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A dynamical model of the D» pion-nucleon. resonance is considered. Since the branching ratio for decay
into the m-E channel is less than 2, we erst treat the case in which the resonance is produced in 2i-S* scatter-
ing. The coupling to the pX inelastic channel is assumed to dominate the forces, and the X/D equations,
solved in a pole approximation, are employed. We next consider the generalization of this model to SU(5)
symmetry and obtain a resonant octet. Finally we treat the three-channel problem with the mE channel
included. The calculated mass and branching ratio of the resonance are in good agreement with experiment
but the total width is too small.

I. INTRODUCTION
' QHENOMENOLOGICAL analyses' of pion-nucleon

scattering data have revealed the existence of a
resonant D» wave, obscured until recently by the well-

known F~5 resonance at 1688 MeV. The new resonant
state occurs near 915 MeV (pion lab energy); its quan-
tum numbers are J~=—,', T=-,'. Most significant for
the subsequent discussion is the observation that it
decays predominantly via inelastic modes. Thus, since
the elastic branching fraction is less than —„the elastic
phase is necessarily falling through 0 rather than rising
through z/2 at resonance.

Dynamical models' ' exist for many of the higher
~$ resonances; it is the purpose of this paper to provide
one for the $*(sz ). A mechanism, or force diagram, is
propose'd which favors the quantum numbers of this
resonance and which, used in conjunction with dis-
persion relations and unitarity, determines the energy
and width. Like other of the higher states, the attrac-
tive force producing the resonance involves a coupling
to a specially chosen inelastic channel. The mechanism

is, in fact, quite similar to the Cook-Lee model of
the iV*(-,' ).

Since the resonance is evidently coupled more
strongly to the inelastic channels than to the mE
channel, we first formulate the model in terms of
elastic x)V* scattering, where E* denotes the familiar

(3,3) isobar. The dominant force is assumed to be
provided by the coupling to the inelastic pS* channel
given by the one-pion-exchange diagram of Fig. 1.
As is well known, an off-diagonal force is always at-
tractive in elastic scattering. Virtual absorption applies
in this case since the pS* channel is closed at the energy
of the desired resonance; unitarity causes it to manifest
itself strongly below threshold. This particular choice
of inelastic state is made because the parity and angular
momenta of interest allow coupling to an s-wave

II. THE COUPLED ~N*, yN* PROBLEM

The coupled eigenamplitudes of angular momentum
and parity are described by the matrix:

Fro. 1. The one-pion-exchange
diagram, coupling 2i-S* to pÃ*.

P, a

pE* channel. This circumstance yields maximal absorp-
tion, favoring particularly the quantum numbers of
the cV*(ss). Moreover, it is in the case of s-wave in-

elasticity that the simple-pole approximation of the
Cook-Lee model is most justifiable. 4

The formalism we adopt here is described in detail
in AB1. Many of those results will be carried over
bodily without change in notation. In Sec. II the model
is implemented with the necessary calculations and is
shown to yield the Ã*(sz ). In Sec. III the mechanism
is generalized to SU(3) symmetry, and it is shown that
the resonant unitary multiplet is the octet. In Sec. IV
the three-channel formalism of AB2 is used to see how
the 1V*(—,

' ) a,ppears in z..V scattering. The extent to
which the observed phase, branching ratio and total
width are fit by this model is discussed there.

f Supported in part by the National Science Foundation.
' P. Bareyre, C. Brickman, A. V. Stirling, and G. Villet, Phys.

Letters 18, 342 (1965); J. P. Merlo and G. Valladas, Proc. Roy.
Soc. (London) (to be published).' L. F. Cook and B. W. Lee, Phys. Rev. 127, 283 (1962); 127,
.297 (1962).' P. R. Auvil and J. J. Brehm, Phys. Rev. 138, B458 (1965);
140, B135 (1965); and Ann. Phys. (N. Y.) 34, 505 (1965). The
second and third of these papers will be referred to hereafter as
AB1 and AB2, respectively.

4 F. T. Meiere, Phys. Rev. 136, B1196 (1964). Meiere treats the
same problem as Cook and Lee but without recourse to the pole
approximation; where s-wave inelasticity is allowed he reproduces
their results.
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in which the subscripts 2, 3 refer to the m-E* and pS*
channels, respectively. The superscripts s, r (iI,)) refer
to the multiplicity of the ircV* (pÃ*) channel for a
given J~. The I.'s incorporate the correct threshold
behavior so that, e.g.,

The many-channel 1V/D methodp is used to satisfy
the unitarity relations. We set

S=XS-',
where

discS= —2mzpX

and

2M (P8+M) 2~

i
M„-

P+MI P
on the right-hand cuts. The model is driven by the
force assumed on the left-hand cuts. We express this in
a pole approximation by writing

i&2p 2M q
& pPp+Mq'

(3)
P +M kQ, yM) E P

where (P,Pp) and (Q,Qp) denote the (momentum,
energy) of the initial and final E*.8 The 3II's are the
transition amplitudes in the helicity representation,
projected onto states of definite J~. In Table I we
identify the off-diagonal block JI/I», for negative parity,
in terms of the helicity amplitudes. These in turn are
given by

disci, F22 "=0= dlscgF3p~,

discrF828r = 22ric,br'(W W2)—,
disc r F28' 8= 22rib, cpb(W W2) —.

The determinant of the S matrix is then

Sp=detS=1 —b'c'S (2W)T2(W)
in which

b2 Q b2

c gsc8 ~

(12)

(P) ~M„( )=2 d cosedp g „(0)M82.
and where

(4

In this notation the S matrix is

5= 1+22r2p" 2Fp'~2,

where p is the diagonal phase space matrix.

and

S2(W) =

T2(W) =

dx p2(x)

pry„x —W (x—W2)'

dx pp(x)

8r+s x—W (x—W2) '

(13)

with

and

(p28,„0 ~

0 p88„8~

p2=
(42r) 8 W(P p+M) 2~'

2 Q(Qp+M)
pa=

(4ir) 8

A resonance occurs at an energy 8'* below the inelastic
(6) threshold when

ReSp(W*) =0.

Explicit evaluation of the diagram of Fig. ]. yields the
determination of the parameters of the model. Since
F82 is singular at M+18 we choose the pole position to be
W2=M+p. We then span the region of interest by

(8) evaluating b' and c' at the inelastic threshold W8= M+ p
so that

Note that in formulas (3) and (8) we have built in
s-wave inelastic threshold behavior.

TABLE I. J eigenamplitudes in terms of helicity amplitudes.

Combinations for negative parity J
(sst li)I»l ss&

—(—)~ "'(—-* —Il~» gs)

&s I
I ~» I s)—(—)' '"(—s —I

I ~» s)
&
—st l~»l 2&

—(—)' '"
&s

—tl~» 2&

&
—gstliM»ls, &

—(—)'-»'
&22

—Ill, —:)

&so ~82 I s&
—(—)' '"&—'o iM» I 5&

(so ~»ls& —(—)' '"&—'o iM»ls&
(-*.& ~8 ls) —(—)' '~&—

8
—Il~»lp&

&-.o l~» I2&
—(—)' '"&—-'o

I
iM'» l2)

%3/&

perp ———',(1—2Pp/M) .

The pew vertex is readily evaluated to be

(17)

Cpbr (W2 W8)LF82 (W8) jdisgrsm ~

The E*N*x vertex was evaluated in AB1. If we
neglect the f wave coupl-ing, it is given by

I'e-= g +."'(Qb +."(P)
(P8+M~ '~' P= ( )s+'I'p,—gppl l dp 8~'(t)) (16)

2M ~ P8+M

for Q=O. In (16), the factor e is

' Q'e use m, M, p, and p for the masses of the nucleon, (3,3)
isobar, pion, and p meson, respectively. The pion mass is taken as
the unit of energy.

Ui, ——fe„&"i(E')k„
= (—)"fPdi.p'(0)

6 R. Blankenbecler, Phys. Rev. 122, 983 (1961).

(18)
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FIG. 2. ReSp versus
t/I/' for J~=—' T=-'.2 1 2' p

where f is related to the width of the p by

analysis of the experimental data' yields a resonance
near 915-MeV pion lab energy, corresponding to a
mass of 1700 MeV. The width of the resonance can be
read off from the results by computing ImSp and the
slope of ReSp. This quantity is more meaningful in the
context of the three-channel problem, where the xE
state is included; therefore, mention of it will be deferred
to Sec. IV.

We view the results as very encouraging; the model
produces a reasonance which is less than ~ of a pion
mass off the mark. The important points are that the
mechanism prefers the right quantum numbers and
provides what can be assumed to be the bulk of the
attraction. The calculated 8'* is a little too large; the
coupling of other inelastic channels would lower it
toward the desired position.

which yields f'/4' = 7.93. A straightforward calculation
then gives

(20)

for r= ~) ~, and

8z P' p—p
c„=(—)s "'—hrfgss

3 Pp+M 2M(Pp M)+//, '—
(Pp+M)

X~ ~ (&, P—&, s, P(&, -'.—) 1, —lI) (21)
P

for g= 1 to 6. Table I gives the appropriate P and X for
a given p. The factor h& is an isospin coefficient given by

((5/3) 1/2 (4/ 1 5)1/2 (3/5) 1/2)

for T= ,', s, —,'. (22)-
A crucial feature of the model is the dominance of

the 7= 2 coefFicient. The value of I. is the minimum
orbital angular momentum and depends on the value
of J, given negative parity. Since we are also given
s-wave inelasticity we need only consider J~=2, ~3,
and —,'; for these cases I.=2, 0, and 2, respectively. The
factor c' is maximal for L=2, and the factor b' favors
J=—,

' over J=-,'. Thus the model singles out J =2,
T=—,

' as the most attractive configuration.
An estimate of the coupling constant gsss/4s may

be obtained, for example, by resorting to static SU(6)
symmetry. ~ This was done in AB1 with the result'.

III. THE COUPLED P8Byp9 VSByp PROBLEM

In Sec. II we invoked SU(2) symmetry. The cal-
culation describes the coupled channel scattering of
particles in the relevant isospin multiplets. We can
generalize this readily to SU(3) symmetry We .let
all the particles in the baryon decuplet (B&e), pseu-
doscalar-meson octet (Ps), and vector-meson octet
(Us) be degenerate with masses M, p, and p, respec-
tively. We then require that the Byp&ppP8 and VSPSP8
couplings be SU(3) symmetric. The model may then

be carried over bodily to describe the coupled-channel

scattering in the P88&p and U88pp representations. The
force, as shown in Fig. 3, is given by P8 exchange.

Only two modifications of Sec. II are necessary: The
primary change is to be made in Eq. (21); the isospin

coefficient h& is replaced by the unitary spin coeKcient
h/; where F denotes each of the SU(3) multiplets occur-

ring in the product 8810:

8310=80+100+270+35.

The other modification is the trivial one of selecting

representative values for the masses 3f, p, and p. Once

these alterations are made we need only remark that,
since the determinant of the S matrix is invariant

under the orthogonal transformation from the particle
basis to the unitary spin basis, then Eq. (11) may be

simply reinterpreted with h& replaced by hp.

The determination of the h&'s is facilitated by select-

gss'/4s. = (27/5)gs/4s. =81, (23)

in which g denotes the NEm coupling constant.
We can now calculate ReSs(W) for 1~= ss—,T= ~~,

and look for W= W* satisfying Eq. (14). In Fig. 2 we
have plotted the results. The desired resonance occurs
for 8'*=12.34@=1730 MeV. The phenomenological

' R. H. Capps, Phys. Rev. Letters 14, 31 {1965).
8 An error of a factor of 3 was made in obtaining this number in

AB1. The result may also be derived from the work of 3. Sakita
and K. C. Wah, Phys. Rev. 139, 31355 (1965).

FIG. 3. I'8-exchange diagram,
Coupling F8810 to V8810.
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ing the following wave functions':

lan&=Ll35, —2, 0)+l10, —2, 0&j/v2, (25)

(26)l~&* 2'=s&=LI2»1 l&
—218» l&j/v'5

l~iV* 2'=s&=L- I35 1 s&-v'5l2»1, l&

++10l10, 1, s&]/4, (27)

l
X*,T= ', )=l35-, 1, -,'). (28)

The notation on the right hand side is
l
ji, F', T& in

which I' denotes hypercharge. Given these expressions,
the calculation of the h~'s reduces to one of computing
isospin coefFicients. If we start with Eq. (25) we find
that all the hi 's are determinable from the hr's, Eq. (22)
The results are:

hF = (V'(12/5), V'(3/5), v'(I/15), —e(3/5))
for F=8,10,27,35. (29)

p= 2.06@,

M =3.38@.

(30)

To determine whether the most attractive multiplet
resonates, we calculate ReSe(W) for the octet occur-
ring in (24), with J = —,

' . As shown in Fig. 4, there is a
resonance occurring at 8'*=5.18p=2120 MeV. The
significant result is that a resonant octet exists by
virtue of this model; it is not clear what should be made
of the numerical result.

There are only a few candidates for membership in
this —,

'—octet. Two of the states would, of course, be
the LV*(—,

' ) isospin doublet. Another recent experimental

Thus the octet is the most attractive multiplet.
The mass M for the degenerate 8~0 multiplet is

determined by averaging the decuplet masses, weighted
by the isospin multiplicity. The masses p and p, for
Ps and Vs, are computed similarly, but in terms of the
squares of the octet masses. The numbers are:

p= 2.92 pion masses,

discovery seems to fit into this scheme very well. This
is the F*(1760) of Armenteros et a/ ";. it has been
determined to be an isospin triplet and it has been
found that the assignment J =—,

' provides the best
fit to the data. Unfortunately, two known masses are
insufficient to give a prediction for the missing members.

Iv. COUPLING TO THE ~N CHANNEL
AND CONCLUSION

In order to compare the result of Sec. II with the
experimentally determined branching ratio and width
of the cV*(s ), we must couple our solution to the orÃ
state. Any of a variety of diagrams can be chosen to
couple the xX, xE*, and pA"* channels. At this juncture
we do not undertake an exhaustive survey to find the
optimum choice; instead, we simply select the coupling
shown in Fig. 5 as representative and base our three-
channel calculation on the addition of it alone. In fact,
in the context of a three-channel problem, it is quite un-
likely that any such optimum choice will give a good
total width. Many two-body channels are open and
probably significant at this energy, but we make no
e8ort to estimate their importance. The point of view
we take is that the resonance mechanism has been
found. This fixes the quantum numbers for any sub-
sequent discussion pertaining to any other coupled
channels. Accordingly, we consider only J =~, 7=-,'
in what follows.

Once the selection of a coupling to zS states has
been made, as in Fig. 5, the extension to three channels
is straightforward. The techniques employed are
described in detail in AB2. Diagrams coupling m2V to
7t.3,'* would involve, e.g. , nucleon exchange; these have
been left out, as they were in AB2, since they do not
allow s-wave absorption. The S*Ex vertex is taken to
be

I's =as +"'(Q)~"(p)p. , (31)

where Q and p are the momenta of the iV* and 2V,

and, using the known width of the .V* (I'=0.89@&,
gs'/4s. =0.39' '.

Since the essential elements of this calculation may
be found in AB2, we limit ourselves here to a discussion
of the results. If we use the above value for g3 and the

Fzo. 5. The one-pion-exchange
diagram, coupling ~E to pal+.

p)s k

FIG. 4. Re$0 versus 9"for J~= ~ in the octet representation.

' J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963).The formulas
for j'8810 states; the U8810 wave functions are in complete

parallel with these.

' R. Armenteros, M. Ferro-Luzzi, D. W. G. Leith, R. Levi-
, Setti, A. Minten, R. D. Tripp, H. Filthuth, V. Hepp, E. Kluge,
H. Schneider, R. Sarloutaud, P. Granet, J. Meyer, and J. P.
Porte, Phys. Letters 19, 338 (1965).
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value of g» from Eq. (23), the resonance occurs at ap-
proximately the correct position in the m E channel but
with a branching ratio greater than —', (i.e., with phase
=ir/2). If we vary our couplings slightly so as to 6t
exactly the two parameters, W*= 12.1tt and I',/I' =0.35, '
then we need the couplings: g3'= 0.53g3 and g33'= 1.01g33.
However, for these new couplings the total width is only
7=40 MeV as compared to the experimental value of
F=325 MeV.

In conclusion we have seen that a simple model of
inelastic coupling in a pole approximation gives an
excellent prediction of the position of the 1)l*(-', )
resonance. Thus both the N*(—' )"' and X*(zs)
resonances and their octet character are understand-
able from a dynamical model. The width of the 1@a(s, ),

"J.J. Brehm, Phys. Rev. 136, B216 (1964).

as calculated in the three-channel case, is far too small
as was that of the X*(-,'+), discussed in AB2. In that
paper, it is argued that this is probably the result of
having only one inelastic channel open for the decay.
Other states are going to play a role and we would ex-
pect the resonance width to be increased by this Ball-
Frazer" effect, but we know of no simple way to
estimate it. A test of this model would be to observe
that the dominant decay product of the 1V*(ss ) is
~+Ã*(-,'+).
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Electromagnetic properties of isobars are studied using the group-theoretic formulation of the strong-
coupling theory due to Cook, Goebel, and Sakita. Expressions for magnetic moment and electromagnetic
mass shifts for isobars are obtained in the scalar and the pseudoscalar theories. The significance of these
results is briefly discussed.

1. INTRODUCTION

ECENTLY, Cook, Goebel, and Sakita' have given
a group-theoretic formulation of the static strong-

coupling theory. As shown by these authors the strong-
coupling approximation is closely related to the rnathe-
matical concept of group contraction and the "dynami-
cal group" which emerges in the strong-coupling limit
has the structure of a semidirect product of the "primi-
tive group of invariance" with a suitable Abelian in-
variant subgroup. In this formulation the infinite
number of isobar states that occur in the static scalar
strong-coupling theory are put in a single unitary ir-
reducible representation of the group SU(2) X Ts.
Similarly, the isobar states of pseudoscalar strong-
coupling theory are put in a single unitary irreducible
representation of the group SU(2)QxSU(2)XTs. The
purpose of this paper is to study the electromagnetic
properties of isobars in the static scalar and pseudo-
scalar strong-coupling theories using this group-theoretic
formulation. In Sec. 2 we construct the explicit ma-

f Present address: International Center for Theoretical Physics,
Trieste, Italy.' T. Cook, C. Goebel, and B. Sakita, Phys. Rev. Letters 15, 35
(&965).

2. REPRESENTATIONS OF SU(2) X T,

Let us denote the six in6nitesimal generators of this
group by 3f; and A;. The commutation relations for
these generators are

[
[M;,A;]=i ' uses

[A;,A;]=0.
We now define appropriate "ladder" generators:

Mg= M1&iM2, Ag= A 1&iA2.

(1)

(2)

(3)

The commutation relations of these follow from Eqs.

trix representation of the infinitesimal generators of
SU(2) XTs. These results are then utilized in Sec. 3 to
obtain a magnetic-moment formula and an electro-
magnetic mass formula in static scalar theory. The
pseudoscalar theory is studied in Sec. 4. The relevant
representation of the group SU(2)QxSU(2) XTs is erst
constructed and then these results are applied to ob-
tain expressions for magnetic-moment and electro-
magnetic mass shifts of isobars. The significance of these
results is then briefly discussed.


