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Elastic X--Proton Interaction at 1.4S Gevt'c and Comparison with
Absorption Models
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The Z=p scattering at 1.45 GeV/c was studied. A comparison with absorption models for low scattering
angle has been made. The presence of a backward bump in the elastic differential cross section seems to
indicate a spin-Qip part in the scattering amplitude. The comparison with other data suggests a possible
trend for a shrinking of the diGraction peak in the E=p scattering.

r. INTRODUCTION

~ 'HE differential cross section for elastic Z -p
scattering has been studied. at 1.45 Gev/c using

the 32-cm CERN hydrogen bubble chamber. The re-
sults are presented here and compared with theoretical
models based on strong absorption. An interesting
aspect of our data is the appearance of a backward
bump which cannot be explained by the usual baryon
exchange because the exchange particle must have both
baryonic number and strangeness equal to +1.

A comparison of our results with those of other ex-

periments in the same energy region seems to suggest
some shrinkage of the diffraction peak with increasing
energy.

2. SELECTION OF EVENTS

All of the two-prong events scanned were measured
on the Som-Knetra machine and passed through the
CERN chain programs, THREsH-GRIND-sAKK. The iden-
tification of the events was based on the kinematic
results calculated by GRIND and the observation of
bubble density.

The value of the incident-beam momentum was
estimated by means of 488 fitted r decays to be 1.45
&0.036 Gev/c.

Because of the small size of our chamber, we have
for the identification always considered the production
E +p —+Z++sr+ without observation of Z+ decays.
The Z+ hypothesis was rejected when the Z+ path
length was greater than 4 mean free decay paths.
Because the center-of-mass (c.m. ) energy available is
relatively small (2 GeV), the classificatio of the events
as elastic was easy. Less than 1% of the classi6ed
events were ambiguous in the sense that the bubble-
density observation did not permit us to reject com-

pletely the inelastic-fit hypothesis. The X' distribution
for the elastic events is in satisfactory agreement with
the theoretical expression for four constraints.

*On leave from Weizmann Institute, Rehovot, Israel.

In order to overcome the difhculty of low scanning
efficiency for events with low momentum transfer, we
have introduced a cutoff of 7 mm on the proton recoil.
This corresponds to a c.m. scattering angle of about 7'.
A correction for this loss has been made, using the
additional assumption that the differential cross section
at low momentum transfer is proportional to
Thirty-two events were added to our sample of 1629
elastic-fit events.

In Fig. 1 we have presented a part of our data in a
Peyrou plot in which longitudinal center-of-mass mo-
mentum is plotted against transverse momentum. The
dispersion of the points in this plot reQects the inQuence
of the incident-beam momentum distribution and the
fitting procedure of GRIND.

TABLE I. E—
p elastic differential scattering cross section at

1.45 GeV/c. The elastic cross section (12 mb) was taken from
other experiments. s

Bary-
central
cose

Number
of do/da

events (mb/sr)

Bary-
central—cose

Number
of do/do

events (mb/sr)

1.0—0.9
0.9-0.8
0.8-0.7
0.7-0.6
0.6-0.5
0.5—0.4
0.4-0.3
0.3-0.2
0.2—0.1
0.1—0.0

535
362
207
110
55
29
22
14

24

6.46
4.16
2.38
1.27
0.63
0.33
0.25
0.16
0.09
0.28

0.0-0.1
0.1-0.2
0.2-0.3
0.3-0.4
0.4-0.5
0.5—0.6
0.6-0.7
0.7-0.8
0.8—0.9
0.9-1.0

31
26
15
16
16
18
15
49
48
29

0.36
0.30
0.17
0.18
0.18
0.21
0.17
0.56
0.55
0.33

See, for instance, M. L. Stevenson, University of California Radiation
Laboratory report UCRL 11493, 1964 (unpublished).

3. EXPERIMENTAL RESULTS

The differential cross section is represented in Figs. 2
and 3 and the data are tabulated in Table I. The
straight line of Fig. 3 corresponds to the t, ~' law for the
differential cross section, where b is estimated to be
b= 7.2 o.r+ ' (GeV/c) '. This value can be compared
with those obtained in other experiments in the same
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FIG. 1. ~Peyrou plot of transverse momentum versus c.m. longitudinal momentum for E produced
in the reaction E +p -+ E +p for 500 events.

energy region (Table II). From Table II it seems that
there exists a trend for a shrinking of the diffraction
peak in the narrow energy range involved.

An important feature of Figs. 2 and 3 is the back-
ward bump which occurs at the c.m. scattering angle
corresponding to cose& —0.7. Prom our data a rough
estimate of ~ce~, the absolute value of the ratio of the
real part to imaginary part of the scattering amplitude
at zero momentum transfer, can be made:

Ref(0) —0 57 e ss+0.$1

Imf(0)

The errors are obtained from the statistical errors

Vl
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Ol

'1000—

&00

TABLE II. Elastic difhaction peaks for various
K incident momenta.

O'
~ ~

I' (lab)
(GeV/c)

1.22

1.45

1.95
2

Interval
6tted

t& (GeV/c)'

0.6
0.4

b
(GeV/c) '

~5,8
7 2+0.2' —0.1
7.9~0.6
9.1

Reference

this experiment

b
-0,8 -0.6 —0.4 -0& 0 ~ 0.2 0.4 P,6 0 8

—Cos8 in Center of Mass

a J. H. Munson, University of California Radiation Laboratory report
No. UCRL 11155, 1963 (unpublished).

b V, Cook et al. , Phys. Rev. 123, 320 (1961).
& R. Crittenden eg al., Phys. Rev. Letters 12, 429 (1964).

I"rG. 2. Logarithmic distribution of 1629 Z p elastic scattering
events versus momentum transfer s uared. The straight line
shows da/dQ=ooe s' with b=7.2 (GeV c) '.
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4. DISCUSSION OF EXPERIMENTAL DATA

A. Optical Model

n ublications' ' on elastic scattering have at-
to ex lain the data in erms

roximation satis ac ori

known expression orf the scattering amplitude

(8)= ik Jo(2kc s—in(8/2))(c'«') —1 c dc,
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. 4. Plot of the differential crossoss section in theFIG.

h s. Rev. Letters 10, 357 (1963).

F. Ayer, L. Marshall, and M. L. Stevenson,
12, 429 (1964}.

and B. Schvrarzschild, Phys. Rev. 13,
4R. J. Glauber, Lectures De vere a e

for Theoretical Physics, University o o ora o,
npublished~ N Austern, Internationa um

Selected Topics in Nuclear T eory, ow
(unpub]ished).

h t Phys. Letters 18, 83 (1965}.~ L. Marshall and T. Oliphant, ys.
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B. Influence of the Resonance Y*(1820) on the
Scattering Amplitude

Because the mass of the Y*(1820) resonance is not
very far from the c.m. energy 2 GeV, this resonance can
contribute to the elastic scattering amplitude.

In the partial-wave expansion of the scattering
amplitude,

f(8)= (1/2ik) g(21+1)(1—e"")Pr(cos8),
l=o

the phases b~ can be calculated with the assumption of
pure diffraction scattering with the presence of a reso-
nance amplitude.

For the diffraction scattering at low momentum
transfer' we have

e—l2/2 @2'

1—e"'&= 1—e-'I "~=0-"

where p is the c.m. momentum and b the slope calcu-
lated previously. The total cross section in the high-

energy limit, crz, is here adjusted in order to give the
correct experimental cross section at zero momentum
transfer. The additional phase is calculated from a
Breit-signer formula for the resonant scattering ampli-
tude with elasticity x =0.7.' In Fig. 3 we have plotted
the theoretical differential cross section obtained in
this manner. The constant b is now adjusted in such a
way that the differential cross section gives a good.
description of our experimental data. The value b is
found to be b~5 (GeV/c) '.

For large momentum transfers, where the optical
model is no longer valid, a pure resonant scattering
amplitude cannot explain our data.

C. Backvrard Scattering

In order to explain the backward peaking in harp

scattering Minami' has suggested a purely imaginary
scattering amplitude of the form

f(8) =s{expP-', (As+A&t))
+C+expL-', (Be+Br(N—Ns)))) .

The fact that Fig. 2 does not show a backward peak
but merely a bump suggests that such a scattering

6See, for instance, L. Van Hove, Theoretical Problems in
Strong Interactions at High Energies, Lectures given at CERN,
1964 (unpublished).

'R. Armenteros, M. Ferro-Luzzi, D. W. G. Leith, R. Levi-
Setti, A. Minten, R. D. Tripp, H. Filthuth, V. Hepp, E. Kluge,
H. Schneider, R. Barloutaud, P. Granet, J. Meyer, and J.-M.
Porte (unpublished).' S. Minami, Phys. Rev. 133, 81581 (1964).

amplitude will not be applicable to onr data. The bump,
statistically significant, can be due to the presence of a
spin-flip g(8) in the scattering amplitude which gives
in the differential cross section a term proportional to
~g(8) ~' sin'8 (8 is the c.m. scattering angle). Such a
spin-Rip amplitude can be predicted in principle by a
Regge-pole model where a (E+p) system is the pole
responsible for the spin-flip amplitude. As a (E+p)
system has never been seen, this system, if it exists,
must lie on a curved Regge trajectory in such a way
that the (E+p) has no physical angular momentum. '

S. CONCLUSION

If we take into account the contribution of the reso-
nant scattering amplitude we obtain a lower estimate
of b (~5 (GeV/c) ') than the previous calculated value.
If we compare with the value 9.1 (GeV/c) —' of Critten-
den et al. , this will favor greater shrinkage of the
diffraction peak.

Using the unitarity of the S matrix Minarni" has
derived a lower limit of b which is 5.07 (GeV/c) s. Our
value [7.2 (GeV/c) ' or ~5 (GeV/c) '7 is compatible
with this limit. Based on the optical model it is pre-
dicted in the same reference that the width I' of the
diffraction peak is smaller for IC p than for E+p
(I'x-s(Fir+~)."There exist E+p elastic-scattering data
at the same energy"; we find that 1.5Fz-„—Fz+„. It
would be very useful to know the ratio ~u

~
with better

accuracy in order to compare with the prediction based
on the Regge-pole model made by Phillips and Rarita. "
Another way to know whether a spin-Rip amplitude
really contributes to the scattering at 1.45 GeV/c
would be a polarization measurement of the recoil
proton.
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