons), and (—1)"+"'with the G parity (for mesons), the simplest choices
of n, e', l, l' lead to a correct description of J, I, Ie, S, G, I' for every known strongly interacting meson or
baryon state.

~ OR some years it has been known that the electric
charge Q of a state of the spectrum of strongly

interacting elementary particles may be represented by
the general formula'

Q= s&+-',S+Is,
where8 = 1,—1, 0 forbaryons, antibaryons, and mesons,
respectively, S is an integer denoting the strangeness of
the state, and the value of I3 may range in integer steps
from I to I, where I —is the isospin. In order that Q
may be an integer it is therefore necessary to assume
that, for the baryons and their antiparticles, S is odd if
I is an integer and even if I is half-integral, whereas for
the mesons S must be even if I is an integer and odd if I
is half-integral. Since the strongly interacting mesons
have integral spin and the baryons have half-integral
spin, these conditions may be expressed by the require-
ment that, if J is the spin angular momentum of the
state and we define

this in the case of the $*(1560).In other words, on a
plot of rest energy against angular momentum we
should expect almost parallel trajectories of constant S,
I', (J I) wit—h a slope of approximately 250 MeV. By
the same token, states with S=—2, I=-', have been
found at 1320 MeV (J' =—'+) 1530 MeV (J =—'+)
1/05?, 1810, and 1933 MeV, and if our rule is applicable
to these states also, there should exist states with
S=—2, I= ~3 corresponding to these and lying 250 MeV
or so higher and with one more unit of spin. Similarly,
correspondingtotheI=0, S=—3, J=ss+state0 (1675),
there should exist a state with S=—3, J =—,'+, I=1,
mass approximately 1925 MeV.

Trajectories of precisely this nature have indeed been
found as solutions of one of the equations which
describes the properties of a symmetrical top according
to the principles of relativistic quantum mechanics.
Nonrelativistically, the energy of such a top may be
expressed thus:

x,=J I+ ',S, —- (2)
8=p /2m+ J'to (3)

where J, to respectively denote the angular momentum
then K must always be an integer. Thus, Q becomes the
sum of the three integers Tmxz I. Pairs of baryon states with the same strangeness and

parity and the same (I—I).
Q= (rsB J)+(I+Is)+—'Jt

and hence itself is an integer.
The baryons with S=O, —1 known at present are

listed in Table I.Classihed according to the values of K,
or its equivalent (JI), the states a' —ppear to satisfy the
following ENle I:To every baryon state mitlg straegemess S,
parity I', spin J, isospin I and mass M there corresponds
another baryon state toith the same strangeness and parity,
bett toith spin J+I, isospin I+I, mass M+6M. For
S=—1, AM is approximately 250 MeV; but for S=O,
the data are too uncertain to decide. If this rule is
generally valid, we should expect many more states of
higher spin, isospin, and mass, the quantum numbers of
which may be obtained by direct extrapolation of the
data so far accumulated. There is some evidence for
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States

F&*(1385)
A(1115)
Fge (1660)
Fp*(1405)
F *(1765)
Fp*(1520)
Fg*(2050)
Fp*(1815)
Ze (1415)?
Z (1193)

¹(1560)?
a(1236)
N(940)
6(1710)?
¹ (1512)
A(1920)
NP (1688)
6(2360)

¹ (2190)
a(2825)
N*(2650)

JP
3+
1+
2
3?2a—
2
5—
23—
2
7+
5+
2

?
1+
2

L+
2

?
3~
2
7+
5+

2 (?)
-' (?)

11/2+(?)
p'(?)

tl
l)

aM
(MeV)

270

255

222?

324
296

198?

232

170?

175?
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Fxc. 1. Resolution
of spin angular mo-
mentum according to
Eq. (13).

reducing to the ordinary Dirac equation when Eq. (7)
is satisfied, for in that case the extra term in Eq. (9) is a
constant and may be absorbed into 3f.

In general, however, J is not required to be a constant
times ~, and if we write

and angular velocity. If I&, I&, Iz are the moments of
inertia about the principal axes, and Iq= I~, the angular
momentum may be written in the form

J=IBoi+ (IA IB)oi' a—a (4)

the Hamiltonian which, taken over directly into quan-
tum theory, describes the rotational energy levels of
those molecules and atomic nuclei to which the model of
a symmetric top is applicable.

In the same way that the rotational energy is added
to the translational energy in Eq. (3) to yield the non-
relativistic expression for the total energy, we should
expect that, in order to do the same thing relativistically
we should add to the Dirac equation, for example,

[1'ypp~+nic]$ =0 ~

a Lorentz-invariant term of the form

1 7
g JP,PQ)PV ) (6)

where the axial components of I„„,cu„„become J, ss in
the nonrelativistic limit.

If this extra term is absent, or is a constant, we know
that

JpV gZA+PV y (7)

where p„„=(y„,p„).The particle is then allowed only the
value —', for its spin. This case corresponds to a spherical
top with fixed spin, for only in this special case, at least
nonrelativistically, is there only one value of the energy
available to a particle at rest. We therefore regard the
relation between J and io for a spherical top,

J„v=I~a)„„,

as the classical analog of Eq. (7), so that

co„„=—(ih/4IB)y„, .

where a is a unit vector along the A axis of symmetry.
Hence, if we define

X=J a=IAio a, .
Eq. (3) becomes

p' 1 1(1 1)E= + J'+—
~

——~x',
2ni 2IB 2 GAIA IB/

we find that angular momentum is conserved by Eq. (9)
provided that the new operators F„„commute with the
p„„and satisfy among themselves the standard commu-
tation rules for angular momenta. These rules may be
most easily expressed by writing the axial components
of —il'„„as the sum of two vectors L+L', and the polar
components as L—L'. Then L, L' commute and are
simple angular momentum operators of lengths given by
L'=l(l+1), L"=i'(l'+1), where l, l'=0, -', 1, The
intrinsic spin of a particle satisfying Eq. (9) is now
given by the vector sum

J=AP-', e+L+L'j.
If in Eq. (9) we write

3A'
31+

4Igg
m

16Igg

the equation becomes

=ma= am,

pip„p„+nic/1 ay„„I'„„)—]/= 0,
and to first order in a there are two solutions for the rest
energy:

or

)2
~

=1—a+2'
mci

=1 38 2'~

(12)

the latter leading to imaginary rest energies forI) (1/2a) —s. For the former solution, however, it is
found that L and L' are parallel, and if we identify the
length (l+i') of the vector L+L'= h 'I with the isospin
I we are lead to trajectories along which (I I) is-
constant and which, again to 6rst order in a, have a
constant slope mot,'. These are the basic characteristics
of the states listed in Table I. We now write I3——l' —1,
since this may then assume the values I, I—1, ~ ~ ~ —I as
required.

Equation (9) has a more general meaning if we do not
require that the y„and y„, that appear in it should be
Dirac operators, but allow them to be general spin
operators, like the I'„„ofEq. (10).In this case, we write
the axial components of —4iy„„as the sum of two
vectors N+N' and the polar components as N —N',
where, as before, ¹=n (n+1), N"=e'(e'+1), (e, e'= 0,
—'„1 ). Thus,

J=hPN+N'+L+L'j, (13)

The generalized Dirac equation now becomes

t(i y„P„+Wc (i7i/16IB)y„+„„7$=—0, (9)

2 H. C. Corben, Proc. Natl. Acad. Sci. 48, 1559 (1962);I. Math.
Phys. 5, 1664 (1964); Phys. Rev. Letters 15, 268 (1965); A. H.
Klotz, Nuovo Cimento 32, 1191 (1964); L. Castell, ibid. 36, 1348
(1965);39, 344 (1965);R.E.Norton, J.Math. Phys. 6, 981 (1965).
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TABLE II. Lowest quantum numbers of states allowed by Fig. 1.

1-
2

1+
2

3—
2

9+
2

11/2+

n S= 2(e' —e)

0—1

—2
—2

0 3

0
0—1
0—1—2

0—1—1—2
—1
—2

0—1—2—3

—2
—3

0—1
0—1

—2—3

0
—1
—2
~ 3

4—5

0—1—2~3

0—1—2

0—1—2—3

0—1

3 5
2j 2

0, 1

1
3 5
2p 2

123

1
3

1 Q,
27 2

12
3 5
2) 2

0
1
2

1
3

2
5
2

0

1

12

123
1
27

3 5 7
2t 2p 2

3

1

0
2

3 5
27 2

07 1, 2, 3

5

2
3
2
1
1

0

3 5
2p 2123
1 3
2$ '2

State

N(939)
A (1115)
z(1193)

(1317)

="P)
n(?)

N*(1500)?
¹(1700)?
Fa~ (1405)
60692)?

}z*(?)
=*(?)
="(?)
-""(?)
n(?)

¹(1450)
Fa*(1663)
z*p)
="*(?)

z(?)
="(?)

S(1236) t
F&*(1385)

~(1530)
n-(1675)
zs (1415)
Igg (?)
n(?)

N*(1512)
F0*(1520)
6(1640)?
Fg~ (1660)

- 4 (1'705)?
n*(?)

¹(1560)
z(?)
-""(?)
n(?)
0(?)
T(?)

d (1710)
Fx~ (1765)
=-*(1810)?
n*(?)

¹(1688)
Fp*(1815)

4(1933)

A(1920)
Fg*(2050)
="P)
i(?)
N4(2190)
Fo~ (?)

6(2360)

N*(2650)

h(2825)

Unitary symmetry assignment

n octet (3)

Singlet (3), ninth baryon (5)

'70 decimet without n (4)

70- n octet (4)

5 decimet (3)

Decimet (7); y octet (3) (4)
Part of 7 octet (3)

Decimet with S=1, 0, —1, —2 (7);
rest of y octet (3)

Completed by "~(1810)A*(1661) (4)

35-piet (8) with S= 1,I=2 replaced
by S=—5, I=0

Part of u octet (3)

Decimet (9)
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TABLE II (continued)

a S=2(a' —a)

0

1
0
0

0
0
2—1

0—1
1
0
0

1
0—1
1
0

0

0
0
2—1
0
0

0
1
2
1

1

0, 1

0

I
1
3

2
0

0, 1
0, 1

1

0
0
1
3

12
123

G ( 1)a+e' State

v (549)
E(496)
E(496)
s (137)

z(725)?
Xp (960)

?
E+E+(1055)?

?

p (763)
X*(890)
X*(890)
u (783)
A g (1080)
E'(1270)
E"(1270)
8 (1215)?
C(1215)?
C(1215)?
4 (1020)

?
A g (1320)
E~~ (1430)
E** (1430)
f0(1250)
f'(1530)

E+E+(1280)?
?
?
?

Unitary symmetry
assignment

P octet (3) (6)

Singlet (3); ninth meson (5)

y octet (3)

Singlet (3); ninth meson (5)

Nonet (5)

the case of the generalized Dirac equation corresponding
to N=rs(1 —ys)e, N'=sr(1+ps)o. We write

il(N+N')=a, a(L+L')=I,

so that, for L, L' parallel, the simple vector diagram of
Fig. 1 describes the composition of the spin J.

In order to assess the possibility that this more
general form of the wave equation may be able to
describe the elementary-particle spectrum, we examine
the ways in which a state of given spin may be formed
according to this figure. We assume as before that

I=/+l', Is=)' l—

it follows that if I is half-integral S must be odd, and if
Z is integral S must be even. This result is just that
quoted earlier, i.e., it automatically rules out the wrong
combinations of S and I, and therefore always makes Q
as defined by (15) equal to an integer.

The lowest values of ri, rs', (l+l') which can combine
to form a given spin are listed in Table II, together with
various unitary symmetry assignments that have been
proposed for the resulting states. '—' Since the space of
the vectors L, L' is not coupled directly to the mornenta
in Eq. (9), we suppose that keeping rr, rs' fixed and
changing 3, l' does not change the parity, and assume
that, for the baryons,

and that similar quantum numbers in the N, N' space
de6ne the strangeness:

I'= (—1)' '
(baryons). (16)

-',S=m' —e. (14)

In terms of these quantum numbers Eq. (1) becomes

Q =~B+(e' n)+ (l' —l—) (15)

showing a similarity between —,S and I3. The quantity S
defined by Eq. (14) is automatically an integer. Further,
since the vectors of length e, m', 1, l' must combine to
form J according to Eq. (13), it follows that, for
fermions, if I is half-integral S must be even and if Z is
integral S must be odd. For bosons, on the other hand,

s M. Gell-Mann, Phys. Rev. 125, 106'7 (1962); Y. Neeman,
Nucl. Phys. 26, 222 (1961); S. Sakata, Progr. Theoret. Phys.
(Kyoto) 16, 686 (1956); S. L. Glashow and A. H. Rosenfeld,
Phys. Rev. Letters 10, 192 (1963).

4 I. P. Gynic and S. F. Tuan, Phys. Rev. Letters 14, 121 (1965).
~ J. Schwinger, Phys. Rev. 135, 8816 (1964);S.L. Glashow and

R. H. Socolow, Phys. Rev. Letters 15, 329 (1965).
6V. Votruba and M. Lokajicek, Joint Institute of Nuclear

Research Report P-191, Dubna, 1958 (unpublished).
7 J. J. Sakurai, Phys. Letters 10, 132 (1964).
8 E. S. Abers, L. A. P. Bali,zs, and Y. Hara, Phys. Rev. 136,

31382 (1964); R. F. Dashen and D. H. Sharp, shed 138, 3223.
(1965); R. W. Griffith, ibid. 139, 8667 (1965).

s M. L. Stevenson, Bull. Am. Phys. Soc. 10, 1179 (1965).
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6= (—1)"+"' (mesons) . (17)

Since 1 is the vector sum of I and Q, we write Q'
=~(a&+1) and. note that, from Fig. 1,

(18)

The states allowed by Fig. 1 are similar to those
allowed by some of the representations of SU3 and SU&.
The appearance of decimets is common to both, but
here we cannot construct a decimet of spin 0, » or 1 but
we are led very naturally to a decimet at spin —,'. There-
after, decimets occur for higher spins, which also allow
21-plets for J&~ —'„with S=O, —1, . —5. The baryon
octet appears here as the simplest way of putting to-
gether two spins of length 0, -'„or 1 to form spin —,'.
However, for spin 0 we obtain a basic sextet until we
admit the antiparticle to the E. In addition, there are
other states of spin 0 allowed, including an S=2, I=1
state. From Eq. (18) it is impossible to form I=0 states
with I(-,'

l Sl, so that for J=0, I=O there is no state
with S=~2, and for J=—'„I=0 there is no state with
S=&3, etc. Were such states to be found, this analysis
would be proved to be invalid.

For the spin-~+ octet and spin-~+ decimet we have
e'=0, so that for these particle states

with ~=-', lSl =-', (1—Y). However, we may also resolve
1 into the vector sum

J=X+U,

For antibaryons, e and e' are interchanged, as also are
l and P. Since the m meson appears in the table with
e=e'=-'„we suppose that, for the mesons, the 6 parity
is given by

which resemble the Gell-Mann —Okubo mass formula

M =a+bY+c[l (I+1) 'Y'—]-
(with a=nzq, b= —189 MeV, c= —2b/9) and the SUB
formula for the magnetic moments:

(2o)

The assumption that

p= —',p,„(U—2X) (21)

[analogous to the Lande g-factor rule p (L+2S)]
leads directly to the SU& result (20) for the octet, but of
course there is no a priori reason for the choice of the
coefficients in Eq. (21). Similarly, the masses of the
J=-',+ octet may be expressed by the two-parameter
formula

M =m„[1+-,'(o]—moJ Q,

where m~ is the proton mass and. @so 2c= m„——/11
In summary, the spin of a symmetrical top in rela-

tivistic quantum theory is the sum of four commuting

where X2= x(@+1)and x=-,'(1+Q).Thus, x is obtained

by replacing Y in ~ by —Q. We may then regard the
spin- —,'octet as the sum of two vectors of lengths
(~U)=(0,—:), (l,O), (l»)(»l), ie (QU)=( —»l)
(0,0), (0,1), (1,-', ). Thus, U may be regarded as the U
spin, although there is no reason here for taking linear
combinations of the A and Zo wave functions to give the
U=O, U=1 components. Similarly, for the decimet, in
order to make spin 2 we may take (x,U) = (2,0), (1,—', ),
(-'„1), (0,—',), i.e., a singlet with Q=2(N*++) a doublet
with Q=1(N*+,Z+) a triplet with Q=O(N*,ZO, ) and
a quartet with Q= —1(N*,Z .. .Q ).

Ke also note that, for these states,

—J Q=-', [I(I+1)—-'Y'+ Y—-' —J(J+1)]
—J X= -,'[U(U+1) ——,'Q' —Q

——,
' —J(J+1)],

TABLE III. Regge recurrences for which N, N', I are parallel. Higher member of pair is obtained from lower member
by increasing both e and n' by unity and J by 2.

S= 2(N' —m) J=rt+n'+I

2?

States

X*(168S)
X(940)

Yp* (1815)
x(1115)

6(1920)
a(1236)

Y1*(2050)
V,*(1385)

N*(2190)
m*(1512)

~(2360)
~(1710)

am (MeV)

700

650
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TABLE IV. Some baryon states predicted by this analysis.

J Mass (MeV)

—1—2—1—1—1—2
0
0
0
0
0—2—3—3

—5—3—3—2—1

5+
3+
25—
27—
29+
5+
25—
27—
29+

11/2
13/2+

1+
1+
23—
25+
5+
25—
25+
7+
27—
2

1650
1570
1910
2010
2290
1760
1710
1900
2125
2525
3000

?
?

1950
2100
2230
2060
1925
2200
2200

spin operators, two of which, N and N', are described in
the space of the y„which are coupled to the momentum
in the equation of motion, while the other two, L and L',
are not so coupled. We have found that if the lengths of
these vectors are m, e', l, t', we are faced with a limited
choice of them to form a particle with given spin, and
have examined the lowest values of these quantum
numbers for various values of J. In the special case
N+N'=-,'s, where a is the Dirac spin operator, the
multiplicity of the highest state is 2(l+l )+1, corre-
sponding to an isospin I= (l+l'). We have assumed that
this is generally true, and in addition that the strange-
ness quantum number for particles is the integer
2(n' —n) the parities of the baryons are (—1)'"' and the
G parities of the mesons (—1)"+"'. Thereafter, the
formation of the tables which correctly describe the
observed spectrum of baryons and mesons simply con-
sists of taking the lowest values of these quantum
numbers consistent with the value of the spin of the
particle.

The model illustrated in Fig. 1 gives rise in a very
natural way to four distinct types of intersecting tra-
jectories in the rest-energy angular-momentum plane
such that the parity is constant along each one of them.
The most familiar set of these trajectories is generated
by keeping I Axed and allowing both e' and e to in-

crease by one unit, with 6 and J correspondingly in-
creasing by two units. Since Ae'= ArI,, the strangeness is
constant along such a curve, and since P= (—1)'"' the
parity remains constant. These are the Regge trajecto-
ries the evidence for which, in the case of the baryons, is
summarized in Table III, and leads us to Rule II: To
every baryon state with strangeness S, parity I', spin I,
isospAn I, and mass M there corresponds another baryon
state with the same strangeness, isospin, and parity but
with spin I+Z, mass &+AM. For all pairs of states
known at present, AM=:700 MeV, although AM ap-
pears to decrease slowly as M increases.

Alternatively, we may keep e', n fixed, so that S and
P are fixed, and allow J and I to increase by integers.
These are the trajectories of constant S, P, (I I) listed-
in Table I, described by Eq. (12) or Rule I and studied
also by bootstrap techniques. ' Another set of trajecto-
ries is generated by keeping rI,

' and hence P constant,
and allowing e and J to increase in integer steps while I
remains constant. Along each of these trajectories the
strangeness decreases by two units for each increase in J
by one unit. This leads us to expect Rule III: To every
baryon state with strangeness S, parity I', spin I, isospi n

I, and mass M there corresponds another baryon state
with the same parity and isospin, but with spin (J+I),
strangeness (S—2), mass M+AM. Two examples of
such trajectories are known at present, one connecting
the A. and the 0, the other connecting the neutron-
proton with the *(1530).The slopes of these trajecto-
ries are approximately 575 MeV per unit of J, and they
lead to the expectation that states of higher

~
S

~

will be
discovered at higher values of J.

Finally, of course, we may keep I, n' and (n+I) Gxed
so that P and I——', S remain constant. This implies
Rule IV: To every baryon state with strangeness S, parity
I', spin J, isospin I, and mass M there corresponds
another baryon state with the same parity and spin, but
with strangeness S—I, isospin I——',)0, mass M+AM.
Prime example of this is the J=~+ decimet, with AM
=147 MeV.

This set of interlocking trajectories allows an estimate
to be made of the masses of the states to be expected as
these trajectories are extended to higher energies and
spins. Table IV lists some of the lower lying baryon
states predicted by this analysis.


