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value of g» from Eq. (23), the resonance occurs at ap-
proximately the correct position in the m E channel but
with a branching ratio greater than —', (i.e., with phase
=ir/2). If we vary our couplings slightly so as to 6t
exactly the two parameters, W*= 12.1tt and I',/I' =0.35, '
then we need the couplings: g3'= 0.53g3 and g33'= 1.01g33.
However, for these new couplings the total width is only
7=40 MeV as compared to the experimental value of
F=325 MeV.

In conclusion we have seen that a simple model of
inelastic coupling in a pole approximation gives an
excellent prediction of the position of the 1)l*(-', )
resonance. Thus both the N*(—' )"' and X*(zs)
resonances and their octet character are understand-
able from a dynamical model. The width of the 1@a(s, ),

"J.J. Brehm, Phys. Rev. 136, B216 (1964).

as calculated in the three-channel case, is far too small
as was that of the X*(-,'+), discussed in AB2. In that
paper, it is argued that this is probably the result of
having only one inelastic channel open for the decay.
Other states are going to play a role and we would ex-
pect the resonance width to be increased by this Ball-
Frazer" effect, but we know of no simple way to
estimate it. A test of this model would be to observe
that the dominant decay product of the 1V*(ss ) is
~+Ã*(-,'+).
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Electromagnetic properties of isobars are studied using the group-theoretic formulation of the strong-
coupling theory due to Cook, Goebel, and Sakita. Expressions for magnetic moment and electromagnetic
mass shifts for isobars are obtained in the scalar and the pseudoscalar theories. The significance of these
results is briefly discussed.

1. INTRODUCTION

ECENTLY, Cook, Goebel, and Sakita' have given
a group-theoretic formulation of the static strong-

coupling theory. As shown by these authors the strong-
coupling approximation is closely related to the rnathe-
matical concept of group contraction and the "dynami-
cal group" which emerges in the strong-coupling limit
has the structure of a semidirect product of the "primi-
tive group of invariance" with a suitable Abelian in-
variant subgroup. In this formulation the infinite
number of isobar states that occur in the static scalar
strong-coupling theory are put in a single unitary ir-
reducible representation of the group SU(2) X Ts.
Similarly, the isobar states of pseudoscalar strong-
coupling theory are put in a single unitary irreducible
representation of the group SU(2)QxSU(2)XTs. The
purpose of this paper is to study the electromagnetic
properties of isobars in the static scalar and pseudo-
scalar strong-coupling theories using this group-theoretic
formulation. In Sec. 2 we construct the explicit ma-

f Present address: International Center for Theoretical Physics,
Trieste, Italy.' T. Cook, C. Goebel, and B. Sakita, Phys. Rev. Letters 15, 35
(&965).

2. REPRESENTATIONS OF SU(2) X T,

Let us denote the six in6nitesimal generators of this
group by 3f; and A;. The commutation relations for
these generators are

[
[M;,A;]=i ' uses

[A;,A;]=0.
We now define appropriate "ladder" generators:

Mg= M1&iM2, Ag= A 1&iA2.

(1)

(2)

(3)

The commutation relations of these follow from Eqs.

trix representation of the infinitesimal generators of
SU(2) XTs. These results are then utilized in Sec. 3 to
obtain a magnetic-moment formula and an electro-
magnetic mass formula in static scalar theory. The
pseudoscalar theory is studied in Sec. 4. The relevant
representation of the group SU(2)QxSU(2) XTs is erst
constructed and then these results are applied to ob-
tain expressions for magnetic-moment and electro-
magnetic mass shifts of isobars. The significance of these
results is then briefly discussed.
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(1)—(3). A given representation of SU(2)&&T2 will
automatically realize a representation of the subgroup
SU(2). The irreducible representations of the latter
are characterized by an integral or half-integral non-
negative number k. Let 5K~ denote the correspond-
ing (invariant) vector space and let f„p, v = —k,—k+1, +k be a canonical basis for DR". On this
basis operators M+, M3 are given by the usual formula

/V+f, '= [(k—v) (k+v+1)]'/' f+1',
M f,p= [(4+v)(k—v+1)]'/'f„ 12, (5)

fp vf2

We consider the representation space R of given repre-
sentation of SU(2) &(Tz to be a closed direct sum of the
subspaces 5K~. The general form of the operators A+,
A 2 in E can be obtained from commutation relation (2)
and Eq. (4). This derivation is given in Naimark s
book' and the result is

A2=2k Cp/k(k+1) .

Now consider Eq. (11).Introducing the notation

(16)

We now consider the case of irreducible representa-
tions in which the generators A; are not zero. The
parameters ct, and A t, can be found following the method
given in Naimark. 2 This is done as follows. First we sup-
pose that ct, does not vanish for any k

cs/0; k=kp+rt, I=1 2 3 . (13)

Now relations (9) and (10) mean the same thing.
Multiplying both sides of (9) by k and introducing the
notation

k(k+1)A 2=p2,
we obtain

pk pk —1

Equation (15) shows that ps is independent of k, i.e.,
is a constant. We denote this constant by ikoC. Thus

A+fry= [(k v)(k —v 1)]—'/zc—pf ~1' '
—[(k v) (k+—v+1)]'/2A 2f,+12

+[(k+v+ 1)(k+v+2)]'/pcs+1 f+1", (6)

A f,'= —[(k+v)(k+v —1)]'/zc/, f„rp—'
—L(k+v)(k —v+1)]'/'A, f, 12

—[(k—v+1)(k—v+2)] /zo2~1fp 12+1 (7)

f P= [k2 v2]r/2c f 2 1 vA f 2

[(k+1—)' v']'/'cp—+1f,'+' (8).

o 2 = (2k —1)(2k+ 1)c22,

we obtain from (11) and (16)

trk mrs+1= —(2k+1)kp'C'/k'(k+1)'

Therefore,
tt:—1

&kp trp= Z (&r &r+1)
v=tcp

C2(k2 k 2)/k2

(17)

(19)

At, =0=et . (12)

In this case A+ and A3 are zero; and the irreducible
representations of SU(2) &(Tz coincide with those of the
SU(2). We call this the Op type of representation.
Actually except for this case, the group SU(2)XT2
does not have any finite-dimensional irreducible
representation.

' M. A. Naimark, Lznear RePresentatzons of the Lorentz Group
(Permagolr Press, Ilrc. , New York, 1964).

In the above k~&ko, i.e., ct,p=O, when ko is a non-
negative integral or half-integral number. It remains
now to determine the coeKcients ct, and At, . For this
purpose we use the remaining commutation relations
(3). We apply relations (3) to a vector f„s and use
Eqs. (6)—(8) and then compare coefficients of the same
vectors f„v. In this manner we obtain

[(k+1)A2—(k —1)A2 1]cp——0, (9)

[(k+2)A 2+1—kA/, ]cpgl ——0, (10)

(2k —1)c22—(2k13)c/, ~12—A 22= 0 (11)

Equations (9)—(11) together with condition cpp
——0 de-

termine the parameters ct, and At, and thus lead to the
classification of the irreducible representations of
SU(2) && Tp. We first notice a particularly simple
solution of the above equations, viz. ,

Hut op, ——0 since cs,——0. Thus we obtain from (19)

[C2]1/2-k2 k 2- 1/2

ct=
k 4k' —1

(2o)

Before proceeding further we must emphasize that the
condition (13) is not a real restriction on the representa-
tions. To see this let us suppose the contrary case,
viz. , that cp vanishes for some of the values k=kp+n;
e= 1, 2, 3, Let k~ be one such value. Thus ct„=O so
that also at„=O. Repeating the same argument as be-
fore we now obtain

k~' —ko'
Ott;p

—Ott;&= —c =0,
(kl+1)'

1.e.)
klp=kp2' kl=kp+rt, rt=1, 2, 3, . (21)

Relation (21) cannot, of course, be satisffed, showing
thus that the possibility of vanishing ct, for some
k=kp+tt can never actually occur. This Proves the
earlier assertion regarding the absence of Gnite-
dimensional irreducible representations other than Oo.
We now go back to Eq. (20). This equation shows that
C has to be either purely real or purely imaginary. For
the physically interesting case of the unitary representa-
tions C is purely imaginary (see below), so that we write
C=is. We now notice a curious thing. From Eqs.
(6)—(8), (16),and (20) it is clear that the representations
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are actually independent of s which occurs as an over-
all multiplicative factor. One can simply redefine' the
operators A; as A;/z and thus eliminate z from all the
expressions. We thus obtain 6nally

i-k' —k '-'t'
0

cl, =- . (22)
k(k+1) k 4k' —1

Equations (5)—(8) and (22) give the desired irreducible
representations. These equations show that if a weight
k is contained in an irreducible representation, so
is the weight k+1, and hence all weights k=ko+e,
n= 1, 2, 3, . These representations are clearly in6nite-
dimensional. These equations also show that the
matrices Mp and Ap are Hermitian and M+(A+) is
Hermitian adjoint of M (A ). Thus these representa-
tions are unitary. We thus conclude that the unitary
irreducible representations of SU(2))&Tp are char-
acterized by a single non-negative integral or half-
integral number ka and these contain an infinite number
of irreducible representations of the subgroup SU(2),
namely, kp kp+1, kp+2, ~ . Finally, we may note the
connection of k0 with the Casimir operators. From
Eqs. (1)—(3) we see that SU(2))&Tp has two Casimir
operators, namely, A' and M A. By direct computation
one may verify that

M Afg =kofP. ,

Aof k —f P

Thus although SU(2) XTp has two Casimir operators, its
irreducible representation is characterized by only a
single number. This sort of situation arises from the
fact that group SU(2) XTp is not semisimple.

Apart from the irreducible representations studied
above, SU(2)&&To could also have fLnite-dimensional
representations which are not completely reducible.
The regular representation is one such. These are not
considered in this paper.

3. ELECTROMAGNETIC PROPERTIES IN
SCALAR THEORY

In this section we will utilize the results of the pre-
vious section in studying the electromagnetic proper-
ties of isobars in static scalar strong-coupling theory.
We have to 6rst specify the transformation property of
the electromagnetic current. From physical considera-
tions we require the current to transform as a com-
ponent of a 6nite-dimensional tensor. If we further
require the tensor to be irreducible then the only possi-
bility is a 00 type of tensor. ' It follows thus that we have

3 This procedure is allowed for C&0. However if C=0 then also
A;=0 so that we merely have the Oz representation discussed
earlier in the text.' lt is worthwhile to recall in this connection that similar situ-
ations occur in other contexts too. For instance, the transformation
property of electromagnetic current 4-vector g„under the Poin-
car6 group is also of the 00 type, as the translation operators do
not act on the tensor index p.

I=u+ [v/k(k+1) jb; (23)

u and b are constants independent of k and v. For fixed k

Eq. (23) reduces to that of Marshak, Okubo, and
Sudarshan' as it must. Similar formulas can be derived
for the transition moments also. We can now discuss
electromagnetic mass splittings. The relevant trans-
formation property is now a linear combination of an
isotopic scalar, third component of a k=1 vector and
third component of a k=2 tensor. Thus we obtain the
electromagnetic mass formula~

-P2 p2P2 P 2

M=A+ 8+—
k(k+1) k' 4k' —1

(k+1)'—"(k+1)'—koo
+vo — C; (24)

(k+1)' 4(k+1)P—1 ko(k+1)P

3, 8, and C are constants. Since we do not know how
much trust to put in the scalar theory, we refrain from
discussing the signi6cance of these relations any
further.

4. PSEUDOSCALAR STRONG-COUPLING
THEORY

The relevant group structure of this theory is
SU(2)QxSU(2))&Tp. The two connnuting SU(2) refer
to isotopic spin and ordinary spin, respectively, and
the nine translation generators correspond to the
nine states of a p-wave charged meson. The isobar
states that occur in the pseudoscalar strong-coupling

~ Notice that this is in conformity with the statement that the
photon transforms as a superposition of g0 and H, as from the
theory of Ref. 1 we know that A & is indeed the ~ source function.

6 R. E.Marshal, S.Okubo, and E. C. G. Sudarshan, Phys. Rev.
106, 599 (1957).

7 Compare, however, with R. Ramachandran, Phys. Rev. 139,
B121 (1965).

G. Wentzel, Rev. Mod. Phys. 19, 1 (1947); further references
are quoted there.

to specify the behavior of the current under isotopic
rotations alone. But now we already know from the re-
lation Q =—,'+T. that the electromagnetic current
transforms as a superposition of an isotopic scalar and
the third component of an isotopic vector. From Kq.
(2) we see that Ap transform as the third component of
an isotopic vector and A' as a scalar. But in every
irreducible representation of our group A' has eigen-
value unity. Thus we finally conclude that the desired
transformation property of the current is a linear com-
bination' of unit operator and A3.

We denote the isobar states as ~kpkv); k is the iso-
topic spin, v is its third component and k0 is the label of
the irreducible representation. The magnetic moment of
this state is

u= a+b(kokv ( Ap~ kokv).

Using Eqs. (8) and (22) we obtain
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theory are characterized by the property that for
each isobar the magnitude of isospin is equal to that
of spin. We have thus to construct a representation of
SU(2)QxSU(2)&&T 2having this property. This repre-
sentation is already found in Ref. 1, where it is identi-
fied with the (~,0,0) representation of SU(4). But
here we want to construct explicitly the matrix repre-
sentation of the generators for our later use. This is
done below.

The in6nitesimal generators and their commutation
rules are as follows:

1 i 1 1/2

da=-
k(k+1) k 4k' —1

(31)

In obtaining (31) we have also dropped an over-all
multiplicative constant exactly in the same way as dis-
cussed in Sec. 2. All cornrnutation relations (27) are now

[M;,M;]=i&""M2, [N,N//]=is»N7,
(25)

tM, ,N 5=0,

PM;, T;,]=is"'T2, PN, T;P]=ic»T;„(26)
(27)

We denote by f. 2&' a set of vectors which provide a
unitary, irreducible representation of SU(2)QxSU(2).
k and j refer to isospin and spin, respectively, v and m
their third components. M, and X are represented on
this basis in the usual way. To obtain the desired repre-
sentation we have to construct an invariant representa-
tion space for the operators T; using only those vec-
tors for which k= j. Let us first consider T». Thus we
seek a representation in the following form:

f 22 —L(k2 p2)(k2 m2)51/2

Xd f 2—12 1 pmB f 22

L((k+ 1)2 p2)((k+ 1)2 m2)51/2d„ f 2+1,2+1 (28)

The coe%cients d/, and B/, are functions of k alone and
do not depend on v and m. The validity of this state-
ment follows from Eq. (26) which says that T; is a
regular tensor operator of SU(2)QxSU(2) and hence
according to the Wigner-Eckart theorem the de-
pendence of matrix elements of T» on the projection

quantum numbers m and v is given by the relevant
Clebsch-Gordan coeKcients. The functions of v and m
occurring in (28) are precisely these Clebsch-Gordan
coefficients. From (28) we can generate every other T,
using Eq. (26). We first obtain T2+(=T21+iT22) and
then use Eq. (27). In this way we obtain two equations

I (k—1)B„1—(k+1)B2]d2 0, (29)——
(k —m2)(2k —1)d,'

—L(k+1)'—m2]d2+12 —m'Bk' ——0. (30)

Solving Eqs. (29) and (30), we get

satisfied as can be verified by direct calculation. Equa-
tions (28) and (31) also show that the least value of k
in a representation is either 0 or —,'. Thus for the half-
integral case we have the desired representation with
the spin-isospin content (-,',—',), (2,—,'), (2, 22), etc.

Electromagnetic properties are now easy to discuss.
The transformation property of electromagnetic cur-
rent was considered in Sec. 3. From analogous reason-
ing we conclude that the relevant transformation pro-
perty is now that of T;3. Unlike the case with scalar
theory, we cannot have a linear combination of the unit
operator and T;3 without violating invariance under
space rotation. We are able to discuss the isovector
part of the electromagnetic current only. Using Eqs.
(28) and (31) we thus obtain for the isovector mag-
netic moment

I
1

(32)

b' is a constant, and we have adopted the (obvious)
convention of defining the magnetic moment with re-
spect to the state of maximum spin projection, i.e.,
with m= k. Similarly electromagnetic mass shift trans-
forms like T,2T,2(= T12'+T22'+T22'). Hence, the elec-
tromagnetic mass formula is

m=(kvml T;,T;,
l
k.m)„=,~', (33)

where C' is a constant. Using Eqs. (26), (28), and (31)
we evaluate the above rnatix element and 6nd that

(k.m
l
T;,T,,

l
k.m).=,=1. (34)

Thus no electromagnetic mass splitting obtains in this
theory. This situation is due to the peculiar interrela-
tion of spin and isospin in the pseudoscalar theory.
These variables occur in a completely symmetric
fashion, as is evident, for instance, from the isobar
spectrum. Because of this situation, it is impossible
to introduce anisotropy in the isotopic-spin space
(i.e. , obtain electromagnetic mass splitting) without
necessarily introducing the same in ordinary space.
By the same reasoning it is impossible to introduce, in a
nontrivial way, the isoscalar part of the electromagnetic
current without violating invariance under ordinary
space rotations. This feature seems to be a serious
drawback of the pseudoscalar strong-coupling theory.

A similar situation has been noted previously in Ref. 7.
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