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A method suggested by Balazs is used to calculate the ~x and 7' amplitudes in the resonance region. An
input force corresponding to vector-meson exchange reproduces the vector mesons, and also produces 2+
mesons at roughly the masses of the f'(1250), f"(1500),and E**(1405).Inclusion of an estimate of Pomeran-
chuk exchange in the input improves the output slightly. Regge trajectories and residues are computed, and
their intercepts agree approximately with estimates based on high-energy experiments.

I. INTRODUCTION

ECENTLV Balazs has proposed a method for
constructing, from a given absorptive part in the

crossed channel, a Schrodinger-equation potential that
will reproduce the relativistic amplitude for scattering
of spinless particles. ' In this paper I present the results
of some calculations of (srtr) and (trK) scattering, using
an approximation to this Balazs method; these calcu-
lations reproduce many generally accepted features of
resonance-energy (ver) and (7rE) scattering.

The Schrodinger-equation potential in this method is
local but energy-dependent. Writing it as

V(r, qs)= dtv(t, q')e " '/r,
2&p gp

where q is the magnitude of the momentum in the
center-of-mass system of the s channel and p, is the
reduced mass, Balazs proposed an iterative method for
constructing v(t, q') from the supposedly known absorp-
tive part A ~, the details of this construction are in Ref.
1. The scattering amplitude calculated from this
Schrodinger equation would then be identical with the
relativistic amplitude of which At was the absorptive
part. In a problem with exchange potentials, this
procedure is to be used for amplitudes of definite J
parity. For the Balazs method to be exact mould
require that (a) the amplitude obey elastic unitarity at
the energy in question, (b) v(t, q') ~ 0 as t +co, and-
(c) 2 t be known exactly.

The practical application of this derivation is to
justify an approximation scheme, in which the lowest
approximation consists of setting

v(t, q') =2s 't'At (t,s),
where 2 P is the Born approximation' to A t, and s is the
square of the energy in the center-of-mass system. The
scattering amplitude calculated from the Schrodinger
equation will be unitary, and in this sense this approxi-
mation is similar to the E/D approach. It differs from

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.' L. A. P. Balazs, Phys. Rev. 137, B1510 (1965).

~ That is, A ~ represents the contribution of a few elastic partial
waves in the t channel, which in the strip approximation (see
Ref. 5) is the Born approximation to A~.

the X/D approach in several interesting features: First,
if 2 &~ is constructed from elementary-particle exchange,
there is no high-energy cutoG, even if the exchanged
particles have spin. ' And second, although the usual
X/D calculation takes the Born approximation to the
left-hand cut, solving the Schrodinger equation means
in eBect doing the entire Mandelstam iteration. 4 Thus
in the Ba1azs approximation, contributions from all
orders of this iteration are considered, even though none
but the first has relativistic s dependence.

In Sec. II, I describe the potentials that I have used,
and in Sec. III present the results obtained.

II. CONSTRUCTION OF POTENTIALS

A. First (stet) Potential

My first calculation of (srv.) scattering is an extension
of an example given by Balazs. ' He considered the force
due to exchange of an elementary p, and obtained, in
the small-width approximation,

2 P (t,s) =4srPzi(2t+1)Pt(st)I';„qzr'h(t —ms) (1)

where P is the isotopic spin-crossing matrix, t=1 the
spin and m the mass of the exchanged p, qg'= &m' —m ',
and F;„ is the input reduced width. The potential
corresponding to (1) is

V(r,q') = 24Pz&I'; s '—t'(s+2qzt')r 'e ~'. (2)

Balazs looked for the p resonance in the /= 1 amplitude
obtained from (2), and found an approximately self-
consistent solution with m=4. 2 m and I'=0.47 (a p of
mass 750 MeV and width 100 MeV has m=5.3 m and
I'= 0.17).

However, it turns out that approximate self-con-
sistency is not su%.cient to determine the value of these
parameters, as within 10% there are many self-con-
sistent solutions. In what is referred to below as calcu-
lation A, I use the potential given by (2), with the input
p mass fixed at 750 MeV. I then adjust the input width
to obtain the output p mass at the same energy; this
solution is also self-consistent, and has I'=0.46 (cor-

3 If the external particles have spin, a cuto6 may be necessary.
See L. A. P. Baldzs, Phys. Rev. 159, 31646 (1965), where he
discusses the possible application of this method to (7rN) scat-
tering.

4 R. Blankenbecler, M. L. Goldberger, N. N. Khuri, and S. B.
Trieman, Ann. Phys. (¹Y.) 10, 62 (1960).
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responding to a width of 270 MeV). This calculation
has no cutoff and no strip width; with F; determined,
there are no other free parameters, and the entire
(low-energy) (s-s.) amplitude in all three isotopic-spin
states can be calculated.

B. Second (cree) Potential

The results of calculation A, which are described in
Sec. III, resembled experimental results suKciently to
encourage me to try to improve the potential by in-

cluding some estimate of the contribution due to the
exchange of the Pomeranchuk trajectory.
): Chew' has discussed the generalized potential arising
from exchange of a Regge trajectory in the t channel,
where the generalized potential V'(t, s) is

He writes V' as a sum of partial waves in the t channel
(even partial waves for trajectories of positive signa-

ture) and argues that only the lowest need be kept. He
gives approximate expressions for the two lowest terms
of the Pomeranchuk potential: The J=2 part looks
like the exchange of an elementary fs multiplied by a
"form factor" in t; the J=O part, even though it has no
associated particle, is more important, and is repulsive.
The exact value of the J=O part depends on a strip
parameter, which I have set equal to 200 m '.

I cannot make direct use of Chew's estimates, since
they are intended for only small values of I, and hence
do not accurately define A&~ where I need it; instead,
for each of these two partial waves I have replaced A ~~

by a de1ta function, chosen so that the V' calculated
from Eq. (3) has the same value and derivative at t =0
as do Chew's estimates. It then turns out that the J=2
term is almost completely negligible; the J=O term is
substantially smaller, but has a slightly larger range,
than the p potential used in calculation A. The com-

plete potential is the sum of the p and the Pomeranchuk
potentials'.

where, in units in which m '= j.,

V/'(r, g') = —24Prti'; s-'/'(s+12) e—"'r
V P(y gs) +lgQP s 1/2e s ol'y t,

Vq P(r q') = —Pres '/s(12+0. 94s+0.013s')e ""r '. (4)

I again adjust I'; to get the output p mass at 750 MeV,
and Qnd F; =0.56. The results obtained from the
potential given by (4) I call calculation B.

' G. F. Chew, Progr. Theoret. Phys. (Kyoto) Suppl. , extra
number, 118 (1965); Phys. Rev. 140, 81427 (1965).' P. D. 3, Collins {private communication) assures me that the
eGect of a Reggeized p potential is about the same as that of the
elementary p potential which is used here.

Surely the expressions given in (4) have at best a
tenuous connection with the correct Pomeranchuk
potential, whatever that may be. However, if we accept
Chew's arguments, these expressions should be reason-
able qualitative estimates, and since they appear as
fairly small corrections to the much better established

p potential, might be expected to improve the results of
calculation A. As shown in Sec. III, this apparently is
the case.

(y ~2) Vp(y ~2)+ ( I)/VK. ( ~y2)

V (r g') = 32I';—'s '"(s+—0 5)s "."r—
V' *(r gs) — gP, ~~—r/2(~+12)s —s.st—1 (5)

Here F;„', the reduced E* width, is determined by
requiring the output mass of the K* to be 891 MeV;
this requirement gives F;„'=0.57, corresponding to a
width of 133 MeV.

Having constructed the potentials for the three calcu-
lations, I solved the Schrodinger equation numerically,
to find the scattering amplitude and the Regge param-
eters at physical values of q'. The computations were
done on an IBM 7094 cumputer, in part with a program
written by Burke and Tate. '

III. RESULTS

In both calculations A and B, for I=0 there are two
Regge trajectories above 1=0 at threshold; these I
identify with the I' and I" trajectories, and the as-
sociated particles at l=2 with the f'(1250) and the
f"(1500).' For I=1 there is one such trajectory, which
I identify with the p, for I=2 the force is repulsive. The
real parts of the trajectories continue to rise as the
energy is increased, at least until s=400 m ', and in
fact do eventually go through higher physical values of
/. However, one of the assumptions of the Balazs method
is that the amplitude is elastic at the energy in question,
and so it must lose its validity as the energy approaches
the strip width. As none of these "recurrences" occurs
below s=300 m ', they could be considered spurious.

~ P. G. Burke and C. Tate, Fortran Program TRKGGE, Lawrence
Radiation Laboratory Report No. UCRL-10384, 1962 (un-
published).

s V. E. Barnes et al., Phys. Rev. Letters lS, 322 (19651.

C. (erX) Potential

The last calculation, which I call calculation C, is of
the (s.E) scattering amplitude. I have not attempted
here to put in the Pomeranchuk potential, but consider
only vector-meson exchange, in analogy with calcula-
tion A. There are now two exchange forces, p exchange
in the t channel and Ee(891) exchange in the tt channel.
'@4th the assumption that the couplings p, and pp+p
are related to pz*z as predicted by SU3, and with the
physical values for the input masses used, the potential
appropriate for l= ~ and angular momentum / is given
by
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TAnrz I. Results for the (m.s.) amplitude. The force input to calculation A is p exchange,
and to calculation B is p exchange and Pomeranchuk exchange.

Calculation A
Calculation B
Experiment

Pmass

(MeV)

750
750
750'

0.50
0.29
0.17 (100 MeV)'

f mass

(MeV)

1070
920

1250b

0.50
0.35
0.25 (100 MeV)'

Pl

(MeV)

1900
1435
1500o

I o'

0.55
0.95

Ambiguities in the experimental values are not important to this paper; these numbers for the p come from C. A18 et a/. , Phys. Rev. Letters 9, 322
(1962).

b W. Selove et al. , Phys. Rev. Letters 9, 272 (1962).
&See Ref. 7.

and have units of (GeV)' ".
A calculation of s-wave scattering by this method is

less reliable than a calculation of higher partial waves,
for the usual reason that the s wave depends more
strongly on the shorter-range parts of the potential;
but it might be interesting anyway. The results of this
calculation are the strange-looking phase shifts shown
in Fig. 1; the fact that these phase shifts wander
through 90' has no significance. A large but not neces-
sarily resonant s-wave amplitude near the p mass has
been previously suspected from the asymmetry in po

decay. The s-wave scattering length is —0.08 m ' in
calculation A and —0.18m ' in calculation 8; the
negative sign would be expected from the existence of
trajectories above 1=0 at threshold, even though the
forces are attractive. "

Because of the factor s '" in the de6nition of the
potential, the Balazs approximation must break down
near s=0. Nevertheless it would be interesting to be
able to compute the values of the Regge parameters at

TABS,z II. Values of the Regge parameters
of the (ss) amplitude at s=0.

CLPrPp ~P "/P

Calculation A 0.7 b 1.3 b 0.7 b
Calculation B 0.45 0.05 1.3 0.0036 0.65 0.09
other estimates 0.54' 0.026~ 1.00 p.pp6d 0.500 0.065~

y is defined by y =P/q2~, where q is in units of mar.
b I was unable to make a reliable extrapolation from the physical region.' R. J. N. Phillips and W. Rarita, Phys. Rev. 139, 81336 (1965).
& These values come from an analysis of high-energy ~N, KN, and NN

scattering, and use of the factorization theorem; see R. J. N. Phillips and
W. Rarita, Phys. Rev. Letters 14, 502 (1965), and the Appendix to Heinz
J. Rothe, Phys. Rev. 140, 81421 (1965).

The width of the E* in calculation C is very nearly
equal to the input width, which is about 2.5 times the
experimental value. There is one other (~K) trajectory,
with the quantum numbers of the K**(1405). The
results for these two trajectories are presented in Table
III. For the I= s (sr') amplitude the force is repulsive.

As can be seen from the tables, the general features
of the experimental situation are reproduced quite well.
Some of the closer agreements with experiment may
well be fortuitous, but the over-all pattern, especially
the appearance of the 2+ mesons, could not be. The
most glaring discrepancy of my results with experi-
mental results is the fact that the input and output
particle widths are too large, but this seems to be a
common feature of most dynamical calculations. "The
results of calculation B seem somewhat better than
those of calculation A, although most of the diGerences
are small. The output p width is improved substantially,
destroying the consistency between input and output.

It is interesting to compare the above calculations,
especially calculation A, with the N/D calculation of
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The masses and the reduced widths of the three output this point, for then they could be compared with the
resonances are listed in Table I; the output reduced values obtained from experiments at high energy in the
widths are computed by crossed channel. The procedure I have adopted is to

calculate the Regge parameters n and in'—= in(P/q'I)
gs (dB above threshold, and attempt a straight-line extrapola-

8 sr+re, ds tion to s=0. In most cases this extrapolation seemed
possible, and the results for the (srs.) amplitude are
given in Table II.

' M. M. Islam and R. Pinon, Phys. Rev. Letters 12, 310 (1964).
's See G. F. Chew, Phys. Rev. Letters 16, 60 (1966).

»For example, F. Zachariasen, Phys. Rev. Letters 7, 112
(1961);J. R. Fulco, G. L. Shaw, and D. Y. Kong, Phys. Rev.
137, 81242 (1965).
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Tant.z IIL Results for the (7rE) amplitude.

Calculation C
Experiment

E+mals

(MeV)

891
891b

0.55
0.22b (50 MeV)

0.4 0.14

(MeV)

1265
1405b

p~gg

0.16
0 12b (95 Me V)

0.75 0.02

' See footnote a, Table II.
b A. H. Rosenfeld et al. , Rev. Mod. Phys. 3'F, 633 (1965).

Collins and Teplitz. ' They used an input p with a width
of 0.43, which is about the same as was used in calcu-
lation A, but their output p trajectory did not quite
make it to 1=1, and no trajectory rose above l= j,.5.
Thus the effective force in the present calculation is
much stronger than in the E/D calculation, even though
the input forces are similar. It seems reasonable that

this is because the method used here does include con-
tributions to the force from higher terms in the Mandel-
stam iteration. If this conjecture be correct, then the
results presented here indicate that a calculation that
actually performs the iteration might be expected to be
very successful.
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Grouy Embedding for the Harmonic Oscillator
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The embedding of the algebra of the invariance group SU(e) for the e-dimensional harmonic oscillator
in larger algebras is considered. Among the four classical algebras of rank e, only est(e+I) and sp(2e) are
found possible for this purpose. Specific generators and their commutation relations are examined, and the
general Casimir operators are constructed. It is found that the whole spectrum of the harmonic oscillator
can be embedded in one representation of sg(e+I). Depending upon the value of a partition constant c, a
fmite portion of the spectrum can be embedded in the compact algebra se(e+1); the remainder is in the
noncompact se (e,1). In the case of eP (2e), only the noncompact sp (e,R) can include the se(e) of the har-
monic oscillator; moreover, the two useful representations of sp(e,R), which are true representations of the
universal covering group of Sp (e,R), contain either all the even or all the odd levels of the spectrum.

I. INTRODUCTION
' N the attempt to combine internal symmetries with
-- the Poincare group, it has been repeatedly pro-
posed' —' that noncompact groups (or algebras) be
used to describe not only the dynamical symmetries,
but also the internal symmetries of elementary particles.
The study of the problem has led to very beautiful and
mysterious results on the one hand, but, despite a large
freedom, to many difhculties on the other.

*%'ork supported by the National Science Foundation.
t Research sponsored by the Air Force Once of Scienti6c

Research, Ofhce of Aerospace Research, U. S. Air Force, under
AFOSR 42-65.

'B. Kursunoglu, Phys. Rev. 135, B761 (1964); A. Barut,
Nuovo Cimento 32, 234 (1964).

2R. Delbourgo, A. Salam, and J. Strathdee, Proc. Roy. Soc.
(London) A284, 146 (1965); H. Bacry and J. Nuyts, Nuovo
Cimento 37, 1702 (1965); W. Ruhl, Phys, Letters 14, 346 (1965).

3 V. Dothan, M. Gell-Mann, and Y. Ne'eman, Phys. Letters
17, 148 (1965).

In order to learn about the problem of embedding
groups (or algebras) into larger ones, it is useful to
examine completely soluble models provided by non-
relativistic classical and quantum-mechanical systems.
The Kepler problem (or quantum-mechanically the
hydrogen atom) and the harmonic oscillator are two
standard examples.

It was shown4 long ago that the Hamiltonian of the
Kepler problem is invariant under the SO(4) group,
which explains the "accidental" degeneracy of the
hydrogen atom. More recently, it has been conjectured
that this SO(4) group can be embedded in an SO(4, 1)
group, whose generators have been written down for
the classical case. ' This SO(4, 1) group does not com-

W. Pauli, Z. Physik 36, 336 (1926); V. Fock, ibid. 98, 145
(1935);V. Bargmann, ibid. 99, 576 (1936).

'H. Bacry, Nuovo Cimento 41A, 222 (1966); E. C. G. Sudar-
shan, N. Mukunda, and L. O'Raifeartaigh, Phys. Letters 19,
322 (1965).


