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(MeV)

891
891b

0.55
0.22b (50 MeV)

0.4 0.14

(MeV)
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p~gg

0.16
0 12b (95 Me V)

0.75 0.02

' See footnote a, Table II.
b A. H. Rosenfeld et al. , Rev. Mod. Phys. 3'F, 633 (1965).

Collins and Teplitz. ' They used an input p with a width
of 0.43, which is about the same as was used in calcu-
lation A, but their output p trajectory did not quite
make it to 1=1, and no trajectory rose above l= j,.5.
Thus the effective force in the present calculation is
much stronger than in the E/D calculation, even though
the input forces are similar. It seems reasonable that

this is because the method used here does include con-
tributions to the force from higher terms in the Mandel-
stam iteration. If this conjecture be correct, then the
results presented here indicate that a calculation that
actually performs the iteration might be expected to be
very successful.
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The embedding of the algebra of the invariance group SU(e) for the e-dimensional harmonic oscillator
in larger algebras is considered. Among the four classical algebras of rank e, only est(e+I) and sp(2e) are
found possible for this purpose. Specific generators and their commutation relations are examined, and the
general Casimir operators are constructed. It is found that the whole spectrum of the harmonic oscillator
can be embedded in one representation of sg(e+I). Depending upon the value of a partition constant c, a
fmite portion of the spectrum can be embedded in the compact algebra se(e+1); the remainder is in the
noncompact se (e,1). In the case of eP (2e), only the noncompact sp (e,R) can include the se(e) of the har-
monic oscillator; moreover, the two useful representations of sp(e,R), which are true representations of the
universal covering group of Sp (e,R), contain either all the even or all the odd levels of the spectrum.

I. INTRODUCTION
' N the attempt to combine internal symmetries with
-- the Poincare group, it has been repeatedly pro-
posed' —' that noncompact groups (or algebras) be
used to describe not only the dynamical symmetries,
but also the internal symmetries of elementary particles.
The study of the problem has led to very beautiful and
mysterious results on the one hand, but, despite a large
freedom, to many difhculties on the other.
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In order to learn about the problem of embedding
groups (or algebras) into larger ones, it is useful to
examine completely soluble models provided by non-
relativistic classical and quantum-mechanical systems.
The Kepler problem (or quantum-mechanically the
hydrogen atom) and the harmonic oscillator are two
standard examples.

It was shown4 long ago that the Hamiltonian of the
Kepler problem is invariant under the SO(4) group,
which explains the "accidental" degeneracy of the
hydrogen atom. More recently, it has been conjectured
that this SO(4) group can be embedded in an SO(4, 1)
group, whose generators have been written down for
the classical case. ' This SO(4, 1) group does not com-

W. Pauli, Z. Physik 36, 336 (1926); V. Fock, ibid. 98, 145
(1935);V. Bargmann, ibid. 99, 576 (1936).

'H. Bacry, Nuovo Cimento 41A, 222 (1966); E. C. G. Sudar-
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mute with the Hamiltonian (and. in this sense is not a
true invariance group) but has the property that all
physically meaningful representations of the SO(4)
group are included. in one representation of this SO(4, 1)
gl oup.

It is also well known6 that the Hamiltonian of the
n-dimensional harmonic oscillator is invariant under
the SU(e) group, as we shall summarize in Sec. II. In
this paper we shall show that the algebra sN(e) of this
invariance group can be embedded in the algebras
su(v+1) or sg(e, 1) LSec. III7 and in the algebrasp(m, R)
(Sec. IV) for both the classical and quantum oscillators.

The physical relevance of the useful representation of
these algebras and their associated groups is discussed
in Sec. V. This again, in our opinion, provides a very
interesting and unifying description of energy levels,
and, as such. , may shed some light on the more general
group-embedding problem in particle physics.

IL U(n) INVARIANCE FOR THE HARMO1VIC
OSCILLATOR

The Hamiltonian H of the normalized (unit mass and
coupling constant) harmonic oscillator in e dimensions
lS

brackets by commutators for the operators q; and p;,

PS~ps) 4. (2.9)

Using the same definition (2.4) and (2.5) for a; and a,t,
one gets

n

H=Q a/a;+ —,
i=1 2

(2.10)

La;,a )=3;;. (2.11)

E"=sLa')ai )+ (2.12)

can be shown to satisfy the commutation relations

LE.jE s) B,sE j 3 jE,s (2.13)

These relations are also valid for the classical case when
the commutator is replaced by the bracket. In terms of
these generators H assumes the general form

H E, ——,fa—g, a, 7+. (2.14)

From the form of (2.'/) and (2.10) it is clear that the
Hamiltonian, in both the classical and quantum cases,
is invariant under unitary transformations in e dimen-
sions (U(e)). The generators

n

H=s E (p"+V'). (2.1)
III. UNITARY EMBEDDING

(BA BB BA BB
(A,B)= Z=„„,..., ., ) (2.3)

In the classical case the coordinates q; and the
momenta p; satisfy the Poisson bracket

(2.2)

with the definition

The generators E which satisfy the commutation
relations (2.13) form elements of the complex extensions

u(e) of the Lie algebra. Before going to the problem of
embedding this Lie algebra into a larger one, let us
recall the connection between the complex Lie algebra
N(m) and the many real forms associated. with it: u(k, l),
0+)=m. An unitary representation of the algebra u(k, i)
is found if one constructs a set of E satisfying the
commutation relations (2.13) and the generalized
Hermiticity conditions

As usual, it is convenient to dehne

a~= s (p~
—ig;)

a~'= s(p +is )

and to introduce the bracket

(2 4)

(2.5)

(E'')t = r) r) E ''

n'=+1 (i=1, , 0),
(i=k+1, , m).

(3.1)

Thus there are k plus signs and 1=m —k minus signs.
If k or / is zero, then we have

s pBA BB BA BB)
(A,a)=i&A,a&= P~ — — ~. (2.6)

&(Ba Ba=t Ba t Ba ]
One then obtains

H=P a;a,t, (2.7)

(2.8)

In the quantum case, one replaces the Poisson

s J. M. Jauch and E.L. Hill, Phys. Rev. 57, 641 (1940); G. A.
Baker, ibid. 103, 1119 (1956); N. Mukunda, L. O'Raifeartaigh,
and E. C. G. Sudarshan (to be published); A. O. Barut, Phys.
Rev. 139, 81433 (1965).

(E.r)t —E,i (3 2)

7 As is customary in the mathematical literature, we associate
capital letters with the groups and lower case letters for the
corresponding algebra. e use the notation g(n) to indicate the
complex extension of N(e), i.e., with the number of in6nitesimal
generators of N(e) kept Gxed, we allow for nonsingular linear
combinations of these generators with complex coefficients. Thus
these generators span a vector space on the complex Geld.

corresponding to the only compact form u(0, m) =N(m, 0)
=e(m) of the complex extended algebra ts(m).

Since for p and g Hermitian, the generators (2.12)
satisfy (3.2), the harmonic oscillator is, in fact, invariant
under the compact group U(e).

In order to embed this compact group into a larger
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Lie group, we 6rst require the embedding of the Lie
algebra into a larger Lie algebra. Depending on the
Hermiticity properties of the new generators which are
to be constructed, we shall be able to discuss the
compactness or noncompactness of the associated group.

Let us now state the rules of embedding which we
shall adopt:

(a) The larger Lie algebra is chosen to be finite and
simple.

(b) The generators are built out of the p, and q, ,
or a; and a,~.

(c) As an interesting step, only algebras of rank e
are considered /su(e) is of rank e—1j. (&f a simple
algebra of rank m, m&m+1, contains an algebra 2 of
rank n —1, it contains at least one algebra of rank. e
which contains A.)

In particular, we shall investigate the embedding
into the classical algebras Bu(m+1), Bo(2u+1), sp(2')
and so(2n). The five exceptional Lie algebras will not
be considered.

In this section we construct the generators corre-
sponding to su(m+1). Let us denote the new dimension
of the weight diagram by the index 0. The adjoint
representation (adj) of Bu(v+1) decomposes with
respect to su(N) according to

adj(su(v+1)) =adj(su(e))Q+mQ+nQ+1,

where m and n are the m-dimensional representations of
su(ii). The generators Es (n,P=O, ,n) of su(I+1)
(with the trace condition E "=0 which we shall impose
only later) decompose into E, Eo', EP, and Eo'
(i= i, ,u). They satisfy

tion n Li.e., satisfying (3.4a)g only by saturating the
indices j, k with a;~, aj,t, .Sincea; anda;~ commute
and since II=a,a;f, the most general form of the
function E is therefore

E,o= f(H)a, . (3 6)

Similarly, we have

Eo'=g(H)a;t,

Eo'=h(H).

(3.7)

(3 8)

Conditions (3.4d) —(3.4f) then lead to the equations

f(H)g(H) =h(H),

Bh (H)/BH =—1.
(3.9)

(3.10)

Letting c be the integration constant, we obtain

h= H+c—. (3.11)

In this classical case we deal with functions and
Poisson brackets. A discussion of the commutator
relations, the Hermiticity properties and of Eq. (3.9)
is postponed until after the quantum case.

B. Quantum Case

Despite the fact that a; and a;~ do not commute in
the quantum case, the most general form of the
operators E;0, Eo', and Eo' is still given by (3.6), (3.7),
and (3.8). These operators satisfy (3.4a, b, c).

The following identities can be established for any
function l (H):

fE &,E,'j=b 'E,s—b,&E,',
or, more explicitely, (2.13) and

(3.3) a,l(H) = l (H+1)a;,

a V(H) =l(H —1)a;t.

(3.12)

(3.13)

LE.4 E 0] g iE.O

)E.iE kj gkE i

fE'' Eo'g= LEp' Eioj= pEO~ Eo'7=0,

PE 0 E.oj—E,O

O' Eo'g= —Eo

)EI,' Eo') = oI,'Eo' EI,'. —

(3.4a)

(3.4b)

(3.4c)

(3.4d)

(3.4e)

(3.4f)

Let us now consider separately the classical and
quantum version of this problem.

Using these and the general form of the E's, Eqs.
(3.4d), (3.4e), and (3.4f) can be transformed into

h(H+1) —h(H) =h(H) —h(H —1)=—1, (3.14)

2h(H) =f(H)g(H+1)+g(H) f(H 1), (3.15)—
—1=f(H)g(H+1) —g(H) f(H —1) . (3.16)

Because of the discreteness properties of the eigenvalues
(which we shall discuss later), the solution of the
difference equation (3.14) can always be written, with-
out loss of any physical content, as

A. Classical Case
h(H) = —H+c. (3.17)

The generators must satisfy the algebraic relations
(3.3) and (3.4), where the commutators should be
replaced by brackets. It is clear that the a; and a;t
span the spaces of the representations e and n, respec-
tively. A symmetrical combination of the a, 's, (E') =goEp' (3.18)

Since the generators of su(e) for the harmonic
oscillator satisfy (3.2), g; (i = 1, , n) may be taken to
be +1; the Hermiticity condition (3.1) is therefore
reduced to

A»7c. ..= G&C&CP (3 3) This implies the relation

can be reduced to a tensor transforming as a representa- ft(H) =gog(H+1). (3.19)
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h(H) =rtpg(H)g'(H) ,'=——H—+c. (3.21)

Since fft or ggt is Hermitian positive, (3.20) and (3.21)
yield the result

$0—1 e H& c s, —compact tt(rt+1), (3.22)

rtp= —1: H &c+~p noncompact te(tt, 1), (3.23)

where the inequalities mean that we take into account
only the irreducible unitary representations for which
all the eigenvalues of H are either &c——,

' or &c+-,'.
We note that we are dealing with the nonsimple

algebra N(I+1), since the trace condition E =0 has
not been imposed. From (2.14) and (3.17), we see that
E =c. Thus the simplest way to obtain BN(rt+1)
from st(rt+1) is to require that c=0. However, this
turns out to conflict with the required value of c when we

later consider the Casimir operator of the larger groups
SU(tt, i) and SU(n+1) The .proper way to obtain the
groups SU(tt+1) or SU(e, 1) is therefore to consider a
new set of traceless generators Dtt, defined by (A4)
in Appendix A. Because Dp" satisfies the same algebra
as Ett, the results contained in (3.22) and (3.23)
remain valid for the simple algebra BN(rt+1), and c
takes on a denumerable set of values. The group SU (n, 1)
is not its own universal covering group' whose algebra
however is sic(n, ,1).If one does not restrict the represen-
tation of sit(0, 1) to be true representations of SU(rt, 1)
and thus allow them to be true representations of the
universal covering group of SU (tt, 1), then the parameter
c may assume a continuous set of values which includes
c=0. A physical interpretation of these results will be
given in Sec. V.

IV. SYMPLECTIC EMBEDDING

In this section we consider the embedding of the
algebra tt(tt) of the harmonic oscillator into the sym-
pletic algebra Bp(2N). The adjoint representation of
Bp(2tt) decomposes with respect to N(N) according to

adj(Bp(2tt)) =adj(tt(n))Q+rt(n+1)/2Q+tt(it+1)/2, (4.1)

where rt(tt+1)/2 is the [n(rt+1)/2$-dimensional rep-
resentation of tt(rt) obtained by symmetrizing the
product of two fundamental m-dimensional representa-

tions. [rt(it+1)/2 is the representation conjugate to
rt(m+1)/21. Let us again denote the new dimension in
the weight diagram by the index 0. The generators of
the Bp(2e) algebra thus decompose into E, Egp, and
Eo'& where E; and Eo'& are symmetrical in i and j.
The trace E,' can be identiGed with Eo' the new diagonal

0 S. Helgason, DiIIererlteal Geometry oed Symmetric Spaces
(Academic Press Inc. , New York, 1962).'I.. C. Biedenharn, J. Nuyts, and N. Straumann, Ann. Inst.
Henri Poincarh IH A, 13 (1965).

Inserting this back into (3.15), one obtains

h(H) =rtpf(H)ft(H)+ ', = -Il+—c, (3.20)

operator since the symplectic transformations in 2e
dimensions always have" det+1.

The commutation relations are (2.13) and

[E.' E P$= &k'E—i' &l'E—k'

[E.i E klf BkE il+B lE .ik

(4 2a)

(4.2b)

[Eo",Eo "3=[E»' E-'1=0 (4.2c)

0j B E l+B E k+3 kE l+g lE k (4 2d)

There is a freedom in the choice of the over-all sign of
the right-hand side of (4.2d). The particular sign chosen

is convenient, as will become apparent later. It follows

from (4.2) and the identification Epp=E that

[Eo',Eki'&= —2Ekt',

[E 0 E klj—2E kl
(43)

The generalized Hermiticity conditions can be
written as

(Eki')'= ltprtkrt tEo"'. (4.4)

(Ektp)'= rtpEoki, (4 5)

where qp ——+1 corresponds to the compact case sp(2rt)
and rip= —1 to the noncompact form sp(e, n). In the
literature this noncompact form is sometimes also
referred to as sp(N, R). A different choice of sign for
(4.2d) would result in the opposite correspondence.

Let us again discuss the classical and quantum cases
separately.

A. Classical Case

The most general form of the operators E;;0 and Eo'&'

is quite evidently

E;lp=r(H)a;a;,
Epi&'= s(H) a;ta;t.

(4.6)

They satisfy (4.2a, b, c), where the commutators are
replaced by brackets. In the same way (4.2d) reduces to

r(H)s(H) = —1.

B. Quantum Case

(4.7)

The same general form (4.6) also satisfies (4.2a, b, c).
Equation (4.2d) reduces to

r(H)s(H+2) =s(H)r(H —2) =—1,
quite similar to (4.7).

We remark that Ep' —E =H, in fact, satisfies (—4.3)
in both the classical and. quantum cases. In view of the
hermiticity condition (4.5) we see that (4.7) and (4.8)

H. Weyl, The Classical Groups (Princeton University Press,
Princeton, Net Jersey, 1946), p. 166.

As we have shown that only the compact N(tt) underlies.

the harmonic oscillator (3.2) (i.e., lt;=+1), we are
simply left with the two possibilities
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V. DISCUSSION AND CONCLUSION

Before discussing brieRy the interpretation of the
results obtained in the preceding two sections, we

note that there are two other series of classical algebras
Bo(2n) and Bo(2n+1) which contain the algebra of
su(n). However, this embedding is not possible for the
harmonic oscillator for m&3. This can be seen quite
simply by noting that both algebras Bo(2n) and
Bo(2n+1) require the existence of operators E„which
are antisymmetrical in i and j, but which cannot be
built out of the commuting a; and a;. For n=3, su(3)
can be embedded in Bo(6), which is isomorphic to Bu(4),
because E;; can be defined as c;,i,Ep, but not in Bo(7). For
n=2, su(2) can be embedded in Bo(5) isomorphic to
Bp(4), while the embedding of su(2) into Bo(4) cannot
be achieved.

To discuss the representations of the larger Lie
algebra, one evidently must And the explicit values of
the Casimir operators Lof Bu(n+1) and Bp(2n) in the
present problem(. lt is necessary also to decompose the
representations corresponding to these values with

respect to the maximal compact subalgebra u(n). For
Bu(n+1) the generators of the maximal compact
subalgebra can conveniently be chosen to be composed
of the algebra of su(n),

(5.1)

and of a generalized "hypercharge"

1
F= — (E nEO')—-—

S

=H —nc/(n+1) . (5 2)

For BP(2n) the maximal compact subalgebra is com-

posed of (5.1) and Eo =H.
The ground-state energy of the harmonic oscillator

can be obtained from group-theoretic considerations.
In Appendix A we have constructed the Casimir
operators of the algebra Bu(q). Applying the special

properties of the harmonic oscillator, specified by the
relations (2.11)—(2.14), to the results obtained there,
we get

lead, in both cases, to the same condition

rjpr(H)rt (H) = —1, (4 9)

which can be satisfied only with go= —1.This embed-

ding thus allows only for the noncompact form sp(n, n)
The representations we have constructed and which
we shall discuss in Sec. V are, however, not true
representations of the group Sp(n, n) but of its universal
covering group.

where
x= (1—2/n)H,

y= ((n,—1)/n')(H2 —-'n')

(5 5)

(5.6)

whose solution is

g~i=y4
4~i= x4~+y4m i &—

(5.8)

(5 9)

P (xy)=P C 'x"—"y' (5.10)

where C = (rn —i)!/Li!(m —2i)!j and the upper
limit of the summation is rn/2 or (I—1)/2 according
as m is even or odd. Thus the mth-order Casimir
operator B of su(n) describing the harmonic oscillator is

B„="I=nyQ (5 11)

Since the eigenvalues of the second-order Casimir
operator of a compact algebra is positive, we have
82&0. In the case of the trivial representation, all 8
vanish, which is possible in the present problem only if

y equals zero, which being the lowest possible value for
B2 is, according to (5.6), the lowest possible value for
IP. This implies that H' =n'/4; the positive definiteness
of H then selects the solution H =n/2. This is therefore
the energy of the ground state (as it should); this
state is invariant under the transformation of the group
su(n), (5.1).

If one applies on a state of definite energy the
generalized raising and lowering operators E, Eo', E;,
Eo'&, one obtains states separated by one unit in the case
of Bu(n+1) and by two units in the case of Bp(2n).
This is quite evident by inspection of the commutation
relations (3.4d, e) and (4.3).

To learn further about the representations of the
algebras Bu(n+1) or Bp(2n) which describe the harmonic

oscillator, we must first determine the Casimir operators
for these larger algebras and then evaluate them for
the present problem. In Appendix A the Casimir

operators in question have been constructed.
The evaluation of them for Bu(n+1) follows the same

procedure as we have developed earlier in this section
for su(p). Equations (5.7)—(5.10) remain valid; we

need only replace i, j by u, P, where a, P=0, 1, , n

The values of x and y are, however, altered. Writing

where
'Ip =xDp +yBp,

Dp" Ep"—(1/n+1) Ep8p, ——

(5.12)

(5.13)

we obtain, after using various appropriate relations in

Secs. II and III,

Defining
m+iI 'P (. xy)D ~+/ (xy)8' (5.7)

and substituting this into the recursion formula (A5),
we obtain

'I' —D' z ~ —1 ~ ~ sz

'I'= xD '+y8 '
(5 3)

(5 4)

x= c(n—1)/(n+1),
y= n(c/(n+1))' ——,'n. (5.14)
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The Casimir operator 8 for su(n+1) is then

8 = I =(n+1)yg 2, (5.15)

where p is defined in (5.10). Since $0= 1, we see that

B„=Egg (5.16)

For the symplectic algebra sp(n, n), the independent
Casimir operators are of even order

Q2 —(2u)g, s (5.17)

s= —(n+-', )/2.

Thus we have, by generalization, that

(5.19)

(5.20)

where the operators E are de6ned recursively in
(A9)-(A12). By direct substitution of (A9) into (A10),
one obtains, with the help of the results in Sec. IV, that

(5 18)
where

are embedded in one representation of the sl(n, 1)
algebra corresponding to the SU(n, i) group. In this
case, since no compact part is allowed, a new freedom
arises. The noncompact SU(n, i) group is not its own
universal covering group. In analogy with the SU(2, 1)
problem discussed in Appendix 8, the parameter v

may assume, continuously, any value (1.
For the algebra of sp(n, n) there exists no analogous c

parameter. The representation to &which the spectrum
of the harmonic oscillator corresponds is not a true
representation of the group Sp(n, n) but rather a
representation of the universal covering group of
Sp(n, n). This can be exemplified by the following
remark: in Sp(n, n) an SU(n) singlet, or more generally,
an SU(n) Young diagram of zero boxes modulo n, has
a I' value of integral multiple of m whereas for the
harmonic oscillator the SU(n) singlet ground states
has V=H=n/2. The spectrum has either the form

(5.27)
and ol

&2m= nI:—(n+2)/21" (5.21)
H=-', n+2P+1, (5.28)

In Appendix 8 we have analyzed in detail the problem
for the two-dimensional harmonic oscillators, based on
the results of Ref. 9 for the group SU(2, 1). For c&-'„
the states can be described completely by one represen-
tation of sl(2, 1). For c&-'„ the states corresponding to

(5.22)

are embedded into one representation of the compact
form sg(3), while the states corresponding to

(5.23)

belong to one representation of the noncompact su(2, 1).

Conclusion

Without going into the details of the calculations
whose premises have been given in (5.16) and (5.21),
let us simply state the results for the embedding of the
m-dimensional harmonic oscillator.

In the case of M(n+1), the spectrum can be embed-
ded into the two forms su(n, i) and su(n+1), the
partition being dependent upon the integration constant
c. Conveniently, c can be written as

c=-', (n —1)+i, (5.24)

wbere P is a positive integer. All these states of (5.27)
or (5.28) are contained in only one representation of
sp(n, n), whose Casimir operators are given by (5.21).
Thus, although the algebra su(n) can be embedded. in
sp(n, n), only every other state of the harmonic oscillator
is included in tbe relevant representation of sp(n, n).

For any value of H (H=-', n+n, n positive integer) the
degenerative states form the representation of su(n)
corresponding to a one-row Young diagram of 0. boxes.
These representations are completely symmetric and
form the generalized triangular weight diagram in
e—1 dimensions.

In conclusion, we see that the embedding of the
harmonic oscillator into a noninvariance group offers a
very interesting way of analyzing a "badly broken
symmetry, " provided that the breaking term (here the
energy) has reasonably simple transformation proper-
ties. In this light we may perhaps hope that the many
propositions to frame the elementary particle spectrum
in badly broken symmetries based on compact or even
noncompact groups may be more reasonably founded
and more interesting than one might imagine from a
pri on considerations.

H&-', n+i (5.26)

are embedded in one representation of the group
SU(n, i). For i &1, all the states, starting with H= ~in,

where i is an integer for allowed representations of the
group SU(n, 1) or SU(n+1). For v) 1, there are v states
in the interval

—',n&H&-', n+v —1

which can be embedded in one unitary representation
of su(n+1). States with
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APPENDIX A: CASIMIR OPERATORS FOR
u(q), su(q), AND sp(2q) ALGEBRAS

In terms of the generators Es (n, P=1, ~ ~ ., q) given
in Sec. II which satisfy the commutation relations

$g&a g&vj fi&vg&a g&a~&v (Ai)
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Iet us introduce the following recursion formula

OJa ga
1Jaga (A2)

-+i~ .=,P-~,-&,,+-J,»;+E; -~,r+~ ~ -~ -]
The g Casimir operators of si(g) can be shown to be

They satisfy the commutation relations

(mE' ig. e]—8.e mls i 8 i mls, e

Lmlt .. g s] $.s m+ .+$.s mg .

Lmlt ig. ] 8 i m~. 8 i mlt.
(A13)

fmltaj g ]—( 1)m+18 i mg j+( 1)m+18 i mE i
+8 e' mls a+8 e' m~ i

mJ a

I'or the algebra of 8N(q) whose generators are

(A3) L"E;;,E„]=0.
It is easy to see that the Casimir operator of an even
order is

1
D 0. +~a $ ag y

g

(A4) C,„=(2)r . (A14)

one defines, in an analogous fashion,

OI a —$n
P P )

11 a Do:
P P (A5)

m+11 aa —&fml aD r+ mJ rD a+D ae ml r+Dp mI a]

and obtains for the (g—1) Casimir operators

(A6)

Ke remark that the Dp" and Ep satisfy exactly the
same commutation relations (A1). Moreover, Dsn has
the property

Bg——D =0. (A"/)

The generators E,'', E;ee Es'e (i, j 1, =~, P) of
the symplectic algebra 8p(2P) defined in Sec. IV satisfy
the commutation relations

The Casimir operators of odd orders are linearly
dependent on the ones of even and lower orders.

APPENDIX B: UNITARY EMBEDDING FOR
THE TWO-DIMENSIONAL HARMONIC

OSCILLATOR

In this Appendix we treat in detail the embedding of
the algebra su(2) for the 2-dimensional harmonic
oscillator in the algebra 8N(3), and discuss the different
useful representations of the larger algebra. For this
purpose, the work of Ref. 9 on the unitary representa-
tions of su(2, 1) will be referred to extensively. Let us
record here, in the notations of this paper, some of the
fundamental formulas.

The discrete set of representations of 8N(3) is char-
acterized by the set of three integer numbers d&, d2,

L+ ig k] 8.k.g i 8 ig j'g

L&' &kl']= 8k'&gl &l'&—k— '

iP kl] —8 k. pl~+8 loki. .

(Eke',E,es]=0,
Lg kl +.,0] 8.k+.L+8 i+k+8,kg l+.8.lgfg, .

(A8)

Let us construct the following quantities which satisfy
recursion formulas: /2

OE'.i $.i
7

1g .i g.i )

'Eg=0,
'E,;=Ego,

(A9)

(m 1+)+. a r(mr' i+ l+ mlcilIa . .0++ i mg l.
+Q ii mQ. + nels lE i+ mr' Qli'. .

+Q inane i++.. 0 m+ii] (A10)

(m+1)lt . .—1Lnag l+ .0 na+.@.l++.i mls,

+( 1)m+, 0 m+ l+( 1)mme. i+ . .

+mls .g.l Q l mls. ++.0 j ml]t

&2u)~,,— (2s )~,i

(2m+&)E, = (2@+&)+.,
(A12)

Fzo. 1. Unitary representation of sg(3) for the case n& 1 integer,
here v=7: d1= —v+1= —6, d2= —v —2= —9, dq=2v+1=15.
Open circles correspond to degenerate states of the spectrum
of the harmonic oscillator. Between B and C the states are in
the compact sg(3); above A the states are in the noncompact
su(2, 1).The construction of this plot is explained in Ref. 9.
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and d3, related by

dy= d2= da =0 (mod 1),
(mod 3),

~1+~2+d3= 0 ~

The quadratic and cubic Casimir operators are

(81)

(82)

(83)

particular representation of 88(3), characterized by the
values of 82 and Ba as determined according to (86)
and. (87). From the corresponding values of the d s

such a representation can be exhibited pictorially in a
(3I, 3V/2) plot, as shown in Figs. 1 and 2, where I
and F' are defined by (cf. (5.6) and (5.11))

82= —2L(dgdg+dpda+dgd3)/9+1j ) (84)

83=dgd2d3/9. (85)
From the considerations of Sec. V, these Casimir
operators for the 2-dimensional harmonic oscillator can
also be found to be

82 ——2 (c'—9/4)/3,

&3=2c(c'—9/4)/9.

(86)

(8/)

Comparing the two forms, we have the general corre-
spondence

dr= —C+ g,

+2= C
3
2 &

(88)

(89)
d3= 2G.

(811)
where v is an integer.

Given a value of v, and therefore of c, we have a

(810)

It is clear then that c must be half-integral; let us write
it as

F=-'(Z' —2Eo') ~

In the case of the harmonic oscillator, (813) implies

H= F+2c/3= F+(2.+1)/3. (814)

The open circles in these figures stand for the degenerate
states of the harmonic oscillators, the full spectrum of
which is thus seen embedded in one representation of
sg(3). Figures 1 and 2 correspond to the two cases
v&1 and ~&0, respectively.

v&1

In this case, we have dg) dq) d2. The po int A (I= ~/2,
H = v+1) corresponds to the lowest states (of multiplic-
ity 3m+1) of the spectrum belonging to an unitary
representation of the noncompact algebra su(2, 1).
The points 8 (I=(v—1)/2, H=v) and C (I=O, H=1)
are the extreme states of a triangular representation of
the compact sg(3). The fact that the lowest v states
are embedded in the compact form of M(3) is in agree-
rnent with our earlier result (3.22), (3.23). The rep-
resentations characterized by the extreme points D
(dark dots) and E (cross-hatched) clearly are not
suitable for our problem because they involve always
states of negative energy. (These representations
extend infinitely to the left.) The point F correspond. s
to I=O, H=2v+1&1, which is incompatible with

(812);hence, the representations (cross-hatched region)
characterized by it as an extreme point are also not
suitable.

!2

FIG. 2. Unitary representation of an(3) for the case v(1, here
~= —8: d1= —v+1=9, d.„=—u —2=6, d3=2s+1= —15. Open
circles correspond to degenerate states of the spectrum of the
harmonic oscillator; they are all in the noncompact sg(2 1).
The construction of this plot is explained in Ref. 9.

In this case we have d~&d2&d3 except when v=0 in
which case d~ ——ds&d~. Figure 2 shows that only the
noncompact representation is allowed with its spectrum
starting from the ground state at the point A (I=O,
H= 1).This is again in agreement with (3.22), (3.23).

As has been discussed in the Appendix of Ref. 9,
the group SU(2, 1) and quite generally all of the
groups SU(p, q), p, q)0 are not their own universal
covering group. In order to obtain the representations
of the universal covering group which are projective
(up to phase) representations of SU(2, 1), one has

simply to relax, in some definite way, the requirement
that d&, d~, d~ be integers. In the present case, the
harmonic oscillator can be described only by a figure
similar to Fig. 2 provided that v be any real number less
than one. The open circle with lowest value of V
corresponds to II= 1 for any value of c compatible with
v&1. (See point A of Fig. 2.)


