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We investigate proton-proton bremsstrahlung by using a Beld-theory, as opposed to a potential, model.
We adopt the one-pion-exchange model and relate part of the matrix element to the photon-pion production
matrix eIement, which is expressed in terms of dispersion relations. A detailed analysis shows that the Born-
approximation diagrams give the dominant contribution and that the diagrams involving N* or p resonances
are negligible for the energy considered. We hand that our results, unlike those of the potential model, seem
to give satisfactory agreement with experimental data.

l. INTRODUCTION

INCE the proposal of the meson theory of nuclear
forces by Yukawa' a large number of theoretical as

well as experimental investigations have been carried
out to increase our knowledge about the nature of the
nucleon-nucleon interaction.

One way to attack this basic problem is to investigate
nucleon-nucleon bremsstrahlung. Although this process
is more complicated than elastic nucleon-nucleon scat-
tering, it yields more information than can be obtained
from the study of the elastic case. In addition it is
worthwhile to investigate this process for its own sake,
since it is desirable to know the photon spectrum due to
bremsstrahlung when we investigate a high-energy
process such as neutral-pion production. Surprisingly
enough, the experimental work' ' done on the nucleon-
nucleon bremsstrahlung reaction has been very scanty
and only recently have experiments been started to
obtain measurements of good accuracy for the proton-
proton case. Two preliminary results of the recent
Harvard' and Rochester' experiments are now available.
In these experiments the incident nucleon energy is
below the threshold for pion production.

Based on a section of the thesis submitted to the Graduate
School of the University of Rochester in partial ful6llment of the
requirement for the Ph.D. degree.
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The importance of this process was &st pointed out
by Ashkin and Marshak. '' They treat the nucleon-
nucleon interaction in terms of a phenomenological
Yukawa potential and show that proton-proton brems-
strahlung would be zero in the low-energy-photon limit
if the recoil of the proton is neglected. Classically speak-
ing, this corresponds to a vanishing electric-dipole
transition.

Another approach involves the use of meson theory.
Simon' calculated neutron-proton bremsstrahlung in the
Born approximation for both scalar and pseudoscalar-
meson theory in 1950. One interesting aspect of this
approach is that a virtual charged pion can emit a real
photon, a process which cannot be explained in the
potential model.

At the high-energy end of the photon spectrum for
nucleon-nucleon bremsstrahlung, we expect the final
protons to have rather low kinetic energy. Dullemond
and deSwart' discuss phenomenologically the eKect of
the E2 contribution in this region for proton-proton
bremsstrahlung. Cutkosky" also discusses the final-
state interactions for neutron-proton bremsstrahlung
in this region.

The case of proton-nucleus bremsstrahlung"" has
also been investigated in phenomenological models.

The most thorough investigation based on the po-

J. Ashkin and R. E. Marshak, Phys. Rev. 76, 58 (1949); 76,
989 (1949).

r See also 3. L. Timan, Zh. Eksperim. i Teor. Fiz. 30, 811 (1956)
t English transl. Soviet Phys. —JETP 3, 711 (1950)j.e A. Simon, Phys Rev. 79, 573.(1950).' C. Dullemond and J. J. deSwart, Physica 26, 664 (1960).+ R. E. Cutkosky, Phys. Rev. 103, 505 (1956)."B.Kuryunoglu, Phys. Rev. 105, 1846 (1957).

& W. C. Beckham, Lawrence Radiation Laboratory Report
No. UCRL-7001 (unpublished).
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tential model has been done by Sobel and Cromer. "
These authors note that different phenomenological
potentials which Gt elastic nucleon-nucleon scattering
will give different results for bremsstrahlung cross sec-
tion. This method could therefore be used to discrimi-
nate among the known nucleon-nucleon potentials.

The scattering amplitude for nucleon-nucleon brems-
strahlung may be expressed generally in terms of that
for physical nucleon-nucleon scattering in the low-
energy-photon limit. "However, as is stressed by Sobel, '
an actual calculation of the potential model for proton-
proton bremsstrahlung involves matrix elements that
are far from the proton energy shell. In fact, for an
incident energy of j.60 MeV the initial and Gnal center-
of-mass energies of the two protons may differ by a
factor of more than 3.5.

This situation may be beyond the range of validity
of the potential model. In fact, calculations based upon
the potential model seem to give poor agreement with
experiment. Therefore it is desirable to investigate the
same process from a different point of view. We will
reGne Simon's early perturbation-theory treatment. Our
approach may be summarized as follows.

We take the point of view that nucleon-nucleon
bremsstrahlung occurs through one-pion exchange be-
tween nucleons. (See Fig. 1.) Since the pion is the
lightest strongly interacting boson, we expect it to
give the main contribution. The blob in the diagram
represents the following virtual-pion capture process:
rr+N ~ y+N. First the off-shell effect is taken account
of by writing the over-all amplitude as the physical
amplitude times a pionic form factor X(A'), where 6' is
the square of the 4-momentum of the virtual pion.

Then the physical amplitude is connected to the
known photopion production amplitude with the help
of dispersion relations. Since the theoretical structure of
the right-hand x-Ã-E vertex is known, we can express
all quantities in the matrix element, except K(h ), in
terms of observables.

The factor E(h') will be estimated in two separate
ways and the results compared.

N N

FIG. 1. A diagram for
nucleon-nucleon brems-
strahlung.

P P

FIG. 2. Typical (time-
ordered) I'eynman diagrams
for proton-proton brems-
strahlung.

(a)

P P

(b)

One possibility, corresponding to ordinary pertur-
bation theory, is to choose E(A') = 1.Another possibility
is to accept a phenomenological form based on other
experimental sources.

We found that for the energy considered the domi-
nant contribution to the proton-proton bremsstrahlung
process comes from the Born terms and not from reso-
nance diagrams such as S* or p.

The theory with a phenomenological pionic form
factor seems to agree well with the preliminary results
for (do/dQ) gp' obtained from the Rochester experiment.

Our theory shows that corresponding to the vanishing
electric-dipole transition, the photon energy spectrum
of proton-proton bremsstrahlung is much reduced com-
pared with the characteristic 1/ks dependence in the
low-energy region, where ko is the photon energy.

Before closing this section, we wouM like to discuss
the validity of our model. YVe are aware that the elastic
nucleon-nucleon interaction at low energies cannot be
regarded as solely due to one-pion exchange. Exchange
of virtual bosons (such as p, ~, rj, etc.) between two
protons should be considered as well.

In this paper, however, we assume one-pion exchange
as a first, probably crude, approximation of the nucleon-
nucleon interaction and neglect other contributions.
The merit of doing this is that it enables us to treat the
remaining part of the matrix element of the brems-
strahlung more rigorously than other theories. For in-
stance, on the basis of perturbation theory the two
(time-ordered) Feynman diagrams (a) and (b) of Fig. 2

should be treated on an equal footing. The diagram (a)
is omitted in the potential-model calculation, but not in
our approach.

The Sobel and Cromer theory" is criticized by
Yennie, "based on the fact that their treatment does
not seem to satisfy the direct result of charge conserva-
tion. Such criticism does not apply to us, since our Geld-

theoretical treatment does not necessitate the expansion
in terms of photon energy at all and the whole theory is
constructed to be gauge-invariant. These may be the
reasons that good agreement with experiment is ob-
tained in our theory in spite of our crude approximation
for nucleon-nucleon interactions.

"M. I. Sobel and A. H. Cromer, Phys. Rev. 132, 2698 (1963);
M. I. Sobel, Ph.D. thesis, Harvard University (unpublished}.

'4 F. E. Low, Phys. Rev. 110, 974 (1958).

"Private communication from Professor D. R. lennie. The
author would like to thank him for his comments. See also H.
Feshbach and D. R. Vennie, Nucl. Phys. 37, 150 (1962).
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2. KINEMATICS AND ONE-PION-EXCHANGE
FORMALISM

We denote by Pj, P2, P&', P2', and k the energy
momentum 4-vectors of the incoming two protons,
outgoing two protons, and outgoing photon, respectively.

The T matrix is defined by

FIG. 3. Coordinates us d
in the calculation.

where the invariant Qux Ii is given by"

F=I (P, P,)'—M')t~s. (2.3)

P indicates a sum (average) over final (initial) spin
states and a sum over photon polarization. Experi-
mentally the bremsstrahlung cross section is measured
in terms of the photon energy and angle.

In the center-of-mass (c.m. ) systems of the initial two

protons, the two integrations over P'~' and P2' can be
easily done. The result is

P'2

(
do. 3E' kp

d07dke, 2F (2z.) Pr'(W —kp)+Et kp cos(t"

X I Ty;I s d c s8o' &pd', (2.4)

where (8', y') specifies the direction of Pi' relative to the
incident direction in the c.m. system (see Fig. 3), 0, is
the solid angle of 4 relative to the incident direction,
and cos0" is the angle between Pt' and k. There are

"Eotutiol: Units such that A=c=pion mass=1 are used
throughout. The four-vector scalar products are written as

(a b) =a„b„=a b+a4b4

The spin--, fermion satis6es the Dirac equation

(a'+m~P') =0 ~here Z=&„Z„.
The y matrices satisfy

p„y„+y,y„=28„, (p, s =1, 2, 3, and 4).
We choose ps=y~y2y3y4 and y„=y» where the dagger denotest

Hermitian conjugate. The asterisk will be used to represent
complex conjugation. The normalization of N(P) is, for positive
energy, taken to be

g (I')a(E) = 1 where I=Nty4.

The polarization vector of the photon, e» satisfies

pol

where Zp, q denotes polarization summation.

cV'

2koEtEsEt'Es'2

X b4(Pt'+Ps'+k Pl —P2) Tfz, (2.1)

where Ep, E2, E~', E2', and ko are the energies of the
incoming two protons and outgoing two protons and a
photon, and M is the proton mass. The differential cross
section do- can be written in terms of T~;. The relation is

3EI4 1 1
da = — 84(Pt'+Ps'+k Pt Ps—)—

2 F (2s-)'
O'E'q'd'P2'd'k

X2 I Tr'I '-
Eg'E2'ho

four possible Feynman diagrams based on the one-pion-
exchange model. These are given in Fig. 4. It is con-
venient to introduce 4-momentum transfer variables
corresponding to each diagram as follows:

4=P2—P2',

t=P2 —Pg')

t= Pg —Pg',

6=Pg —P'2'.

(2.5a)

(2.5b)

(2.5c)

(2.5d)

Pi P2

(a)
Pl P2

(b)

I I
2

FIG. 4. Feynman diagrams for
proton-proton bremsstrahlung.

P2 P)

(c)

~~ P. Federbush, M. L. Goldberger, and S. B. Treiman, Phys.
Rev. 112, 642 (1958).

The T-matrix element for the Fig. 4(a) process is
given by

T(a) =u(Pt')1V(Pt', Pt, k, q= 6)
Xu(Pt)I E (&')/(&'+1) jg E(&')u(P2 )+5u(P2) ~

The factor u(Pt')1q(Pt', Pt, k, q= A)u(Pt) represents the
amplitude for the following virtual process:

z-'(q= 6)+P(Pt) —+ P(Pt')+y(k),

corresponding to the blob in Fig. 4(a).
If 62= —1, the process reduces to the physical process.

However, in general the pion is not on the mass shell.
The factor g„E(LV)u(Ps')ysu(Ps) represents the rrsPP

vertex. E(A') is the form factor, introduced by Feder-
bush et al. '~ to take account of the fact that the pion is
off the mass shell. E(A') is normalized by setting
E( 1)= 1. Finally& E''(—As)j(D'+1) is the renormalized
pion propagator. LE'(6') is a ratio between the complete
propagator and the free propagator. )
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Similarly the amplitudes corresponding to Figs. 4(b), 4(c), and 4(d) can be written. Altogether we have

Tr; T——(a) —T(b)+T(c)—T(d), (2 6)
where

T(g) =u(P ')N(P ',P, ; k, q= A)u(Pr)LE'(A')/(A'+1) jg„A (A')u(P, ')y,u(P ),
T(b) =u(Ps')N(Ps', Pg', k, q = t)u(Py) LK,'(t')/(t'+ 1)jg E (t )u(Pr')ysu(Ps),

T(c)=u(Ps')N(Ps', Ps, k, q=t)u(Ps)I E'(t')/(t'+1) jg,z(t')u(P&')ysu(P~)
&

( )= ( ') ( Ai ~q= ) ( L
' ')« '+ jg ( ') ( 'hs ( ~).

(2.7a)

(2.7b)

(2.7c)

(2.7d)

The minus signs in Eq. (2.6) are due to the Pauli
principle.

Next we investigate the structure of u(Pa')N(P&'P&;
k, q=A)u(P&) corresponding to the diagram in Fig. 5.
Since we express our amplitude in terms of the photo-
pion production amplitude of Chew, Goldberger, Low,
and Nambu" (hereafter CGLN), it is convenient to use
their variables. Ke thus introduce the following three
invariant variables:

v= —(P k)/M, v~=(q k)/2M) q'=A'

states as
A;= A,'+&+A;&'&, (i = 1—4) . (2.12)

3. FORMULAS FOR THE SQUARED ABSOLUTE
VALUE OF THE T-MATRIX ELEMENT

To calculate the proton-proton bremsstrahlung cross
section we require the squared absolute value of T:

I
T

I

'=
I T(~)—T(b)+ T(c)—T(d) I

' (3 1)

Note that we have
where

P = (Pi+Pa')/2. (2.8)
T(a)+-+ T(b) under Pq' ~ Ps',

T(c)~ T(d) under Pg' ~ Ps',
Note that we are considering the case q'=A' (A —1),
i.e., the virtual pion is off the mass shell. The amplitude
Emust satisfy I.orentz invariance and gauge invariance.

Following CGI N, we de6ne four I.orentz-invariant
and gauge-invariant fundamental forms.

Mg ———,'its(y, y},
Ms ——2iy5(P, q},
Ms= ps(y, q},
M4 ——2ys((y, P}—-', iM(y, y}),

(2.9)

N(Pg'Pg, k,q= A) = Q M;A;(v, va, As), (2.10)
i=1

where A ~, A~, A3, and A 4 are scalar functions of v, v~,
and 6'. For later convenience we will generalize A; so
that it can accommodate a charged as well as a neutral
pion.

By charge independence the amplitude A; for the
process or& '+N —&y+N (N, nucleon; o., isospin of a
pion) can be generally decomposed as

A;= sfr, rsvp+A;&+&+s Lr, rs)A;& l+r A;&s&, (2.11)

where the 7-3 results from the vector part of the photon
isotopic spin. For the case m'+ p ~ y+ p the amplitude
A; can be decomposed in terms of the above charged

where the abbreviation (&t,b} is used for the gauge-
invariant combination (ue) (bk) —(ak) (be). Then the
most general amplitude for the ~'+p-+ y+p process
is written as

FIG. S. A diagram for the
process "virtual ~"+S—+

y+E.

and that we must eventually integrate over P&' and P&'.

Furthermore we note that T(c) Lor T(d)j can be ob-
tained from T(b) Lor T(a)) by changing P& ~ Ps.

I
T

I

' can be written in the form

I
T

I

'= 2(I T(~) I
'+(P~ ~ Ps})

—2 ReLT(a)*T(b)+ (P,~Ps}j
+4 ReI T(a)*T(c)]—4 ReLT(u)*T(d)], (3.2)

where the (Pe~Ps} symbol represents the result of
exchanging Ej +-+ I'2 in the previous terms.

Essentially we need only calculate the following four
terms

I
T(a) I', T(&t)*T(b), T(&t)*T(c), and T(a)*T(d).

The remaining terms can be obtained by the simple
substitution I' j ~ I'~. It will be simplest to calculate in

the c.m. system of the initial protons.
First we consider

I T(&J)
I

'. It is convenient to introduce

Iu(Pg')N(Pg'Pg, k, q= a)u(Pg) I
'.

Pal SPin 8lllll

"G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu, Phys. Rev. 106& 1345 (1957).
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Then
LE(~2)E'(~2)]2

g I T(a) I'=-,' p p Iu(P1')cv(P1 P1 k, q=h)u(P1)
I

' &&2' Q Iu(P4)gp4u(P2) I

I
E(8,2)E'(i4 ')]' g„262

=I
(+2+1)2

(3.3)

where we have summed over the spin states at the pion-nucleon vertex. Next we carry out the remaining spin and
polarization summations and obtain after a straightforward but lengthy calculation the following expression for I:

1I= P Tr[1V(M iP1)y—4Ãty4(M iP1')7—
pol

where

P B;,Re(A;A;*), (i,j=1—4)
231' '&~'

B11——4(P k)' —(q k)' B =-'t'L4(P k)'t' —(t'+4M')(q k)']
12 4(P.k) 2t2 (t2+4M2) (q. k)2 923——924=0,

B1,——SM(P k)(q k), B —-'I 4(P k)'t'+(q k)'(t'+4M2)]

B14——4M(q k)' B24=4t'(P. k)(q k),
B44—1I 4(p. k)2t2+(q k)2(t2 —4M')] (where q=A).

(3.4)

The interference term p T(a)T(c)* can be similarly calculated.

E(~2)E'(~2)E(t2)E'(t2)
4g T(.)T(.)*=4g, ,'Z Z(u(P 'P( )u(P ))

(Q2+ 1 )(t2+ 1) poi spin

y(u(P, ')~,u(P1))*(u(P2') y4u(P1))(u(P2'P(c) u(P2))*,

where the factor ~ comes from averaging over the spin of the initial two protons. We rewrite this as

where

E(~2)E'(~2)E(t2)E'(t2)
4 P T(a)T(c)*= g,'—

(h2+1)(t2+1)
I,

(2M)'
(3.5)

pol

The result of spin and polarization summation is

E(62)E'(62)E(t')E'(t2) 1
4 P T(a)T(c)*=—g„'

(a2+1)(t2+1)
L~ 1(a)+t'~2(a)]l:~1*(c)+~'~2*(c)]

M'
)&((P P')(q k)'+Lq' —(q k)](P k)(P' k))

where

I=+ TrI x(a)(M —iP1)p&(M —P1')] TrI &4Ã(c)t&4(M —iP2')&2(M —iP2)].

P'= (P2+P2 )/2, P= (P1+P1 )/2

Similarly the interference term P T(a)T(b)* can be written

E(S2)E'(a2)IC(t2)E'(t2) I—2 P T(a)T(b)*=2g„'
4(d,2+ 1)(32+1) (2M) 4

where
I=+ Tr/N(a)(M iP1)(y4N(b)tp4)(M P—2')(M+iP2)(M iP—1')]. —

pol

tlat

After a straightforward but lengthy calculation we get the following result:

I=+ C,,A, (a)A, (b)*, (i,j=0, 2, 3, 4),

(3 6)

(3.7)

(3.8)
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where we have introduced Ap(x) —=A r(x) —2MA4(x), (x=a or b), and

Cpp
——8(Pz k)f,

Cap=8{(h k)[A'P'(Pp'. k) —(P Pp)t'(Pr k)]+(P.k)t'[(Pr k)(pp k)+26'(t k)]J,
C„=8[~t —f]{(~k)[P (P,' k)—(P P,)(P, .k)]—(P k)[(P k)'+(t k)(P ~)]&,
Cpp

——4M{2(pr k)[2(pr k)(h k)+2'(t k)]+(& k)f),
C4p =8M{2(Pt ' k)[(P ' k) (Pp ' k) (5 ' k) (P ' t)]+(P k)f),
C„=16M(P k){(P k)[d, (g k)+(P,' k)(t k)]+(t k)'(P 6)),
Cpp ———4{—(6 k)(t k)(pr k)[4M' —2(pt Pp)]+2(pr k)'(Pp k)

+[+&(t.k)&+te(Q ~ k)&][(Pr Pp) —MP]+tPtr(& k)(P k)+APQP(t k)(P k)), (3.8a)

C4p= —16M{(p k)[t'—(t k)][(P h)(t k) —(P k)(pr k)]
+[(P t)(P k) —(P P)(t k)][(~ k)(t' —(t k))+2(t k)(p'k)]»

C43= —8{M'[—3(t k)(P k)(pr k) —t'(5 k)(P k)+(t k)(h k)(p t)—(P k)(t k)']
+-,'f[(t k)(P' —(P k))—2(pr k)(p t)]+h(t k)(p k)+ ', a'(t k)-X(P; t)+t'(P k)X(P; t)),

C44= —16{M[—(P k)(P k)(pr+Pg, k)+(P k)(h k)(P t)+(P k)(P A)(t k)]
+rpf[—2(Pr k)P P)+Pe(P k)+P'(P k) —2(p k)(P k)]

+k(p k)(P k)+-'5'(P k)X(p; t)+-'te(P k)X(P 6)}

where

f=(A k)t'+2(pr k)(pp k)+6'(t k),
(pr' +)t +2(pr' P2)(P1' k)++ (g 1' t) )

X(x;y)=(k x)-',y' —(x.y)(pp k)+(Pp x)(k y),
P= (Pr+Pp')/2.

The remaining C;, can be obtained from the correspond-
ing C;; by the following interchange:

P,'~ P,',

which also imply

P ~ —P, q+-+ q, t ~ 6, and I'+-+ —P,
where

P = (P2+pr')/2.

Taking into account the phase e;,, we write

p, ~ —p
Dg= e;;C@

~
(no summation), (3.10a)

where
which also implies the interchanges:

P+-+ P, other e's=+1.
648 634 618 681= —1~

Cp4 for instance, is given by

Cp4 ——8M{2(pr.k)[(P k)(pr' k) —(t k)(P 6)]
+(P k)f)

Finally the interference term 4T(a)T(d)* can —be
written

—4T(a) T(d)*
E(h')E'(6')E(E')E'(3, ') I

(6'+ 1)(Z'+ 1)
, (3 9)

(2M)'
where

I=Q Tr[N(a) (M—ipse)(y4N(d)ty4)(M —iP&')
pol

)& (M+ iPp) (M—iPr')].
We write

I=+ D;;A;(a)A;(d), (i,j=0, 2, 3, 4). (3.10)
~ ~

The explicit form of D;; can be obtained, up to a phase
from the corresponding C;;by the following interchanges:

Pj ~ —P~' and P2 ~ —P2',

4. VIRTUAL PION PHOTOPRODUCTION
AND ITS INVERSE PROCESS

We must relate the m+N-+ y+N amplitude to the
amplitude for pion photoproduction.

First we construct the dispersion relations for virtual
pion photoproduction:

y(k')+N(pr) ~N(pr')+~& &(q'),

where n denotes the isospin of the pion.
The scattering process which involves one off-shell

particle was investigated 6rst by Fubini, 5ambu, and
Wataghin" for the case of electropion production. The
case of pion-nucleon scattering was also investigated by
Ferrari and Selleri ' and by Iizuka and Klein. "

We modify CGLN" and briefly sketch the formalism.

"S.Fubini, Y. Nambu, and V. %'ataghin, Phys. Rev. 111,329
(1957).

PP E. Ferrari and F. Selleri, Nuovo Citnento 21, 1028 (1961).
See also E. I'errari and I". Selleri, ibid. 27, 1450 (1963}.

'1 J. Iizuka and A. Klein, Progr. Yheoret. Phys. (Kyoto) 25, 1017
(1961).
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It is convenient to introduce the following four
Lorentz-invariant gauge-invariant forms:

M~= oivo{v 7)
Ms =2iyo{P,q'),

MD =2yo({y,P) ——,'iM{y,y)),

(4.1)

where P= (Pi+Pi')/2 and the abbreviation {a,b) is used
for the gauge-invariant combination (ae) (bk') —(ak') (be).
In terms of these forms, the general'amplitude B is
written as

where vo = vii +1+1/2M. The & sign is chosen so that
IZ satisfies crossing symmetry. Therefore 2 &+ '), 8(+ '&,

C&—), and D&+'& must be even functions of v, while
2 & ', 8' &, C'+'~, and D' & are odd functions.

The residues E at the poles turn out to be

RLA+ 'j= ,'e,f—„K—(h'),

(4.6)
RLC+j=RLD+j= f.(t4 -~ ti .)K(~')

H=MgA+ MiiB+MoC+ MDD. (4 2)
RLC'j=RLD')= if.(t '+t -)~&(~'),

Each of the invariant coefficients can be further de-
composed according to its isotopic spin dependence.

A =-,'L, ) A'+&+ ,'tI r, jA-&—&+ A &o& etc. (4.3)

The resulting 12 coeKcients which we designate II; can
be considered as functions of the scalars,

v'= (P k')/M— , vii' ——(g' k')/2M, and @=a', (4.4)

and satisfy dispersion relations of the form

where tiv,
' (ti„,) is the anomalous magnetic moment of

the proton (neutron). The residues are obtained by
evaluating one nuclear intermediate state contribution
to the unitarity relation. Since the mass-shell condition
for the pion q'2= —1 is not satisfied, we have not used
this condition at all. This is the reason K(i4i ), defined
before, appears explicitly. Now we have

vs'= (q' k')/2M
=—(k' —q') '/4M+ (k"+P)/4M
= (6'—t')/4M, t2= (Pi' —Pi)',

ReH, (v', ve', 6') =R(&')
/ / / & /

Pgg
—P Pg ~P

while

vii'= (—1 t')/4M for—real-pion production.
1 I

dv" — W —ImH, (v', i e', 6'), (4.5)
-v v v+v

In terms of final-state total energy O', II, can be
written in the form

H;(W, vii', 6') =2MR(5')
W' —M' W' —M'+4M''

dW" ImH;(W', ve', 6')— (4.7)
W"+Wo 2M'+ 4Mve'—

Now we shall express the amplitude "virtual or"+X~
y+E in terms of the amplitude y+N ~ "virtual ir"+X.
From the T matrix for,

expressed in the form

H o(Pi', Pi, ~t', k'),

the T matrixiV for

~'&(q)+1V(Pi) ~ y(k)+Ã(Pi')

can be obtained, by using the substitution rule, " as
follows:

N=Ho (Pi', Pi, —
q,

—k),
'~ See, for example, J. M. Jauch, and F. Rohrlich, The Theory of

Ehotons and Electrons (Addison-Wesley Publishing Company,
Inc. , London, j.955).

where the subscripts denote the isospin dependence of
the matrix element and it is understood that we are to
sum over photon polarization.

By substituting the explicit forms of H and 1V t see
Eqs. (4.2) and (2.10)j and comparing both sides, we
can relate Ai, Ao, A o, and A4 of Eq. (2.10) to A, 8, C,
and D of Eq. (4.2) as follows:

(+,o)(v vii 62) A &+,o&(v' ~ —v) ve' ~ vii 6')
A o' "(v vs 6') =+8' "(v' —& -v vii' -+ vii 6')
Ao'+"(v, vii, LP) =+C "(v' —+ —v, vii' —+ vii, LV),

A4+ (v, ,vii, dLo)= D+' (v'~ —v, vs'~ vii,—d ).

Similarly A;& & (i= 1, 2, 3, 4) can be obtained by taking
the negative of corresponding relations. Using crossing
symmetry for 3, 8, C, and D, we can further simplify
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these relations to

Ay'+ '&(p pB 62)
= —A (+')(P' -+ P, PB' —) PB, tIy'), etc. (4.8)

As is seen from the previous treatment, the A2 de-
pendence of the matrix element of the virtual process is
entirely either in E or v&'. Therefore we assert that
under certain conditions, to be discussed below, the
amplitude for photo virtual pion can be factored as

T(y+1V ~ Virtual 2r+1V)
=K(62)T(7+tV -+ real yr+1V), (4.9)

where K(62) represents the pionic form factor and the
expression for T is that given by CGIX' with v&'

interpreted as (62—t')/4M. This relation is exact to
lowest order Born approximation, since we take account
of the virtual pion at the m-A-37 vertex by merely
replacing g„by g,K(62).

In general, when more than 1 virtual pion is involved
in the process this factoring may be allowed only if
higher order contributions do not introduce drastic 6'
dependence. For example, it is easily seen that this
factorization is true for the dominant partial amplitude

Myy in the static approximation. Using Eq. (4.8), we

get the formulas

Ay + (P,PB,t),')= —K(d )AGGLN +' (P'~ Pv PB'~ PB), etc. wyth PB=(~ t )/4M. (4.10)

We are only interested in the processes which involve a neutral pion. These amplitudes can be decomposed as

a(yy p ~ p+~P) =a(+)(y+1V ~ ~+1V)+a(') (y+1V ~ ~+1V),
M(2rP+P ~ P+y) =M(+)(2r+1V —& y+1V)+M(P)(7r+N ~ y+1V) .

The amplitudes A; (i=1—4) for "virtual yr'"+p —+ p+y may be expressed in terms of the amplitudes A (+",
8 +', C(+'), and D(+ & for y+1V ~ "real yr("&"+1Vas

Ay(PvPBvd ) K(~ )LA CGLN+A CGLN]v'~v, vB ~VB v

A2(P, PBvd )=+K(A )LB CGLN++ CGLN]v'~v, vB'~vBv

A 3(pvpBvk ) K(6 )LC OGLN+C CGL ]Nv'~v, v '~Bv yB

A4(PvPB)6 )= K(t1 )t D CGLN+D CGLN]v'~v vB'~vB'

(4.»)

Now we consider the dispersion integral for photo (real) pion production. This problem has been «iiy dyscussed

by CGI.N~8 a,nd Ball. 23 Vhth these a,uthors we a,ssume that it ~s only ~~~~~~~~y
netic-dipole (My~ptp) amplitude. Then we obtain the following expressions":
Dispersion integral of

t2 1
A(+)cGLN=~~ — dW" C(W')$(13'(W'+M) 3t' 1]ImM—y+"'—(W')

(1 3)r (sI+y) v

Dispersion integral of
(2 1

CGLN
k1 ~ (sI+y)v

Dispersion integral of

WT2+ W2 —2M2+4MPB'

dW" C(W') ImMy "'(W')
W"—W' W"+W' —2M'+4MPB'-

tv2) 1 " 3 t2+1
C'+'ooy, N=+~

~

— dIV" C(W) ImMy+'"(W') —— +gp' —(W'+M)
(1J37r o)r+y)' - 2 W +M

Dispersion integral of

X
W 2 W2 W 2+W2 2M2+4MPB

(2) 1 " 3 t'+1
D + GGLN =~~

~

— dW" C(W') ImMy+" (W') —— +qp'+2(W'+M)
(1'3yr (sr~y) v 2 W'+M

X ~, (4»)
W'2 —W2 W"+W2—2M'+4M. B'

33 J. S. Ball, Phys. Rev. 124, 2014 (1961).
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where

The dispersion integrals for 3 ', 8 ', C ', and D&') are zero in the Ml+'~' dominance approximation.

The factors
~ 1 ~

are due to the following isotopic-spin decompositions:
k
—1i

~1+ 3~1+ 3~1+ 3~1+ ~

Next, following CQLN, "we write the relation

(4.13)

(4.14)

where f33 is the I=I= , ampli—tude for pion-nucleon scattering. Since the structure of fqa is well known experi-
mentally, we can thus determine the 351+'~2 amplitude.

To simplify further calculations, we shall adopt the narrow-resonance approximation for f».
Imf„(W')/q"= 'x f22W-„b(W'2 Wm) —f2=0 08

where W, is the c.m. energy at the 33 resonance, chosen to be roughly M+2. Then

(4.15)

ImMg+' '(W') = q'(W )k'(W ) — 8(W"—W ')
2 3 M

(4.16)

The approximation of dominance of the Ml+'~2 amplitude corresponds physically to taking only the E inter-
mediate-state contribution. Introducing

D(W~) = (4W~/9M) f(W~+M) 13

v„v~ (W '—M'—)/2M——,

finally we obtain the scattering amplitude for "virtual 7ro"+P (P&) ~P (P&')+y in the form

(4.17)

(4.18)

A g(v, ve, A') = —E(A')
erg r vB pyr pnf Vf

+ g„D(W„) [qp(W„)(W„+M)—3t'—1$
VB2 V2 ~ V

2 V2

e„g„ ppp p~t Vg

A 2(v, ve, h') =+E(A') —3— g,D(W,)
2M2(vB2 v2) M v 2 v2

gb, r' v a, r I nr — v ( 3 t'+1
As(v, vg, b, ') = —E(h') + g„D(W„) ~

—— +go(W„)—(W,+M) ~

~ M ve' —v' M v' —v'~ 2W,+M )

(4.19)

g rgvv' vB Ijvr pnr vr ( 3 t +1
A ( 6') = E(A') — + g.D(W.) i

—— +g (W.)+2(W.+M) I

L M ve' v' M — v' —v'( 2W+M

where

Nv„'= 1.78(e„/2M), pv„= 2.78(e„/2M), p,„„=—1.91(e„/2M) .

We abbreviate these expressions as A;(a), the a referring to the fact that they describe the process depicted in

Fig. 4(a). Then the A;(b), corresponding to Fig. 4(b), can be obtained from the A;(a) by the interchange Pz'~ P2'.
This interchange is equivalent to the following substitutions:

v= —(P k)/M ~ v=——(P k)//M =—(Pg+P2', k)/M,
ve=—(6 k)/M ~ v~—= (t k)/M = (P2—Pg', k)/M,

Q2 ~ $2 [2 ~ Q2

Similarly the A;(d) can be obtained from the A,(a) by interchange P& ~ P2. Finally, the A;(c) can be obtained
from the A, (a) by the interchanges Pq ~ P2 and P&' ~ Pm'
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&dkodQy e.m. F 4m' tr

where the Jacobian
I' '2

0/)'F ' W —k&)+E&'ko cos81

S. NUM

ion E . (2.4), in the formthe cross section Kq, rmF t we rewrite e

2 2 2 ~ M'
d(cos8') !

e 2g t
(5.1)

(5.1a)

e

2e' g„')' 3II2X10-2t
t Mk&q per

F )I4~ E4~) (2~)2,140 F
( do.

!

kdkodQ„,

M'
t

cm'

2 4 kM V sr)e„g„'
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'
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f

+1
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1r

dp d coso

we get
)koMq

( =0.6958X10-
!

dkodQy) e

M2
d(cos8') e'

of direct terms an!T!'isthe sum of ir

f d!+!+! ! +!
~dkbdQy directkdkbdQ, .

where
( do

!
kdkodQi direct

dp' d cos8' [!T(a)!'+{Pie-eF2 I',

—1 g

orresponding y,te cor
'

1terms. Ke write, cord interference term .According to Eq.. 3.2),

(5.2)

(5.3)

do

kdk, dQ,).b

!
( do

kdk, dQ,).,

d cos8' Re[T(a)T(t )*+(F

dq' d cos8'Re[T(a)T(c)*7F,

do

kdk, dQ,).d d cos8' Re[T(a)T(d)*7m,

with

0 —1

b fixed must only integrat e over the"koM'/Fe„'g„') J.I'=0.6958X10 28(ko

4 Re[T(a)T(c) 7, a
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8 cos8'+sin8~ sin '. 5.4
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smaller than t e cri
'ecified quantities.

k =8'(W —2M)/2
-momentum

C
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This covers almost all the region of interest; for
instance, the maximum value of the photon energy
kp, „——(8"—435')/2W is 95.1 MeV and k, = 92.9 Me V
for a laboratory kinetic energy of 200 MeV.

Therefore we shall consider only the case'4

0&ko&k.= 92.9 MeV

hereafter. To avoid possible inaccuracy, the Jacobian
of Eq. (5.1a) will be rewritten as

J= 2
i
Pr'

i
'[(W' —2kpIF) (5'—2kp W —4M')

—4k 'M' sin'8"7 'I' (5.5)

The formula is obtained by substituting the explicit
expression of E~. By definition the variables which
appear in

~

2"(a)
~

' can be written a,s

(P k)= —Mv=-,'[(P, k)y(P, ' k)7,

(q k)=2M'=(Pr' k) —(Pr k),
&'= (Pr—Pr')'= —2M' —2(Pt Pr')

6'= (Ps—Ps')'
=2[(Pr' k) —(P, k) —(P, P,') —M'7,

where 2(q k) =5'—t'. The scalar products on the right-
hand side can be expressed as

(Pt' k) = [(Er"—3f')'i' cos8"—Et'7kp,

(Pr' Pt) =
i
Pr

i
(Er" cV')'i' cos8' —ErEz')—

(P, k)=(~r,
t

cos8,—E,)k„
(Ps k) = (—i Pri cos87—Er)kp

Thus all quantities in
~
T(a)

~

' can be expressed in. terms
of (8'p'). Next we observe that the interchange Pr ~ P2
is equivalent to""

0~+-+ w —0~.

(See Fig. 3.) The calculation of interference terms can
be done quite analogously. Numerical calculation was
carried out at cos8~= 0.508, —0.310, and —0.834 (c.m. )
corresponding to laboratory angles 0~&,

——45', 90', and
135', respectively, for an incident laboratory kinetic
energy of 200 MeV. These are the energy and angles of
the experimental setup at Rochester. '

The IBM 7074 electronic computer at Rochester was
used for numerical calculations.

~ 0 k0 satisfies the condition ko,„&k0&k, then E1' becomes
double valued:

8 ' = -', (W' —2koW+ko' sin'8")-' f (W—ko) (W' —2koW} &ho cose"
XL (W' —2hoW) (W' —2ko W —4') —4ko'M' sin'8" ]'&1,

Furthermore, only the particular angular range
or) 8")g, ()o-/2),

where
4ko'3/I sin 0 "=(W —2k0W) (W —2kpW —43P)

is physically allowed. Because of these complexities we do not
consider this region.

'5 This can be easily seen as follows: After the integrations over
two outgoing protons are carried out, the cross section will only
depend on the three invariant variables (P~ k), (P2 k), and
(P& P2). Therefore P&+-+ P2 means essentially (P1.k) ~ (P2 k),
which can be obtained by cos|Y~+-+—cos8~.

TmLE I. Bremsstrahlung cross sections&(10' in units of
cm'/(str MeV), predicted by the theory with oiI-shell eBects
neglected. Incident (lab) energy=200 MeV.

s8~
(c.m. )

(MeV)Q
(c.m. )Q

20
30
40
50
50
70
80
90

0.508
Horn
terms Total

0.978 0.993
0.817 0.836
0.747 0.786
0.683 0.745
0.591 0.673
0.457 0.545
0.280 0.351
0.086 0.109

—0.310
Born
terms Total

0.692 0.699
0.601 0.624
0.568 0.611
0.534 0.593
0.458 0.542
0.349 0.441
0.207 0.282
0.057 0.083

—0.834
Born
terms Total

1.173 1.175
1.019 1.030
0.971 0.995
0.920 0.963
0.822 0.883
0.660 0.725
0.423 0.471
0.138 0.145

O

O
It

V)

o .70-0
U

S .60

50

V)
N 40

$0

.20
O0

.10

b

20 30 40 50 60 70 80 90

k,(Mev)

Fxo. 6. Numerical
results at 81,=90' for
incident energy 200
MeV. (A): Energy
spectrum predicted by
the theory with oB-
shell eGects neglected.
(H): Energy spectrum
predicted by the theory
with the pionic form
factor.

We shall list the results corresponding to the different
approaches. First we consider the case where the off-shell
effect has been neglected, taking

Zs(z')Z'(~') =1. (5.6)

The numerical results are listed for the three angles in
Table I, where the contributions from the Born terms
have been explicitly separated out.

We observe that although the S* contribution, the
difference between total and Born terms, increases with
photon energy and slightly modifies the spectrum corre-
sponding to the Born terms at the high-energy end, it
never becomes significant for the integrated proton-
proton bremsstrahlung cross section. (See Fig. 6.)

Owing to the Pauli principle there is a huge cancella-
tion between the diagrams. To see this we refer, for
example, to Table II where the detailed results at
coso~= —0.310 are listed for each individual contribu-
tion from the (Horn+/ll'*) terms. We found that this
cancellation occurs at other angles. This should make
the proton-proton bremsstrahlung much smaller than
the neutron-proton bremsstrahlung. This is consistent
with a vanishing proton-proton bremsstrahlung cross
section when the recoil of the proton is neglected, as
mentioned in the Introduction. A similar cancellation
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TABLE II. Bremsstrahlung cross sections)& 10" in units of cm'/(sr MeV), predicted by the theory with off-shell effects neglected.
Incident (lab) energy=200 MeV.

(MeV)
(c.rn. .)

20
30
40
50
60
70
80
90

f d

trtfkttfflr jdirect

12.3420
7.4650
5.0906
3.7050
2.7974
2.1.353
1.5698
0.9042

cos8~(c.m. ) = —0.310
do ~l f

t dkodn, j., (dkoffl, j.t
—11.8873 1.4280—7.0490 1.0233—4.6598 0.7669—3.2449 0.5459—2.3095 0.3192—1.6353 0.0738—1.0977 —0.1721—0.5696 —0.3043

do

EdkofQ„j,d

—1.1841—0.8158—0.5876—0.4132—0.2647—0.1325—0.0183
0.0527

Total

0.6968
0.6235
0.6106
0.5928
0.5424
0.4413
0.2817
0.0831

0.72 0.28
(5.7)

1+(1/4.73)(&s+1) 1+$(1/32)(As+1)]'

was also observed in the case of the potential model by
Sobel and Cromer. '3

Next we take account of the off-shell effect for the
exchanged pion. Although the structure of E(A') was
theoretically investigated by Federbush et ul. ,

'~ we take
the phenomenological point of view about the form
factor following Ferrari and Selleri. 2 It is well known
that the peripheral model with one-pion exchange can
explain most of the ine/astic processes at high energies
quite well. To fit the various phenomena, it was neces-
sary to take account of the off-shell eBect of the ex-
changed pion. We observe that the form factor
E'(A')E'(A') which appears in the peripheral one-pion-
exchange model should be the same as the form factor
appearing in the bremsstrahlung process. For instance,
we consider the process X11V —+ rr+X+1V, which is
shown in Fig. 7 assuming the one-pion-exchange model.
This should be compared with the bremsstrahlung
process of Fig. 1. We may also note that the off-shell
form factor is a function of squared four-momentum
transfer only and not a function of energy. Thus,
following Amaldi and Selleri, "we shall take the follow-
ing phenomenological expression for E'(A')E'(A'):

E'(A') E'(A')

This gives a strong damping Sect for large 6' where we
do not expect the one-pion-exchange model to hold
so well.

In order to see the cancellation of diagrams for the
theory with the pionic form factor, we list in Table III
contributions from the direct and the separate inter-
ference terms at coso~= —0.310. The two dominant

FIG. 7. A diagram for
the process E+E—+ S
+E+m.

terms, direct and 4 ReLR(a)*T(c)j interference, have a
characteristic 1/ks dependence in the low-energy-photon
region. However, owing to the huge cancellation, the
energy spectrum becomes rather flat. (See Fig. 6). Since
the cancellation due to the Pauli principle will not occur
in general for neutron-proton bremsstrahlung, we expect
that its cross section will be larger than the proton-
proton cross section, by a factor of 10.Also the spectrum

TABLE III. Bremsstrahlung cross section)&10' in units of cm'/(sr MeV), predicted by the theory with the pionic form factor.
Incident (lab) energy=200 MeV.

(MeV)
(c.m. )

20
30
40
50
60
70
80
90

do

kdkotfflr jdirect

2.469
1.592
1.165
0.915
0.750
0.622
0.497
0.310

coser (c.m. ) = —0.310
do l ( do

(dk~„j.,
—2.350 0.3673—1.478 0.2751—1.042 0.215—0.778 0.160—0.598 0.098—0.461 0.024—0.338 —0.057—0.193 —0.106

t' d. l

—0.305—0.220—0.167—0.124—0.084—0.046—0.009
0.017

Total

0.181
0.169
0.172
0.174
0.165
0.139
0.093
0.028

s' U. Amaldi and F. Selleri, Nuovo Cimento 31, 360 (1964). A similar form was used in Ref. 6.
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TABLE IV. Bremsstrahlung cross sections)& 10'~ in units of
cms/(sr MeV), predicted by the theory with the pionic form
factor. Incident (lab) energy=200 MeV.

PI

= INCIDENT DIRECTION

I
Pg

FIG. 8. Geometry of the
Harvard experiment.

20
30
40
50
60
70
80
90

0.508

0.257
0.227
0.223
0.221
0.209
0.178
0.120
0.042

—0.301

0.181
0.169
0.172
0.174
0.165
0.139
0.093
0.028

—0.834

0.300
0.281
0.279
0.284
0.276
0.225
0.168
0.058

do not directly measure photon energy. They measure
only coplanar events with two protons emerging at a
symmetric angle 87~b about the incident direction, as
shown in Fig. 8. At 87,b=35', where most of the data
are taken, they get

do/dQrdQs ——5 &(10 'e cm'/(sr)',

for neutron-proton bremsstrahlung may have a charac-
teristic 1/ke dependence. ' "

The Anal numerical results at the three angles are
listed in Table IV for the calculation including form-
factor eGect. Next we compare the results with the
Rochester experiment. The integrated proton-proton
bremsstrahlung cross section at 8~ (lab) =90' was ob-
tained as

(do/de~) (0 035 e „,+o.o4) &&10
—so cm'/sr

fol k(j 7 b+ 35 MeV.

Because of poor statistics the photon spectrum has
not yet been determined. The theory gives the follow-

ing results" at cos8„=—0.310 Lcorresponding to
8,(lab) =90']:

where dO~ and dQ2 are the solid angles for the outgoing
protons. This was compared with the theoretical pre-
diction, 47&t.'10 " cm'/(sr)' of Sobel and Crorner"
based on the Yale potential. A large discrepancy be-
tween Sobel and Cromer's theory and experiment seems
to exist.

At other angles 07,7, =40' and 07,b ——30' the Harvard
experiments are consistently smaller than the prediction
of Sobel and Cromer. Here for the sake of comparison
we evaluate the Jacobian which gives the following
transformation:

dL't dQr= J(Er, cos8r)gr/kq) cos87,$q)dkvdQr.

We are considering the case with the Harvard group
where all outgoing particles are in one plane with p~ =0,
q»=or, and q, =0 as is shown in Fig. 9. The Jacobian
was calculated nonrelativistically as"

( do
dks ——0.219&(10 "cm'/sr

'EdksdQ~

for the Es(ks)E'(5') = 1 (5.8) where

( der

dks ——0.070&(10 "cm'/sr
kdksdQ,

(acr Ps—M cos(8s+87) fk, ) sine&

(8$ Pl cos(81+82) Ps E3f/sin8

k~ sin8~ —Ey singly

8&~ P, sin8q+Ps sin8s —k„sin87

for the phenomenological E'(&')E'(&') . (5.9) Using the above Jacobian, we obtain the following
relation:

The lower limit of integration is taken to be consistent
with experimental limitations.

Within the accuracy of the experiment, the theory
with the pionic form factor seems to give reasonably
good agreement. Unfortunately at the time of writing
of this paper, the cross sections at other angles are not
yet available. Comparison with the only other available
experiment, at Harvard, 4 is rather dificult because they

'7 F. E. Low, Phys. Rev. 110, 974 (1958).
28 For evaluating the integrated cross section theoretically, the

upper limit of integration was taken to be 90 MeV (c.m.) instead
of kz ~, (=95 MeV, c.m. ). (See Ref. t on this point. ) Therefore,
the experimental data with photon energy higher than 90 Me&
(c.m. ) should not be included when a comparison is made with the
theory. However, since such high-energy photons are not observed
experimentally, this does not cause any trouble.

do/dQsdk, dO, = (do/dQ~dQsdEr') J .

INCIDENT
DIRECTION

)

, '~e,+ =~) FIG. 9. Coordinates used by
Sobel and Cromer.

ky(ey, gy = o~

2' This result is obtained using the method given in a private
communication from A. H. Cromer to E, H. Thorndike.

If we make a rough comparison at k~~=35.2 MeV,
8~r, =85.3' (8rz, =8s&=35') in the laboratory system,
then Sobel and Cromer's theory, based on the Yale
potential, seems to predict very roughly 10 times larger
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ALE V. Bremsstrahlung cross. sections&10" in units of
cm'/(sr MeV), predicted by the theory with the pionic form
factor. Incident (lab) energy=160 MeV.

so~
(c.m.)

(MeV)g
(c.m.)g

20
30
40
50
60
70
73

0.532

0.217
0 199
0.190
0.170
0.125
0.054
0.029

—0.280

0.143
0.137
0.139
0.125
0.091
0.038
0.019

—0.824

0.232
0.203
0.238
0.219
0.167
0.072
0.039
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cussed in the Appendix. We only note here that the

p contribution turns out to be very small.
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APPENDIX: CONTRIBUTION OF THE y
RESONANCE DIAGRAM

Since a light particle can be easily accelerated, we

expect it to yield a large bremsstrahlung cross section.
This situation is observed in natur" the pion-nucleon

bremsstrahlung gives a much larger cross section" than
the nucleon-nucleon case. For proton-proton brems-

strahlung on the basis of the one-pion-exchange model

the exchange pion has zero charge and hence cannot
emit a photon. However, the next lightest virtual

particle, the p meson, might emit a photon. In the

following we shall consider this effect, which corresponds

to the diagram in Fig. 10.
First we must investigate the pp contribution to (real)

pion photoproduction. This is discussed by Ball" and

by Gourdin, Lurie, and Martin" using the Mandelstam

representation. " In terms of CGLN notation" the p

contribution to the scattering amplitude for

X(Pz)+v(&) ~&(Pz')+~ (V)
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suggesting the investigation of this problem and for his
continual encouragement. He is also pleased to acknowl-
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gramming as well as discussions, and Dr. J. Schechter
for reading the manuscript.
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is given by
t'/ (t')gs (t')

dt'
'r 4

t' —t

C(0) =0

' For an incident energy of 160 MeV, &11,=gyp= 35, +1k = 73.0
MeV, 821'=51.8 MeV (which corresponds to 0 ~=85
=35.2 MeV), in the laboratory system Sobel gives the following
result:

do/dQqdEp'dQp=1. 363X10 I cm'/(sr)' MeV for Yale potential.

The Jacobian is calculated to be 0.046 at this point. Therefore

do/dQp'dkpdQ7=6 27X10 "cm'/(sr)' MeV.

Since the outgoing protons are identical, the case where EII,' and
821,' are interchanged should also be considered for the same given
photon angle and photon energy. This is calculated similarly to be

do/dQpdkpd0„=1. 63X10 "cm'/(sr)' MeV.

Adding these together, we obtain

do/dOpdkpdO„=7. 9X10-" at H, z, =85 3', kpz, =35.2 MeV.

To roughly compare their result with ours, we write

do/dkpd'Q„=(dQp)7. 9X10 'P cm'/sr MeV,

where (dQp) may be of the order of unity and vary up to 2pr if the
distribution is isotropic. Our result is

do/dkpdQ„=0. 138X10 "cm'/sr MeV.

FIG. 10. A diagram for
proton-proton bremsstrah-
lung.

P 7T

3 V. E. Barnes et al. , CERN Report 63-27, 1963 (unpublished)."M. Gourdin, D. Lurie, and A. Martin, Nuovo Cimento 18, 933
(1960)."S. Mandelstam, Phys. Rev. 112, 1344 (1958).

where t= —(p,'—P,)' is the square of the c.m. energy

in the t channel. This should not be confused with our

variable ts =—(Pz' —Pz) '.
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ts(t) represents the y2rp amplitude and g;" is related to
the vector part of the nucleon form factors as follows" ":

g'"(t')
G,"(t)=- dt', (2=1, 2).

T 4

Although the y2rp amplitude h(t) is not well established
yet, we shall determine its form by assuming p domi-
nance in the z'~ 2y. We follow Wong" and Ball"
and choose

It(t) = )I.'/(t+ rt) with rt =5,
where Y is an unknown parameter. Now the p contribu-
tion to the amplitude for the photon emission process
2r &~&(q)+N'(Pt) —+ y(k)+.V(P1') is, in terms of the pre-
vious notation,

21"&= —X'{Gs"(—t') —Pa/(u —t')j
&& LG2"(—t') —Gs'( —~2)j)

A 2(s) = —V(a—ts)-'pG2 "(—ts) —Gs"(—rt)j,
g, (0) 0

A4 s =X (rs—t2)—lf Glv( t2) Glv( g)j
'4 H. S. Wong, Phys. Rev. Letters S, 70 (1960).

The vector parts of the nucleon form factors 6 may
be approximately expressed as "

G;v(X) = G;"(0)(1+nX), (2= 1, 2) With rr= 0.08.

Since the p contribution to the pion photoproduction is
is consistent with experimental data if P' satis6es23

—2.65&X'& 2.65,

we shall consider the limiting cases

~'=a2.65

to obtain an upper limit on the possible p contribution
to proton-proton bremsstrahlung.

We And that at the angle cos8~= —0.310 the 0 con-
tribution to do/dksdQv is almost negligible (less than
2%%u~) compared with the Born terms at any photon
energy for both choices of sign. Because of this smallness
and the ambiguity in the exp amplitude we do not
consider this effect any further.

"W. R. Frazer and J. R. Fulco, Phys. Rev. 117, 1609 (1960).


