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For a quantum system describable in a Markoiiian way, via a set of variables a = (ar, a&, ~ ~ },we show that
the Langevin noise sources F„in the operator equations of motion da„/dt=A„(a)+F„possess second mo-
ments (F„(t)F„(g))=2(D»(a, t))s (f-u). The difFusion coeKcients D„„can be determined from a knowledge of
the mean equations of motion via the (exact) time-dependent Einstein relation 2(D„,)=—(A„a„)—(u„A„)
+d(o„(t)a„(f))/dt, where ( ) represents a reservoir average. The sources t„,t„do not commute with one
another, and as a result the commutation rules of the u„are shown to be preserved in time. The mean motion
and diffusion coeScients are calculated for a harmonic oscillator, and for a set of atomic levels. We prove that
two dynamically coupled systems (e.g., field and atoms) have uncorrelated Langevin forces if they are
coupled to independent reservoirs. Radiation-Geld-atom coupling adds no new noise sources. We thus obtain
simply the maser model including noise sources used in Quantum Noise V. DI'rect calculations of the mean
motion and Quctuations in a system coupled to a reservoir yield relationships in agreement vrith the Einstein
relation. For reservoirs violating time reversal, anomalous frequency shifts are found possible that violate the
Ritz combination principle since hco12+Aco23+dcoq1 need not vanish.

1. INTRODUCTION AND SUMMARY

M UR treatment of quantum noise in this paper and
the preceding papers in this series' closely parallels

a corresponding discussion of noise in classical systems. '
The first paper (I) in our classical series provides a quasi-

' A reference to QV is a reference to the author's fifth paper on
quantum noise and relaxation. QI: Phys. Rev. 109, 1921 (1958);
QII: Phys. Rev. 129, 2342 (1963); QIII: J. Phys. Chem. Solids
25, 487 (1964); QIV: present paper; QV: in Physics of Quuntlm
Electronics, edited by P. L. Kelley, B.Lax, and P. E.Tannenwald
(McGraw-Hill Book Company, Inc. , New York, 1966); QVI:
"Moment Treatment of Maser Noise" (unpublished); QVII: "The
Rate Equations and Amplitude Fluctuations" (unpublished).

2 A reference to IV is a reference to the author's fourth paper
on classical noise. I:Rev. Mod. Phys. 32, 25 (1960);II:J. Phys.
Chem. Solids 14, 248 (1960);III:Rev. Mod. Phys. BS, 359 (1966);
IV: Rev. Mod. Phys. (to be published); V: Bull. Am. Phys. Soc.
11, 111 (1966) ) VI: ibid.

linear approach to stationary Markman random
processes. In the quasilinear case, it was easy to obtain
the corresponding Langevin theory of noise sources.
This work was generalized in (III) and (IV) to include
classical nonstationary nonlinear MarkofBan processes
treated erst from a Markman point of view and
second from a Langevin noise-source point of view. In
Paper IV, we emphasized the advantages and Qexi-
bility associated with the Langevin noise-source
approach.

The present paper extends the noise-source technique
to quantum systems. Quantum (and classical) systems
experience dissipation and fluctuations through inter-
action with a reservoir. Our philosophy is that the
reservoir can be completely elirisitsated provided that the
frequency shifts and dissipation induced by the reser-
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voir are incorporated into the mean equations of
motion, and provided that a suitable operator noise
source with the correct moments are added.

Thus, if a=(ai, as, ~ ) is some set of system oper-

d(a„)/dt =(A„(a)) (1.1)

are the correct mean' equations of motion including
frequency shifts and damping, then we propose that

da„/dt= A„(a)+F„(a,t) (1.2)

is a valid set of operator equations provided that the
operators F„are endowed with the correct statistical
properties. Thus the reservoir has been replaced by the
familiar electrical engineer's black box describable by
an impedance (the dissipative resistive terms and
frequency-shift —producing reactive terms incorporated
into A„) and an associated noise source F„.

The mean equations of motion in more fundamental
recent papers on noise in masers are obtained by
eliminating the reservoir to second order in perturbation
theory. If one calculates, for example, the time rate
of change of the occupancy of some state, one obtains
the usual sort of transport equation )see Eq. (1.13)
with i=j] whose coeKcients are transition proba-
bilities calculated to second order. One then adopts the
form of the resulting equations of motion as a model for
a maser —but regards the coeKcients as experimentally
determined, i.e., as the correct, not the second-order
transition probabilities. Moreover, the models usually
chosen are Markoffian in the sense that the future of all
operators (or equivalently of the density matrix) is
determined by the present without requiring an inte-
gration over past histories.

Although the P's are operators, for most problems
we only need to know the reservoir averages over low-

order moments and commutators of these operators.
We regard our task then, as the determination of the
moments of the F„, in terms of the experimental dis
sipation coePcients, within a Markman descri ption.

The most obvious method of attack is to calculate
the reservoir contribution to A„ to second order in the
system-reservoir interaction V (see Appendices A and

Bj. Then one must calculate the mean moment

(F„(t)F„(u)) to second order in V (see Appendix B).
By comparing the coefFicients in these two calculations
we arrive at a fluctuation-dissipation relation valid for
nonequilibrium situations. We shall show in Sec. 2,
that the relation so obtained is indeed exact.

To see how to implement this program, we note that
Eqs. (1.1) and (1.2) have been so chosen that the erst
moment of the Langevin forces vanish:

(F„)=0, A„(a,t) =( „(t+at)—„(t))/At. (1.3)
'We use single brackets, ( ), to denote an average over an

ensemble of reservoirs. However, we are dealing with a single
system. Thus (a„. ) is still a system operator. A subsequent average
over an ensemble of systems will be denoted by double brackets.
Thus ((o„(t))) is now a number, but it may be time-dependent,
if the system is started oB in a nonsteady state at time t&. We will
use ((o„))..or a„ to denote the steady-state system average.

Thus, by computing the change in a„over some suitable
short time interval4 At, due to the interaction V, we can
determine the reservoir contribution to A„.

Next we note, that if the reservoir forces possess a
finite correlation time, i.e., (F„(t)F„(u))~0for ~t —u~

r„ the system will acquire a memory of the past and
become non-Markofhan. Thus we shall take our
moments of the random forces F„in the form

(F„(t)F„(u))=2(D„„(a,t))5(t—u). (1.4)

Integrating Eq. (1.2) over an interval iU, and. inserting
the results into (1.5), we obtain

2(D„„)= ($a„(t+At) —a„(t)](a„(t+At)—a„(t)j)/~t (1.6)

after discarding terms (A„At)(A„ht)/At that disappear
as At-+0. Equation (1.6) is reminiscent of the tra-
ditional definition of a spatial diffusion coefficient:

2D=((x(t) —x(0)$')/t.

Equation (1.6) is also the basis of our direct pertur-
bation calculation of the diffusion coe%cients in
Appendix B. We calculate the change Aa„ in a„over
the time interval At induced by the interaction V, and
average da„Aa„over the reservoir variables. Since this
average depends on the order of the factors, D„„is not
symmetric. Thus F„and F„do rot commute.

The exact method of Sec. 2 consists in noticing that
the equation of motion (2.7) for (a„a„) involves (D„„)
Bnd emphasizing that this equation can be inverted to
solve for (D„„):

2(D„„)= —(A„a„)—(a„A„)+d( „(t)a„(t))/dt. (1.7)

This equation is well known to us as I (5.12). What is
new is that we notice that a knowledge of the meae
motion of all operators provides us with the fluctuation
moments D„„.In the steady state, the last term of (1.7)

4Vfe shall choose this time At to be long compared to the
reciprocal natural frequency (ca,) ' of the system, and short com-
pared to the system relaxation time 1 '. More precise restrictions
will be given in footnote 5 below.

5We actually assume that the correlation time w, of the
Langevin forces is short compared to all system relaxation times,
F ', but not zero. This correlation time is usually long compared
to the reciprocals of the natural frequencies (co.) ' of the system.
In such a case, the system behaves in an essentially Markofhan
way when changes are observed over time intervals Zd that obey
(~,) ~ &z, &At&&F . Thus the diffusion coefjcients (1.5) or (1.6)
are calculated in Appendix 8 by the use of such time intervals.
The motion of a(t) in F„(a(t),t) during such time intervals is
important as shown in Appendices A and 3 and in IV, Secs. 5, 6.

$A direct proof that (F„(t)F„(u))=0 for t~u is given
in IV (8.12) for the classical case, and. in (2.19) for the
quantum case.)

Setting t=s, u=s' and integrating (1.4) from t to
t+At on both these variables, we obtain'

s+hs t+hs

2(D„„)=— ds ds'(F„(s)F„(s')). (1.5)
t
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can be omitted and (1.7) reduces to the Einstein
relation between diffusion coefficients and mobilities
Lsee I (5.18), I (6.14)).The generalized time-dependent
Einstein relation (1.7) is the basis of our exact calcu-
lations of D„„ for harmonic oscillators in Sec. 3 and
nonuniformly spaced multilevel systems in Sec. 4. The
resulting exact "fluctuation-dissipation" relations be-
tween D„„and the reservoir contributions to A„are in
precise agreement with those found by direct use of
perturbation theory. The Einstein method, however,
guarantees that products of operators propagate
properly so that commutation rules are necessarily
preserved in time.

Note that (D„„)as calculated by (1.7) is not only a
system operator, ' it is, in general, time-dependent.
Thus, the way in which the noise sources change during
the turn-on of a laser is simply described within the
present scheme.

With the noise sources included, our Eqs. (Z.Z) are
vatid operator equations In . particular, if variables
u,+&, ~, a„vary more rapidly than a&,a2, ~,u„we
can solve for the fast variables in terms of the slow
variables, and obtain a set of equations for the usually
mech smaller set of slow variables. The price paid for
this is that the slow variable equations contain integrals
over history and nonwhite noise sources. If, however,
one examines the solutions only at frequencies small
compared to the decay constants of the fast variables,
theni t is adequate to treat the stow variables as 3farkogan
and the corresponding noise sources as white. When this
is done, an enormous practical simplification has been
achieved in the solution of complicated problems such
as laser noise.

Since our equations are operator equations, the
equations for db/dt and dbt/dt (where b and bt are
destruction and creation operators of a photon Geld)
determine the equation for dbtb/dt, the rate of change
of the number of photons. By applying the technique
just discussed to eliminate all other variables but the
upper state population E2 in a maser and b~b, we show'
that the %arkansan equations for btb and Ns are the
familiar rate equations. Moreover, these equations
contain just the shot noise sources discussed by
McCumber, ~ plus some thermal noise sources important
in masers but not lasers. In summary, we have estab-
lished the rate equations (and their noise sources) on

firm theoretical grounds, as valid when btb and Es are
the slowest changing variables in the complete set
required to describe a maser or laser. ' This adiabatic
approximation can be avoided, however, permitting
the extension of the noise calculation to higher fre-

quencies, or to systems with other slowly varying
populations or polarizations. '

' See paper QVII, Ref. I (to be published).
7 D. K. McCumber, Phys. Rev. 141, 306 (1966).
8 The nonadiabatic treatment (to be published) represents work

done jointly with D. E. McCumber.

Before discussing the details of our computations,
it may be worthwhile to summarize our principal
results:

If b and b~ are the destruction and creation operators
associated with a harmonic oscillator, whose corn-
mutator is unity, then we 6nd that the appropriate
equations including dissipation and fluctuations are

db/dt= —(' o+-,'y)b+ f(t); (f(t))=0, (1.8)

dbt/dt= (imp y)—bt+— ft(t); (ft(t))=0. (19)

The parameter p is the decay constant of this harmonic
oscillator. The nonvanishing moments of the Langevin
forces are provided by

(lt(t) f(n)) =ynb(t —n),
(f(u) f'(t)) =y(n+1)b(t —n). (1.10)

The parameter n can be regarded as de6ned by the
second-moment equation

d(btb)/dt=yn —y(btb); (btb) ~n, (1.11)

i.e., the reservoir drives the system occupation number
b~b toward a mean value of n. A harmonic reservoir at
equilibrium would do this if its temperature T~ were
given by

n= /exp(ha)p/kTg) —1j—', (1.12)

as shown in Eq. (C11).
Our atomic equations in the absence of any regu-

larities of energy spacing are given as

d(a(a;)/dt= (i~;, I';;)a—,ta;
+&' Zs w;Ias as+&';, (1.13)

where the m;I, is a transition probability and the F;;
and co;; are defined in

(1.14)

The superscript ph denotes a contribution to the results
associated with phase fluctuations. We define

(1.15)

so that Fj represents the total transition rate out of
state j. Our random forces Ii;, have a vanishing first
moment and second moments defined in

(1.17)

An explicit and nontrivial expression for the general
diffusion constant (D;,q~) (in the absence of regularities
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V= A+a;ta; f;;, (1.19)

where f;; represents a set of reservoir operators, then
the transition probabilities above are given in

dt exp( —ior, t)(f; (t)f;(0)). (1.20)

The phase contribution to the damping constant is
shown in Appendix A to be given in the form of

OQ

p ..ph
$j

2 0

dt(Lf;;(0) —f;;(0), f,;(t) f;,(t)]i),—(1.21)

in energy spacing) is'

2(D' kl) =& kp' I+I'kl —I' lj&a' al&

+~it~jkEwiq(aq aq)

~'~w'k(aktar) 4—twx&'(aF a&)

is;—k(~;;+~k) ~,()(a;ta)& (.1.18)

The form of Eq. (1.13) was obtained by a perturbation
treatment in Appendix A. However, once we grant this
form, the diffusion constants of Eq. (1.18) follow with-
out approximation. The parameters I';;, zv;; can be
regarded as experimentally determined. The last term
in Eq. (1.18) vanishes in all cases in which co;; can be
decomposed into two parts, one associated with ~i and
another associated with ~; in the usual subtractive
fashion. Whether or not ~;; can be written in such a
subtractive form is not a formal but rather a physical
question. If the interaction between our system and
our reservoir takes the form of

this case, the extra frequency shift will involve the
interactions between the spin waves.

The general formula (1.18) for the diffusion constant
D;;I,& is not particularly illuminating and it is worth-
while to display explicit results for a number of special
cases. I'rom now on if the subscripts of D are indicated
by different letters then they are understood to be
necessarily different unless otherwise indicated. Our
first results are those appropriate to shot noise:

2(D,;;,)= g w;,(a,ta,)+I';(a;ta,)
qadi

=atomic (rate in+rate out), (1.25)

2(D...;)= w;—,(a ta,
&

w—;,(a a,)
= —(transfer rate) . (1.26)

Equation (1.25) describes the typical rate-in plus rate-
out contribution to the shot noise source associated with
population of level i and Eq. (1.26) contains the sum of
the transfer rates from levels i to j.These results have
previously been obtained for classical systems in I,
Sec. 12 and IV, Sec. 9. The diffusion constant most
relevant for off-diagonal elements of the atomic density
matrix is given in

2(D;;;,)= (I',+21';P")(a,ta;)+Q w;,(a,ta,), (1.27)

which has no simple classical analog. This moment
D;;,i is valid even in the presence of coupling to a
radiation field that induces transitions between levels
i and j. In this case the transport equation for the
population of level i is given by

d(a;ta, &/dt= —I';( , at&a++ w;, (a~taq)+(B;), (1.28)
and the change in ~;; is given in

Ako ' = tIG) '—Eco+Aco '

Ace;= Q Im

(1.22)

8;=radiative rate into i . (1.29)

Assuming that we are in the steady state, in other words
setting Eq. (1.28) equal to 0, we can simplify the right-
hand side of Eq. (1.27) to obtain the steady-state
second moment'

+-" «(Lf (o) f (t)j& (123)

(1.24)

The "extra" term shown in Eq. (1.24) is not ordinarily
decomposable in a subtractive way. We shall show in
Appendix A that this anomalous frequency-shift term
vanishes in cases in which the reservoir obeys time
reversal symmetry and the levels i and j are non-
degenerate levels with respect to time reversal. More-
over, we show that this extra term in Eq. (1.24)
vanishes whenever the reservoir forces can be decom-
posed into independent excitations such as phonons or
spin waves, provided that these excitation operators
belonging to different modes commute with one another
at all times. Thus to see an anomalous frequency shift
it is desirable to use a reservoir violating time reversal,
for example, a ferromagnet or an antiferromagnet. In

2(D'&kk& = —wk~'(a' a~& &

2(D;;k~) = —w, k(ak'«&,

2(D;,;,)=r;(a a;),

2(D;...)=I';(a a;).

(k can equal i) (1.32)

(I can equal i) (1.33)

(1.34)

(1.35)

2((Dv~'&&.~-~..t.~.=»' ((a' a')&-—((B'))- (1 3o)

The subscript ss is to remind us that the steady-state-
system ensemble average is understood here. This
result is stated without proof in QV (2.7) using 0.;; and
8; as abbreviated notations for the ss averages. A more
complicated diffusion coefficient is given in

2(D;;;)&= (I;+I',"~"+I' P"—I';P")(a/a))
—i(~;;y~, )—~;))(a;ta(&, (1.31)

which appears to depend on the anomalous frequency
shifts. Some diffusion coeKcients descriptive of corre-
lated population and phase Quctuation are given by



114 M ELV IN LAX

In Sec. 5, we establish that if two systems that
interact with independent reservoirs are coupled to-
gether dynamically, no new noise sources are intro-
duced, and no correlations occur between the noise
sources associated with different reservoirs. The original
noise sources are shown to be slightly modified by the
dynamic interaction.

In Sec. 6, we use the results to construct the model
of a maser used in QV. In Sec. 7, we obtain a "com-
mutation rule Einstein relationship" and use it to show
how the moments must be modified if the population
difference in a maser is treated as a number rather than
an operator.

ReIation to Previous Work

There is, of course, an extensive literature on dis-
sipation in quantum mechanics which we cannot hope
to review properly here. This literature can be divided
roughly into five categories:

(A) The consideration of a system in interaction
with a reservoir, and the (approximate) elimination of
the reservoir to obtain effective equations of motion for
system operators, or the system density matrix. ' The
disadvantage of this procedure, including our own

QIII, is that it provides information only about oper-
ators, or fluctuations at one time. To obtain two-time
correlations one must use the equilibrium fluctuation-
dissipation theorem, as in Sec. 7 of QIII, or one must
use our generalization of this theorem in QII to non-
equilibrium systems. Only in this way, can Scully,
Lamb, and Stephen' argue that the decay constant they
find is indeed the maser spectral linewidth.

(8) Green's function and moment methods" attack
two-time correlation functions directly, but generally
can be solved only by applying a truncation procedure
or a linearization.

(C) A number of papers have been written intro-
ducing classical noise sources in a heuristic way. "

(D) Quantum noise sources have also been intro-
duced into maser calculations in a heuristic way, or by
methods similar to the perturbation techniques adopted
here"

' Many earlier references are given in QIII. Recent papers with
application to masers and lasers include W. Weidlich and F.
Haake, Z. Physik 185, 30 (1965); M. Scully, W. Lamb, and M.
Stephen, Physics of Quantum Electronics, edited by P. L. Kelly,
B. Lax, and P. E. Tannenwald (McGraw-Hill Book Company,
Inc. , New York, 1966).I D. E. McCumber, Phys. Rev. 130, 675 (1963);V. Korenman,
Phys. Rev. Letters 14, 293 (1965) and Physics of Quantum Elec-
tronics, edited by P. L. Kelley, B. Lax, and P. E. Tannenwald
(McGrav -Hill Book Company, Inc. , New York, 1966). See Sec. 6
of QV; also QVI. C. Willis, J. Math. Phys. 6, 1984 (1965);R. H.
Picard and C. R. Willis, Phys. Rev. 139, A10 (1965)."K.Shimoda, T. C. Wang, and C. H. Townes, Phys. Rev. 102,
1308 (1956);W. Lamb, in Quantum Optics and Electronics (Gordon
and Breach Science Publishers, Inc. , New York, 1965). H. A.
Haus, IEEE J. Quantum Electron. 1, 179 (1965). C. Freed and
H. A. Haus, Appl. Phys. Letters 6, 85 (1965).E. I. Gordon, Bell
System Tech. J. 43, 507 (1964).W. G. Wagner and G. Birnbaum,
J. Appl. Phys. 32, 1185 (1961).

u H. Haken, Z. Physik 161, 96 (1964); 182, 346 (1965). H.

(E) Detailed consideration has been given to the
harmonic-oscillator" and two-level systems. '4 Louisell
and WalkerI3 have provided an exact solution for the
system harmonic oscillator interacting linearly with a
bath of harmonic oscillators, for "thermal" initial
conditions. "Although the Louisell-Walker calculation
is exact, it suffers from the usual objections to method
(A) above. Schwinger and Senitzky have actually
written down harmonic-oscillator equations with quan-
tum noise sources. Senitzky, " in our notation, ' uses
the equations

Q =P, P=—yP —pop'Q+F (t),

1
(F(t)F(u)) =2yIteop (n+-', )8(t—u) ——(p

2X 3 I-

(1.36)

(1.37)

where we have corrected a sign in the last term in-
volving the principal-valued reciprocal. We show, in
Appendix C, that Senitzky's commutation rule

2Z'lt'6~0 1
(LF(t) F( )3)=-

7r 5—I
leads to a commutator

(1.38)

1('7
(LQ,P&) =so 1—

I

—+Ol —
I

sr Scop Eloped

(1.39)

that is close to the desired value when y((~0, whereas
the correct commutation rule Lsee Eq. (C33) when y
is not frequency-dependent] for the Langevin forces

(LF (t),F (u) $)= 2sl'tabb'(t —u) (1 4o)

Haken and H. Sauermann, ibid. 173, 261 (1963); 176, 58 {1963).
H. J. Pauwels, thesis, Massachusetts Institute of Technology,
1965 (unpublished).

3 W. H. Louisell and L. R. Walker, Phys. Rev. 137, B204
(1965); I. R. Senitzky, i'. 119, 670 (1960); 124, 642 (1961);
J. Schwinger, J. Math. Phys. 2, 407 {1961).

u I. R. Senitzky, Phys. Rev. 131, 2827 (1963); U4, A816
{1964);137, A1635 (1965).

"An extension of Louisell and Walker's work to the initial
condition of a delnite excitation state has been made by H.
Cheng and M. Lax, in Quantum Theory of the Solid State, edited
by Per-Olav Lowdin (Academic Press Inc. , New York, to be
published). See also A. E. Glassgold and D. Holliday, Phys. Rev.
139, A1717 (1965).

"Since Senitzky (Ref. 13) uses a harmonic oscillator that
couples to a reservoir via its momentum (whereas we use the
coordinate), comparison with our notation can be made by the
transformations: Q ~—P, P —+ Q, p=y, D(t) =F(t), and by
setting his 47rc'=coo'.

leads to precisely the correct commutation rule for Q
and P, as shown in (C37).

In any case, the commutator is odd in 3—N. Hence
its Iourier transform is odd in frequency co and the
spectrum of noise for a qlaetgm oscillator can then not
take rigorouly the white (flat) form needed to make the
treatment Markoffian.

Of course, a noise spectrum need not be exactly
white for the Markoffian approximation to be a good
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one. It need only change little over the width of the
resonance. Our method of calculation of the strength
of the noise sources seems to (automatically) replace
nonwhite sources by white sources whose strengths
agree at the resonance frequency. For the harmonic
oscillator, a special difhculty arises because there are
tmo resonant frequencies ~0 and —coo, and the noise
does not agree at these frequencies. However, these
frequencies must be well separated ots&&y, in order
that4'

(1.41)

which is required for a Markoffian description to exist.
If y&(ots the rotating-wave approximation'r (RWA) is
valid, and the relation F ~ (bt+h) is essentially a split
of P into its positive and negative frequency parts,
and F ~ ft+f is a similar split. Thus ft should have a
white spectrum that corresponds to the spectrum of F
at ots, and f is similarly determined by the spectrum
of F at —ceo. When we treat b and bt as our fundamental
variables, in the RKA in Sec. 3, these results appear
automatically. If, however, we had insisted on using

Q, F as variables, without the RWA, we could not have
achieved a consistent MarkoKan description that pre-
served the commutation rules.

The two-level analysis of Senitzky'4 does not seem
to express the moments of the Langevin forces in terms
of transition probabilities and populations so that it is
dificult to make a comparison. The work of the Haken
school" has so far not indicated any population de-
pendence of their noise sources. Their quantum-noise-
source treatment also seems to be special to a two-level
system.

Our general formula (1.18) for the noise sources in a
multilevel system seems therefore to be completely new.
The phase or zero-phonon contributions to the decay
and frequency shifts in (1.13) are most closely related
to the work of McCumber. "The general expressions
for the phase contributions to the damping and fre-
quency shift (especially the anomalous shift) in a
multilevel system seem to be new.

2. EINSTEIN RELATIONS, DIFFUSION
COEFFICIENTS, AND EQUIVALENCE

TO MOMENT METHODS

If we rewrite our fundamental Langevin equation in
the form

da„/dt= A„(a,t)+F„(a,t), (2.1)
~~ For a harmonic oscillator, the RWA consists in neglecting

the counter-resonant term -yb~ in db/dt =—zco0b —~y(b+bt)+ f,
and a corresponding term -yb in dbt/dt=icoobt —~y(b+bt)+ ft.
The distinction between the free decay frequency Ptsss —-', pages
and coo is thus neglected. The RWA has been extensively exploited
in magnetic resonance problems: I. I. Rabi, N. F. Ramsey, and
J. Schwinger, Rev. Mod. Phys. 26, 107 (1954); A. Abragam,
Principles of nuclear 3Eagnetism {Oxford University Press, Oxford,
England, 1961), Chap. II; F. Bloch and A. J. Siegert, Phys. Rev.
57, 522 (1940).' D. E. McCumber, Phys. Rev. 135, A1676 (1964); J. Math.
Phys. 5, 221, 508 (1964).

Aa„=a„(t+At) a„(t), — (2.5)

Aa„=A„ht+ F„(s)ds. (2 6)

From Eq. (2.4), we can now write down the equation
for the mean motion of the product of two operators:

d(a„(f)a„(f))/dt= 2(D„„)+(A„a„)+(a„A„). (2.7)

In the steady state when the second-order operator
does not change with time we obtain the standard
Einstein equation

2(Dav)steady state (Aaav)ss (aaA v)ss ~ (2 8)

Aside from the preservation of the order of the oper-
ators, Eqs. (2.7) and (2.8) are identical to corresponding
classical equations. See, for example, I (14.27) or III
(5.10). It is convenient to rewrite Eq. (2.7) in the
mnemonic form

2(D„„)= ((da„/dt) a„) —(a„fda„/dt) )—
+(dLa„(f)a„(t)j/dt), (2.9)

(datv/d$) —=datv/df Fa=A tv . — (2.1—0)

We see, therefore, that D„„is a measure of the extent
to which the usual rules for differentiating a product is
violated in a MarkoKan system. Equation (2.9) is
indeed a useful computational formula because it
permits the diffusion coefficients to be calculated in
terms of the mean motion of certain system operators.
This is in contrast to Eq. (1.6) which requires the direct
calculation of Quctuations. Indeed, our presentation in
Secs. 3 and 4 will be based on Eq. (2.9). The direct
determination of the diffusion constants from the
fluctuations moments using Eq. (1.6) is done in

Appendix B.
Higher order diffusion coefficients may be determined

by a simple generalization of (2.9).But higher moments

then the assumption that the system has a MarkoKan
description can be phrased in the form

F„(s) is independent of a„(t) if s&t . (2.2)

In Parficmlar, these oPerators must commute I.f (2.2)
were not obeyed, the statistics of the random forces F
would depend on past history and the system would
acquire memory effects. For present purposes we only
need this independent assumption in the much weaker
form

(F„(s)C(a(t)))= (C(a(t))F„(s))=0 if s& t, (2.3)

which merely describes a lack of correlation between
the random force, at time s, and an arbitrary operator
C(a) at an earlier time t We. now write down the
algebraic identity

a„(f+Af)a.(f+Af) a„(f)a„—(f)
=Aa„Aa„+d,a„a„+a„Aa„(2.4)

where
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of the Langevin forces are related in a more complicated
way to the diffusion constants as shown in IV.

Equivalence of Langevin and Moment Procedures

We would now like to establish the equivalence of
the Langevin method of this paper with the moment
procedures adopted in QII. The principal result of
paper QII is summarized in the statement that the
solution for the mean motion at one time,

(a;t(t)a, (t))=g 0„~'"(t,t')(a,t(t')a, (t')), (2.11)

they should yield equivalent results for the mean motion
and the noise in a quantum-mechanical system.

Taking the derivative of (2.16) with respect to t', we
obtain

(F;;(t)dapt(t') a)(t')/dt') =0, t) t'. (2.17)

Taking the appropriate linear combinations of (2.16)
and (2.17), we establish that

(F,;(t)F„,(t'))=O, t) t'. (2.18)

A similar argument proves the same result for t&t', so
that we establish

can be used to obtain the moments containing operators
at two times (F,,(t)F„(t'))=0, (2.19)

dO„'(t, t')/dt =g B;;..0,„""(t,t') . (2.13)

If we now differentiate Eq. (2.11) and make use of
(2.13), we obtain

(da;t(t)a;(t)/dt QB;; „a '—(t)a„(t))=0, (2.14)

which expresses the time derivative of u; a; in terms of
similar operators taken at the same time. Applying the
same procedure to Eq. (2.12) leads to

(t.d "(t) (t)/« —Z &'t- -'(t) -(t)j
Xaj,t(t')ai(t')) =0. (2.15)

Since the quantity in brackets in Eq. (2.15) is the
difference between the time derivative of the operator
c; u; and the corresponding mean motion, it represents
the Quctuating random force F;;.Thus, we obtain

(F;,(t)a,t(t')a, (t'))=O, t)t'. (2.16)

But Eq. (2.16) is precisely the same as Eq. (2.3), which
we took as our expression in the Langevin point of view
of the Marks. an nature of our problem. Thus we have
established the equivalence of the two procedures.
When both are used without further approximation

(a"(t)a;(t) "(t')a (t'))
=Q 0„"(t,t')(a, (t')a, (t')a~ (t')a~(t')). (2.12)

This two-time result (2.12) possesses the same t de-

pendence as the transient solution (2.11) of the mean
motion equations. This is an expression of the Onsager
hypothesis concerning the regression of Quctuations,
established for a quantum-mechanical system not in
equilibrium nor even necessarily in a steady state.

For comparison with the results in this paper, it is
necessary to avoid direct use of the Green's function
0,„&' and replace it by a differential relationship. We
note, howeveras , remarked at the end of paper QII
that this principal result (2.12) did not depend on the
system being Markman. If we assume that the system
is Markman its future must be predictable from the
present, in other words, its time derivative at time 3

must be expressible in terms of other quantities ex-
pressed at time t. In terms of the Green's function the
MarkofBan requirement takes the form

3. THE DAMPED HARMONIC OSCILLATOR

To obtain the diffusion constants using (2.9), it is
necessary to obtain the mean equations of motion for
operators linear and operators quadratic in the oscil-
lator displacements. In Appendix A, we modify slightly
some results of QIII which analyzes a system in inter-
action with a reservoir and then determines the effective
equations of motion for the system after averaging over
the reservoir. These results of QIII are suKciently
general to include memory effects. After eliminating
these memory effects when the correlation times are
short, we arrive at Eq. (A13) for an arbitrary system
operator M. Equation (A13) is valid even if only
reservoir averages' (( ) instead of (( ))) are taken-
see (816).Thus, we can write

8(M) = ((M,II))
8$

d.&(F,( )F;)&Lbf,Q.)Q;(- ))

(FtF'(—g))(Q ( ~)[K—Q~j&) (3.1)

In (3.1), the Q's are system operators and the F's are
corresponding reservoir operators that when multiplied
together provide the coupling V between the system
and reservoir:

~=-r.;Q~,
The operators F;(I) and Q, (—u) are in the interaction
representation

F;(u) = exp(iRN/h)F; exp( —iRN/b),

Q, (—I)= exp( —iBu/h)Q; e p(i'~/i'), 1

where H and R are the system and reservoir Hamil-
tonians, respectively. /The slightly more general equa-
tion (A13) must be used if H depends explicitly on the
time. $

For the harmonic-oscillator system, we take

H = leo,b~b; V=i h(btg bgt) . (3.2)—
With this choice an arbitrary system operator M obeys
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the equation of motion

B(M)/Bt = ((M,H) )+n(bt LM,b))—P()M,b)bt &

—n*(/M, bt)b)+P*(bPf, bt)), (3.3)

where the coeKcients u and p are integrals over averages
of reservoir operators:

second-moment equations

d(b')/dt =—2icoo(b') —y(b'&

d((bt)'&/dt=+2icoo((bt)'& y—((bt)') (3 13)

and learn from them that the remaining second
moments

du e '"'"(gg (u)) are zero.
(f(t)f(u)) = (f'(t)f'(u) &=0 (3.14)

'"e (gt(u)g).

Introducing the interpretations

(3.4) 4. ATOMIC DIFFUSIOH CONSTANTS

For an arbitrary quantum-mechanical system (which
we shall visualize as an atom) whose frequency differ-
ences cu;; possess no degeneracies, we shall adopt as our
typical equation of motion (A23):

itIce—=a p, —a)o=co,+5(o, yn=2 Rep (3.5)

of the parameters n and p in terms of new real parame-
ters p, n, and Ace which have more direct physical
meaning, we obtain the equation of motion for the
fairly general operator (bt) "b':

~((b) b)/~t=& .(- )—:v(+))((b) b &

+rsyn((bt) ~'b' '). (3.6)

These equations are exact in this MarkofBan limit when
the reservoir consists of a set of harmonic oscillators.
(See Appendix D.) In (3.6) ~0 is the renormalized
frequency of the oscillator after the frequency shift
Aced produced by the reservoir has been absorbed. The
most important special cases of Eq. (3.6) are given by

d(a/a, )/dt = (no,; rg) a;ta, +—b g Q w;„a„"a~+F,; (4.1)

obtained in Appendix A by the use of Eq. (3.1).Second
moments are de6ned by'

(F;;(t)Fp)(u))= 2(D;; ()8(t u). —(4.2)

The second moments as usual are calculated by Eq.
(2.9) which represents a nonstationary Einstein rela-
tionship. For the present case, Eq. (2.9) takes the form

2(D;,„)=—(s,'s;a, 'a, )— —saba; ad'a, )dt dt

a,~a —aA,~a~ 4.3
~(»/~t=-(-. +-:»(»,

8(bt)/Bt = (nap —-', y) (bt&, (3 7) where the bracketed symbols de6ned by Eq. (4.4)

8(btb)/Bt= yn —y(btb) . (3.8)

db/dt= —(i(so+-,'»b+ f(t),
dbt/dt= (~, ',»bt+f t(—t)— (3.9)

We now write out our complete Langevin equations
including the noise sources as

—a~a —=—a~a —&*~-U
dt dt

(4.4)

(4.5)a ~a ay~a~=87, a a~

simply describe the mean motion of the operators a;~a;.
In the space of one atom, gatta;=1, we have the
identity

derived in QII. Inserting the bracketed quantities (4.4)
into Eq. (4.3), our results immediately simplify into a

(3.10) bilinear expression of the form

Our second moment has the typical 8-function form

(ft(t)f(u))=2D&ty(t —u),

where the diffusion constant is computed by means of 2(D,;z&)=b,&b, & P w;~(a„ta„)
Eq. (2.9) in the form ugi

2Dgtg d(btb)/dt ({dbt/——dt}b)—(bt{—db/dt}) =yn. (3.11)

Repeating this calculation with the opposite order of
the factors yields

(f(u) f'(t)) = 2Dsab(t u) =y(n+1)b(t —u), (3.12)—
a second moment clearly distinct from that in (3.11).
Indeed, this lack. of commutation of the reservoir forces
at f and ft is shown in Appendix C to preserve the
comxnutation rules. We a1so compute the additional

b'&~~a(acta'—) ba&z~(a~ a~—)'
+ (a/a, &b;„$(r;;+r.,—r;,)—i(~@+~„—u, &)), (4.6)

where the quantities 1"@and ~;;have the synunetry and
antisymmetry properties

(4't)

We see that our results for the second moments depend
on the form of Eq. (4.1) and not how the parameters
were obtained. Equations (1.19)-(1.24) display, how-



M ELVI N LAX

ever, the values of these parameters obtained from the
explicit reservoir calculations shown in Appendix A.
Equation (4.6) is the general result quoted in Eq. (1.18)
and important special cases of the diffusion constants
were already presented in Eqs. (1.25)—(1.35).

S. COUPLED SYSTEMS: INDEPENDENT
RESERVOIRS

Our systems 1 and 2 are coupled together dynami-
cally via the Hamiltonian H~2 ..

H =Hg+H2+H'gg, Vg= —Q Q,F;,
Vm= —gq f (5.1)

Here V~ and V& are the couplings of systems 1 and 2,
respectively, to their corresponding independent reser-
voirs. The reservoir forces F; and f; are de6nitely
uncorrelated since they come from quite independent
reservoirs. If M and m are arbitrary operators belonging
to the first and second systems, respectively, they obey
the Heisenberg equations

dM/dt= (M, Hg+Hgg) —P (M,Q;)F;, (5.2)

motion of the operator mM, we obtain

d(mM)
=((mM, H))

1

o

—(FtF,(u) &(Q;(—u) LmM, Q,j&}
00

A,
2

du{ (F,(u)F;)([mM, Q~]Q;(—u) )

du{ (f;(u) f;)(/mM, q;$q; ( u))—

d(mM)/dt= (m{dM/dt})+({dm/dt}M)+0 (5.7)

from which we can deduce that the diffusion constant

—(f f'( ))&q (—)I: M q~j)} (5 6)

In Eq. (5.6), correlations between F and f forces have
been omitted. However, the time dependence of the
system operators is retained underneath the integral
sign. If, however, we expand the commutators in Eq.
(5.6) and compare them with the corresponding sepa-
rate equations for the operators M and m, we find that
our result has the structure

dm/dt=(m, H+2Hz )2—P (m, q;)f;. (5.3)
(5.8)

=Z(m, q') (M Qt) ds

where the first terms in (5.2) and (5.3) have been
dropped since they lead to terms of higher order in At.
The assumed 5-function character of the correlations
of the random forces permits the system operators to
be evaluated at the initial time t and removed from the
integration in Eq. (5.5). The result involves the reser-
voir forces F and f directly and these are by hypothesis
uncorrelated. The vanishing of D ~ implies that the
effective Langevin forces that enter the equations for
dM/dt and dm/dt are necessarily uncorrelated.

The proof we have given, however, is unnecessarily
restrictive. The reservoir forces are not in general 6
correlated. 5 They merely possess a correlation time
that is short compared to all of the typical system
relaxation times. In general, however, their correlation
times are long compared to the reciprocals of the various
oscillation frequencies of the system. Under these
circumstances it is not permissible to remove the system
operators from underneath the integral sign in Eq. (5.5),
and a new proof is needed. The methods of QIII were,
in fact, designed to deal with such situations in which
the correlation time is short but not zero. The net
result of that paper reduced to the Markofhan limit is
Eq. (3.1).If we apply (3.1) to calculate the equation of

The direct use of Eq. (1.6) then yields

2(D ~)=(fm(t+iM) m(t))—
&& t M(t+at) —M(t)g&/at (5.4)

vanishes. The result (5.8) establishes that the Langevin
noise sources that enter the equations of two systems
that are coupled to independent reservoirs are uncor-
related. While this result is intuitively very reasonable,
it is not, in fact, obvious. The Langevin forces are not
identical to the reservoir forces which are automatically
uncorrelated. Thus, for example, the Langevin force
F;; of Eq. (1.13) is not identical to the reservoir oper-
ator f;; of Eq. (1.19). The Langevin forces, in effect,
involve products of reservoir forces with system oper-
ators. Since the time dependence of these system
operators must be taken into account, the lack of
correlation of the Langevin forces requires the proof
just given.

A similar procedure with m and M both taken from
the first system yields the same formal expression for
D ~ as if the second system were not present. The
interaction operators, however, now include the effect
of the dynamic interaction. Unless this interaction is
extremely strong, however, its inQuence during the
short correlation time of the reservoirs will be unim-
portant. This is equivalent, for example, to neglecting
the change of atomic state of an atom due to a laser
field during the course of its collision with a second
atom. Our procedure permits us to include such effects,
but we shall omit them in the maser model of the next
section.

6. STOCHASTIC MODEL OF A MASER

Our model of a maser is schematica11y described in

Fig. 1. The electromagnetic Geld is described in terms
of a single-cavity mode, although it is easy enough to
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generalize to the presence of several modes. There are
a set of E atoms labeled by the index M. These two
systems are coupled by the radiation coupling

N

GRAD-ATOM=sbtr p [b (81 82) b(82 81) g ~ (6 1)
M=1

ATOMIC
TRANSITIONS

&t 2

SYSTEMS RESERVOIRS

ACTI VE
ATOMS

PHONONS OR
COLLI D I NG

ATOMS

HATOM-FIELD

As shown in Fig. 1, the set of atoms and the radiation
field are each coupled to its own reservoir. Indeed, for
practical purposes, we can assume that each atom is
coupled to its own private reservoir. This is why we
have indicated the atomic Langevin forces by a super-
script M. Our Langevin equations of motion now take
the form

db/«= (2 .-+.'V)b+-~Z (8")"+f, (6.2)

d(81tas) M/dt= —(r12 +uoM) (alta2)

+trb(astas attar) —M+F 12M ) (6.3)

d(82 82) /dt —w20(80 80) +w21(81 81)
rs(82ta2—) B+F2—2 (6.4)

d(81 81) /dt Wlp(80 80) +W12(82 82)

(8 ta )M+BM+F M (6 5)

RADIATI ON
FIELD

CAVITY WALLS
OR

BLACK BODY
RADIATION

(a) (b)

FIG. 1. Model for maser or laser: Radiative transitions (wavy
arrow) are induced by the dynamic atom-field coupling. Non-
radiative transitions (straight arrows) and quantum noise sources
are derivable consequences of the coupling to the reservoirs. We
assume in this paper that the transition rate from 3 to 2 is so fast
that @re are effectively pumping directly into state 2.

these two frequencies. Our coupled atomic and Geld
equations now take the form

do 22/dt= W20opp+W21o11 r2o 22 B+F22 y (6.15)

do 11/dt Wlpo 00+W12&22 rlo 11+B+F11) (6 16)

db/dt =—pal+i ((u. 000)$b+—Et1o+F, (6.17)

B =t[b'( ' ) +( " )"bj where F=f exp(i~pt), as in (C19), and

(apta 0+812814asta2) M =1-) (6.7)

~M ~M ~M ) (6.8)

where m20 and m1o are pump terms. We have assumed,
for simplicity only, that the interaction between the
atoms and the Geld is equally strong for all atoms. In
such a case it is appropriate to introduce averages over
the various atom operators:

o;;=—(1/Ã) Q (a;ta;)M,
%=1

D=022 011)

(6.9)

(6.10)

o=—(1/1V) Q (a,ta2) exp(nopt). (6.11)

Moreover, we shall introduce a new Geld operator

b = b exp(iMpt) (6.12)

that has absorbed most of the steady motion in the
maser so that b' changes only quite slowly with the time
primarily because of the Langevin forces. In the fol-
lowing equations we shall for simplicity drop the prime
on b. The average rate of radiation per atom is then
given by

B= (1/N)PBM=tJ, (bta+otb) (6.13)

and the appropriately averaged atomic random force
is given by

F;;= (1/cV)QF;; exp(ia;;t). (6.14)

Strictly speaking F12 contains a factor exp(ip10t) rather
than exp(icosrt), but the spectrum of F12 can be assumed
not to change much over the small difference between

00P= 1—(T11—022.

The case of homogeneous broadening can be obtained
by making the specialization

, r»~=r (6.18)

In this case Eq. (6.3) reduces to the form

do/dt = [r+i (pp. r—pp) $o+trbD—+F12. (6.19)

The moments of our Langevin forces are now given by

(F (t)F;;M(u))= (F;,M(u)F(t)) =0, (6.20)

(FuM'(t)F 21M (u) )=0 for M'W M, (6.21)

(F'(t)F (u)) =gnat(t —u), (6.22)

(F(u)Ft (t))=T (n+1)b(t—u), (6.23)

(F;;M(t)F21M(u))=2(D;;21M)8(t —u), (6.24)

(F;;(t)F/)(u)) = (1/1V)2(D, ;/, g)b(t —u), (6.25)

(Du21)= (I/&) ZM (D;;21 ) (6.26)

Here n=n(cop) as in (C40).
The atomic and Geld forces are uncoupled as they

should be. The factor I/E that appears in Eq. (6.25) is
essentially a consequence of the fact that the individual
Ii~ are uncorrelated. The most important diffusion
constants for the discussion of phase noise in a maser
above threshold are given in

2(D -. )=&( ".)")[r.+2r ""3
+Z .&(..",)"), (6.27)

@+1

2(D„„)= ((~„)[r,+2r, th)+ P w„(~„„)}. (6.28)
p/1
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The additional diffusion constants

2(D1111& 2 ~1P(&»)+I1(&11)I (6.31)

2(Dpppp&= P wp„(a»)+I'p(opp), (6.32)

2(Dyypp) =2(Dpp») = Lwyp(o'pp&+B py(a 11&]& (6.33)

2(Dinp)=1'p(o&; 2(Dppip)= —wpx(o&, (634)

2(Dpipp& = —~pi(o"&; 2(Dpppi& = I'p(o'&, (6.35)

Ark'= (Dlkji)* (6.36)

can be obtained directly from Eqs. (1.25)—(1.35).
The random forces F;; can by the law of large

numbers be taken as Gaussian random variables since
they are averages over a large set F;,~ of identically
distributed variables. In the optical region the F (t) are
produced by the vacuum Quctuations of the electro-
magnetic Geld and are clearly Gaussian. In the micro-
wave region, the source of electromagnetic noise will be
the cavity walls. Since many atoms contribute to this
"black body" radiation, we can again take F as
Gaussian.

7. PRESERVATION OF COMMUTATION RULES
(AND SECOND MOMENTS)

Since we have computed our diffusion constants by
comparing the mean equations of linear operators with
the mean equations of motion of quadratic operators,
we have necessarily guaranteed that the correct equa-
tion of motion is obtained for the product of any two
operators. Since this is true for either order in which
the product is taken, commutators obey the correct
equations of motion. Thus, if the commutation rules
are obeyed at an initial instant of time they will neces-
sarily be preserved in time. In spite of this, it is of some
interest to display directly what the commutator of the
Langevin forces

(LF„(t),F„(N)])=2(D„„—D„„)5(t—N)

depends on. Let us rewrite Eq. (2.7) as

d(a„a„)/dt =2(D„„)+(A „a,)+(a„A„).

(7.1)

(7 2)

Ke can next interchange the indices p, and v and
subtract to obtain

dK .. .]&/dt=2((D. ,-D..)&+(LA.. .]&
+(L „,a]A). (7.3)

In the steady state these results can be simplified as
shown in Eq. (1.30) to the form'

2((D1221»88= {0'ilail 2+21'12 ]+I'1(ill 8}
= L21'o n—8].

The corresponding diffusion constant for the operators
taken in reverse order takes the corresponding form

2((Dpup))8s = L21'o pp+8] (6.30)

Thus, the commutators of our random forces are ex-
pressed by

2(Pb.-D"))= (I:a.,A.]+LA.,a.])
+d(t„a„,a„]&/dt (7.4)

= ($a„,(da„/dt}]+ /(da„/dt}, a„])
+d(fa„,a„])/dt (7.5)

in terms of certain commutators and their time
derivatives.

Let us work out one important case for the maser
problem as an example. The forces in the population
equations commute and therefore we shall not consider
them. Instead, let us consider the forces that enter the
off-diagonal equations. The appropriate commutator
taking account of the factor 1/N in (6.25) is

2(D1221 Dpl»)/N= (LO' {d0'/dt}]+t fdo /«} o])
+d($o,at]&/dt, (7.6)

where the quantity in brackets is given by

{do/dt} = Lr+i((o.—ppp)]a+ pbD.

Thus, we obtain

(7 7)

fo t,o.]=D/N, P.9)

pot, D]= 2(rt/N; )D—)o]=—2o/N. (7.10)

Thus, our commutators in the steady state take the
simple form of

2((D»py —Dpy»))~8/N= —2 (I'/N)D 28/N-
= —(2/N) LI'Dj8]. (7.11)

This commutator is precisely what one obtains if one
subtracts Eq. (6.30) from Eq. (6.29). Below threshold
in paper QV, however, we treat D as a c number. This
means that the commutators involving D vanish. Thus
if the "dielectric" approximation is made, the last term
in Eq. (7.8) must be omitted and the commutator
reduces to

2((D»pg —Dpu) p„&/N= —2 (I'/N)D (7.12)

as quoted in QV.
Note added irt proof. After the completion of this

manuscript (and after the results sununarized in Secs. 1
and 6 were presented at the 1965 Puerto Rico confer-
ence) we have learned that several members of the
Haken school have adopted a Markofhan approach
closely related to our own. See H. Haken and W. Weid-
lich LZ. Physik. 189, 1 (1966)]; C. Schmid and H.
Risken Libid. 189, 365 (1966)].These papers treat the
atomic Quctuations and lead to moments in agreement
with ours. For the electromagnetic 6eld, the noise
sources are not derived by them but are taken from

2(D»» —Dpi»&/N= —21'(Lo'p]) —d(Eo'&o]&/«

+t (bL '»]+[» ]b') (7 8)

The necessary commutators are
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Senitzky —see, e.g., H. Sauerman, Z. Physik 189, 312
(1966). Our procedure obtains the Geld noise sources
by the same method as that used for the atomic noise
sources, and moreover derives the independence of field
and atomic sources.
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APPENDIX A' MEAN MOTION BY
DENSITY-MATRIX METHODS

As discussed in the text, our aim is to calculate the
system density matrix accurate to second order in the
coupling. We are not concerned with treating the bath
to the same accuracy, therefore we shall not follow
QIII precisely, since the latter treats the bath on the
same footing as the system. The chief difference is that
we shall now set the density matrix of system and bath
p = ofs+ Ap, where o.= tr~p is the system density matrix
and fs exp( —PR——)/trLexp( —PR)j is the unperturbed
bath density matrix. (Previously, we had set
p=o f+Ap )The patt. ern of calculation is the same as
in QIII, and most results look very similar with slightly
diferent meanings for the symbols. To avoid confusion,
and establish notation, we shall outline the key steps
in the argument.

We start with a total Hamiltonian Hr=H+R+V
decomposable into a system part II, a reservoir part E,
and an interaction

(V (t', t),~(t, t')fp)dt',

a~/at= (H,~)+ dt' tr, (V, (V(t', t),~(t, t')f,)),
where

(A7)

V(t', t) =—U(t, t') VU(t, t')-',

~(t, t') = U(t, t')~(t') U(t, t')-'=u(t, t')~(t')u(t, t')-', (Ag)

where U(t, t') is the operator solution of the unperturbed
Schrodinger equation

ihd U(t, t')/dt= (H+R) U(t, t'),
U(t', t') = 1 ,

U(t, t') =u(t, t') expL —iR.(t—t')/h7,

ihdu(t, t')/dt'= H (t)u (t,t') . (A9)

Equation (A/) is very similar to QIII (2.23) with

f(t, t') in the latter replaced by fs, and V obeys
tr~Vfs ——0, but the system average of V need not
vanish. We have obtained the same result found by
Argyres by projection techniques. "

Inserting (A1) into (A7), we obtain the analog of
QIII (3.6):

&90—= (H, ~)
8$

+Z «'(&-'LF*(t—t') F'j+)(Q', (Q'(t', t), (t,t')))

Subtracting foldo/Bt from (A3), Ap= p —fso obeys

itAp/Bt = (H+R, Ap)+ (V,o fp)+C(Ap),

~(Ap) = (V,Ap) f.-t"(V,/ p). (A6)

A systematic expansion in V can be set up by erst
ignoring C and the iterating. Since we wish 0- to second
order in V, i.e., Ap to 6rst order, we stop at the 6rst
term

V= —Z Q/Ft (A1)

where the Q's are system operators, and the F's are
reservoir operators whose mean values vanish in the
decoupled reservoir:

+((F'(t—t') F,))(Q', lLQ, (t', t), (t, t') j+)). (A1o)

The trace of (A10) against an arbitrary system operator
M yields

where
trg(Ftfs) =0,

fs exp( —PR)/trt exp——(—PR)$. (A2)

~&(~))/@= (&(/lf »)))

«'&&sLF'(t —t') F 3+)

The density matrix p of system+reservoir obeys
~ ~

t2

where
Bp/R= (H+R+V, p),

(A,B)= ttA, Bj/i h

(A3)

(A4)

&&((LE~(t t ) Q'(t t )j Q~j))~

+&LF'(t—t') F~j)&&lK~(t,t'),Q'(t, t')j,Q j+)) &, («I)
where (I.), =trslo(t'). If the reservoir correlation

The trace of (A3) then yields

a~/at = (H,~)+tra(V, Ap) . (AS)

»P. N. Argyres, in 3fugnetic and Electric Resonance end
Relcxutioe, edited by J. Smidt (North-Holland Publishing
Company, Inc., Amsterdam, 1965), p. 555.
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times are short, the important (t') are close to t. In
this small time interval, the system may change rapidly
due to its unperturbed motion, but dissipative effects
can be assumed small. Thus we can set o. (t,t') )which,
by (AS) is the density matrix at t obtained from o. (t')
by propagating with neglect of interactions) approxi-
mately equal to o (t):

rr(t, t')=—u(t f)o(i')u(t t') '=o(/). (A12)

This makes our density matrix equation (A 10)
Markoffian. Equation (A11) then reduces to the
Markoffian form

d((M&)/dt = (((M,H) ))

obey the Hermiticity property

mnu g =tan~ ~( + (A20)

o xi+a (A22a)

Making use of the identity (4.5), Eq. (A18) can be
simplified to the form

d(a, ta; &/dt =ice;;(a;ta; &

+P [—(a;ta„&w;„„„++(asta )ws;; +

+(a„tag&w, ii
——(a„ta;&w„„„;—g. (A21)

We shall now retain only the secular terms, i.e., those
on the right-hand side of (A18) or (A21) that vary as
e'"s~'. This is equivalent to retaining those w&& „+ for
which"

du((I" (u)I' &(((~Q'3Q (™~)&&

i.e.,
or k= l, m=l. (A22b)

V= hga„"a„f„„,
and Hermiticity guarantees

(A15)

If the system has a time-independent Hamiltonian,
H(t) =H, then

Q, (t—u, t) = exp( —iHu/h)Q, exp(iHu/h)
—=Q (—), (A14)

and (A13) reduces to the result (3.1) quoted in the text.
We now wish to apply Eq. (3.1) to the case of an

atomic system. The interaction Hamiltonian takes the
form

After removal of the rapid time dependence contained
in a;~u, these are the only terms which survive a short
time average: average over a time At short compared
to any of the relaxation times but long compared to
the reciprocal natural frequencies of the system. An
explicit proof of this point is given in Appendix B.The
set of conditions (A22) define the only ways in which
energy can be conserved if the levels are irregularly
spaced. In this Appendix, we henceforth assume that
there are no special degeneracies such as would occur
for example, in a harmonic oscillator. For this reason
we have given a separate treatment of a harmonic
oscillator in Sec. 3. Retaining only the secular terms
then, Eq. (A21) reduces to the form"

Vt= V mn = em d(a, ta, &/dt= (ice,, I', ')—(a,ta
Making use of the correspondences

Q;~as'ai, I';~ hei,
Q; (—u) —+ a„ta„exp ( ne„„u—),

+hf, M =a ta, ,—

+8,, Q w;„(a„ta„&, (A23)
tnAi

where the transition probability zv; is defined by
(A17)

Wim Wmiim +Wmiim

we obtain our equation for the mean motion of an
atomic operator u;~a; in the form" du exp( —i&a, u)(f, (u)f; (0)) (A24)

d(a;ta;&/dt= iie;;(a;ta;)
—P w» .+(La;ta as'a&)a ta.

&

+Q w„„si—(a ta„$a;ta;,ai,taij&,

where the coeScients defined by

du exp( —ue „u)(f~i(u) f„„(0)&,

(A1S)

and the complex parameter F; is given by

&ij = Pwiijj +wiijj g+ P (wj mme +wimmi ) y (A25)
all m

(A26)

(A27)

~m~at = du exp( —i' „u)(f „(0)fi,i(u)&,

(A19) ~~i ImL Z wjmmj + Z wimmi j+~ieij q (A2S)
mWj mAi

where I';, I'; are the decay rates (1.15) and the erst
term in (A28) is the "Lamb shift" (second-order

20I'or simphcity of notation we change double brackets to
single brackets. This is permissible in view of (816). In this
appendix, ou;;=~;—~; is an unperturbed frequency difference.
In the body of the paper, the perturbed frequency ~;—co,+Acr;;
is represented by ;;, for the sake of brevity.

"The terms in (A22b) always satisfy (A22a). If the system
possesses special regularities of spacing, as in a harmonic oscil-
lator or spin system, then (A22a) permits more secular terms than
those explicitly shown in (A22b).
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perturbation theory energy shift due to reservoir
interactions). The contribution of phase fluctuations
or in a solid what might be called zero-phonon con-
tributions" are summarized in

I ' ' z~co '')~ =
zoic jjj +zoA ii 'zoiijj zoiijj~

~

$j 'V/

1
p . .ph

2

du(Lf" (o)j[f"(u) —f (u) j
—Lf"(u) —f (u)jf (o)), (A29)

du(Lf" (0)—f (o), f"(u)

—f,, (u) j+), (A30)

Gd'i, J +b,QJ l,J

~z+Q) ~ ePh—
2

4=—zh(uP" +zhc0P" —zAa;,',
du(L f;;(0)+f;;(0), f,,(u)

—f (u)3) (A»)

(A32)

FIG. 2. Con6gurational coordinate curves of electronic energy
E versus normal coordinate g are shown for an electron in two
electronic states z and j with ~;;=co;—~;& . The~ —— — . The dashed curves

show theneg el ct electron-phonon interactions. The solid curves
shift produced by such interactions. In particular ho&;;

'~ ~ ~
~ is the

change in separation between minima.

—Zhorph=—
2

du(Lf" (o),f"(u) 3) (A33)

z+M . ,ex

2
du(Lf (0),f"(u)3). (A34)

The extra contribution to the frequency shift describeb
b (A34) is izzzozzzalous in that it is not expressible as
the difference between a frequency shift of level i

y is
1 z and

a shift of level j.In order to understand these formulas
h applied them to the case where the electronic

levels are coupled to lattice vibrations throug t e
interaction (A15) with the reservoir forces defined in
terms of the normal phonon coordinates by

f;;(u) = (tz)-i P„A„'q„(u). (A35)

Neglecting anharmonic interactions between the
phonons, the time dependence of these phonon coordi-
nates is given by

q„(u) =q„cos~„u+ (p„/M~„) sinu„u

and the commutator is given by

Lq„(0),q„(u)$=b„„(ih/M(o„) since„u.

Expressing the time integral

(A36)

(A37)

du sin(0„u= (P(1/co„) (A38)

in terms of the principal-valued reciprocal, the shift in
level i due to zero-phonon contributions is given y

"=—-'P (2„')'/(AMco„') (A39)

and the extra anomalous frequency shift for this case
vanishes:

The complete energy shift then takes the form

&~~' =—-'EL(~ ')'—(~.')']/(M~') (A41)

This result was previously obtained in Eq. (6.7) of our
paper on the Franck-Condon principle. "The frequency
difference ~;; is simply the distance between the
minima of the two parabolas shown in Fig. 2 and the
level shift Ace,; is the extent to which this separation
has been changed by the linear interactions with the
1 tt' It is to be emphasized that the perturbativea ice. is

tion &A23equations on which our mean-motion equation
is based have disregarded the effects of multiphonon
transitions. Thus, the frequency co,; refers to what is
customarily called the sero phorzorz tirze. "This lin-e is
indeed a transition from the lowest phonon state in
one parabola of Fig. 2 to the lowest phonon state in
the other parabola. Since we have neglected changes
in the curvatures in these parabolas the zero-point
phonon energies cancel and the zero-zero difference is
simply the difference between the minima of the
parabolas. To see why the anomalous frequency shift
vanishes in this case we note that if q is any operator
whatever, we can make use of stationarity in the form

(Lq(0),q(t) ])=—(/q(t), q(0)])
=-(Lq(0),q(-t) j) (A42)

Thus the integrand of Eq. (A34) is an odd function ot
the time whereas the integration is taken over an even
interval in the time. To get a nonvanishing frequency
shift it is necessary therefore to obtain cross terms

(Lq„(u),q„(t)j)&0 for hen; ex&0. (A43)

We shall now show that even when such cross terms
are available if the reservoir obeys time reversal the
anomalous frequency shift will vanish.

her; =0. (A40) M. Lax, J. Chem. Phys. 20. 1752 I'1952).
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m po eratorsThe inAuence of time reversa o
is given by

t the t,'me instan T}lusequations a
'Ir (t—to) (83); o( — )j(5m/~t t';d(~)/dt =[~ P],

, ) (84);~,«-o)gm&N)/~" ' '2(D~~)=' 'rVG ' = '~ O'E = CTi,cia ~E '= uTj (A44)

e reverses of the states y1'z are the time re
1 however,b. '-"--,d

' Foranyreservo' y' giro eying
'

an z. o
23we have established

(A45)(I)=(I),

(A46)
Making use of

V—kg (u,

underir o erators are change dd that the reservoir opera owe 6n a

A48)
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J i '= ~Ettrt' ttri fit't' ~' bar ij= (A47)

ij Tj,Ti ~
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'
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ation and time revHermitian con~uga

'
d rev

V = =EVtE i' (AB)b„ =BA;
&(t)b-=&(—t)

where
em =m(t+at) m—(t (85)

dm/ds= i[m—(s), V(t p s—
—s is an interaction operatorwhere V tp s i—s a

—iKp(tp —g)=~iKp(tp —e) P'&—sKp( pV to—s =—e

(86)

(87)
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~tnnyq = dl e *""'"&f (N)f (0))

=wmnr&q +wmnr&q ~ (327)

Using (4.5), (320) can be simplified to

in (321) leads to

d(a a;)/dt=ior;;(a a;)
-z~(. , —-)(&['";," j.".) . .

—&a 'a.[a;ta;,usta, j&wsi „)-, (325)

i.e., to Eq. (A18) with the selection of secular terms
built in, and the w+, w defined as in (A19).

A similar translation of variables in (322) leads to

2(D;;&,i)= —g S(~ „, ~—,)&[a;ta;,a ta j
X[ usta, iu„ at)q& w„„„(326)

(b„tb„&= e '"c(bt(t)b(0)&dt,

(C2)
1

&b'(~)f (0))=-
2m

e'"c(b„tb )d&o.

The transforms of Eqs. (3.9) then yield

[l~+s(~o ~)3b—-=f-; [sv s(~o —~)3&-—'= f-', (C3)

&f'-'f -)=[( sV)'+ (~o—~)'?'&f-'f.), (C4)

so that, if the conunutation rule ([b,btj) =1 is obeyed
at any time, it will be obeyed forever after, even in the
Markofhan approximation.

As a further check on our consistency, let us de6ne24

2(D' sl) =Z( a'ta w sl —+a'tario s

+am aqwmiiq&js+am at'wmjj&o) (B28) &f-"f-&= *"'&f'(i)f(0)&«=». (C5)

In (328), we assume each factor w „nq carries with it,
the corresponding selection factor 8(o&„„,—o&„,). Equa-
tions (325)—(B28) are sufficiently general to inctqide

such regularly spaced systerls as harrlonrc oscillators.
If no regularities occur among the spaces, the only
secular terms that remain obey (A22b), i.e., the sur-

viving terms have the form m „„and m

For the former, one has the identification

wmnnm wmnnm + (wmnnm ) = wnno (329)

(see A20 and A24) in terms of transition probabilities.
Retaining only these secular terms, (328) reduces to

2Dia& i=we(a' aa)c» i—w's(as ai&~ij

+ P w;„&aJa„&S;i8,, +(a,tac)
tS+2

X[Ij'+wjjjj wicjj+wiill wjjil5t'&j&c ~ (330)

Using Eqs. (A20) and (A29), we can write

(I';—ii) co")'~=-'[w" +w""—2w;;"]. (331)

Thus, the coefficient of the last term in Eq. (330) can
be rewritten in the form

Ij+wa'j jj wiijj+wiil c wjjii—
=I;,+r, ,—I;,—s(~~;,+A~, ,—a~;,), (332)

which brings it into agreement with the result (4.6) of
the Einstein method.

APPENDIX C: A MARKOFFIAN AND NON-
MARKOFFIAN DISCUSSION OF

HARMONIC-OSCILLATOR
COMMUTATION RULES

Marco%an Commutation Rules

If we subtract Eq. (3.8) from the corresponding
equation for (bbt), we find that

d&L~P'j&l«=~ v&[b,b'j& (C1)-

Similarly,
(Mt) =ny1 (C7)

and again the commutation rules are preserved.

Relation between Langevin Forces and
Reservoir Forces

Because of the linear nature of our system, there is
little distinction between the Langevin force f (the
extra term on the right-hand side of a dynamic equa-
tion), and the reservoir force g that gives rise to the

m For any two random operators A (i), B(t), we define

A (co) = ec"*A (s)ds,

Bt(ca') = e c"'Bt(t)dh = fB-(ca') $~.

Assuming stationarity, setting t=s+I, and integrating over I,
we Gnd for the product average

(A (co)Bt (o&') )=2orS (co co') (A B„t), —
where

&a a&& f c„&a&„o&,a&& »-'
This procedure follows our classical discussion IV, footnote 13,
with a —+ B~, a*—+ A since in the quantum-mechanical case, it is
usually the daggered operators that carry the positive frequencies.
Similarly,

(A t (ca)B(o&') ) =2och(ca ca') (A „tB„), —

&a &a
& f-c &a&& .&a&.o»=.

A simple rule to remember is that if we stick to exp( —ccacc), it is
always the daggered operator that carries the time dependence,
and orders of operators are always preserved. Qne can readily
verify, by integration by parts, that it is appropriate to use the
rules

(dA/dt) „= a~A„(dAt/—dt) „=ccoAt

Set 1=0 in the second Eq. (C2) and insert (C4) to
obtain

00

(btb& =— [(—'y)q+ (o&
—o&)'j 'yndo& =n. (C6)

2~
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Langevin force. The Heisenberg equation

db/dt= —iso.b+g (t)

suggests that we set

(C8)

f(t) =g(t) —(g(t)).; (g(t)).= —(l~+i~ )b (C9)

where ( )„ is an average over the reservoir as it is
perturbed by the system. This interpretation is per-
missible for non-Markofhan systems. We have, how-
ever, made a Markoflian approximation by giving f a
flat ("white") frequency spectrum chosen automatically
by (3.4) to coincide with the spectrum of g at the
frequency cv,. Thus, for example,

(ft(t)f(u)) =pnb(t —u),

since these equations imply

(C16b)

we cannot, with the accuracy of the present discussion

distinguish between y(to,) and y(&os). We shall con-

jecture, that a somewhat more self-consistent analysis
would require us to absorb Ace into a new unperturbed
frequency ~0 and, in our MarkofBan analysis, evaluate
p= p(too), n=N (too) at the new frequency coo.

It is really more accurate to write

(e t""ft(t)e'"t"f(u))=ynb(t —u) (C16a)
than

Re du e '"~"( gt( u)g)
0

27
Re du e '" "(Lg gt(u)))

(C10)

or

e '"o t(f-t(t)f(0))dt

(f'(t)f(o))«

(C17a)

(C17b)

= /exp (italo, /b Ttt) —1)—'. (C11)

-', y(eo.) = i d—u since, u(Lg, gt (u))), (C12)
0

A&o(&o,) =i du costo.u(fg, gt(u))),

so that the Hilbert transform relationship

To obtain the last step, we split gt(u)g into an anti-
commutator plus a commutator. We next use the fact
that the anticorrnnutator is a real, even function of u,
and the commutator is an imaginary, odd function of u
to extend the integrals to —. If the reservoir is at
equilibrium at temperature X'g, we can then use the
usual relation QIII (7.'7) relating commutators and
anticommutators to obtain (C11).

The dissipation coefficient —,y and frequency shift
h~ regarded as functions of ~, can be written

b& —
beignet (bt)t —bte eruct

F—fee&sot

so that our new equations of motion are

db'/dt= ', qb'+F (t)—, -
d(b')'!«= —'~(b')'+F'(t), -

with

(CIS)

(C19)

(C20)

(Ft (t)F (u)) = ynb (t—u),
(F(u)Ft (t))=y(n+ I)5(t—u) . (C21)

The 5(t—u) could then have a width of the order of the
correlation time without changing the results appre-
ciably. These points are somewhat beyond the scope of
a Markman approach.

respectively. Within the MarkofBan limit of delta-
function autocorrelations, there is no distinction
between these alternatives, but if the correlation time
is long compared to coo ', the erst of these alternatives
is preferable. We shall therefore de6ne

1 " sin~u
cos+,u =-(P

co—cue

leads to a Kramers-Kronig relation":

toto (to,) = ——(P

(C14)

(C15)

Non-MarkoRan Discussion of Harmonic
Oscillators

As mentioned in the Introduction near Eq. (1.41),
this consistent fusion of quantum mechanics with a
Markman description has been achieved by using a
rotating-wave approximation (RWA). The RWA was
introduced by the choice of the interaction V in (3.2).
The full interaction would have been

For the case &(to) =&=const, Ate=0. In any case, dto
is usually small compared to the range of frequencies
over which y(to) varies signifLcantly. Since we must
assume that the spectrum of g varies slowly near or„

N. N. Bogoliubov and D. V. Shirkov, Introduction to the
Theory of Qgalttzed Fields (Interscience Publishers, Inc. , New
York, 1959), Sec. 46. Equation (C15) is really an equation for
ate(te, )—tlat&(te), but We Can uSually aSSume ate(oe) =0.

V= —QG; G (Zbto P'(g+gt) (C22

Q = (b/2, )'tsi(b —bt) P= ('Ate, )'is(b+br) —(C23)

and would have lead to a decay term of the form
-', y(b+b") in both the db/dt and dbt/dt equations, or to
the equations

dQ/dt= P dP/dt = —toe'Q —yP+F (t) . (C24)
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A proper comparison with the full interaction procedure
can only be made outside the Markof6an framework,
The Langevin equations (C24) when combined and
written in Fourier form lead to'4

ik +42
&LQ,Pj&=—

(~'—»')'+ (~v)'
=ih .(C37)

If we use the commutator (C33) with y(co) =7;
~0= const,

fGlp to zeal'y)Q(y =F(y

so that the spectrum of F is given by

C25
Senitzkyrs has chosen the commutation rule (1.38) in
terms of principal-valued reciprocals. Thus,

F.».=DQ.tQ. D=L(-. --)+(-» j, (C26)

where

&LP.,P.'g&s,.;t.~v = 2vh~p~/I ~l .

The insertion of (C38) into (C36) then yields

(C38)

&Q-"Q-)= -'"'&Q(t)Q(0)&« (C27) (LQ Pj)—hL1 —u'j "'
X(1—1/x arctanL2p(1 —p,')' 'j), (C39)

can be found from QIII Sec. 7 to be

&Q-'Q-&=»( )h ( )/D( ) (C28)

&F„tP„&= 2y ((u) hppn(pp),

&F„P„t)= 2y((o)ho&gn((u)+1j,

n(&u) = Lexp(hpp/hT) —1j ',

(C29)

(C30)

(C31)

where T is the temperature of the reservoir with which
the harmonic oscillator interacts. If the reservoir con-
sists of a set of harmonic oscillators, these results are,
in fact, exact."

The results (C29), {C30) are not independent since

where the dissipation coefficient 7 in the non-MarkofFian
case is allowed to be frequency-dependent. In this way,
we find

where p= (y/2top). This result has errors of first order
in y/~p as shown in (1.39).

If we were to regard (C22) as a split of F into its
positive- and negative-frequency parts, we would have

&f„f„t&= (~/~p)pLn(~)+ 1j, ~)0

=0, co+0. (C40)

&f„f„t&=yLn(~p)+1j, all co,

&f„tf„)=yn(top), all to, (C41)

If, furthermore, we were to set co=0)p 1n (C40), this
would lead to a spectrum that is white except for a
jump at co=0 from the spectrum at —~o to that at coo,

This is Senitzky's result. Our procedure is equivalent
to the choice

F.'=P .; ~(--)=~(-),
n(—tp) =—Ln(to)+1j.

i.e., two white spectra with no jump. Within the RKA,
our procedure leads to exact preservation of the com-

(C32) mutation rules as shown in (Cl) and (C6).

The commutator is given by

&(P„,P„t))= 2hppy ((o) (C33)

APPENDIX D: SOLUTION OF THE MARKOFFIAN
HARMONIC-OSCILLATOR DENSITY-

MATRIX EQUATION

P„t=itpQ„t, (C35)

1
(LQ,Pj)=— ~»~&L~-P'-'j&/D(~) (C36)

2'
Hy using the Heisenberg equations of motion and solving for

the reservoir oscillators in terms of the known motion of the system
oscillator, one can readily show that the mean equation of motion
of our system oscillator, e.g., QIII (4.13) (omitting j/i terms)
is exact. The spectrum (C28) or QIH (7.11) is then exact since it
uses only the correct mean motion and the Buctuation-dissipation
theorem. Note, however, that if y(co)&constant we must also
regard co02—=co,m+Reb(co) of QIII (4.13) as frequency-dependent.
The moments of the Langevin forces (C29), (C30) are expressible
directly in terms of y(ru), independently of ~p.

an odd function of to. The noise caeeot therefore be made

white even whee p(&u)=&=a constant. It is easy to
verify in this case that the commutation rules are
obeyed by using

00

&m, P(t) j&=— e*"'&~&m- P-'3) (C34)
2~—

aa/r)t=P; A;oB;,

where A; and 8; are any operators,

r)&M)/r)t= P; &BPXA;&

(D2)

(D3)

Instead of proving the exactness of (3.6), we shall
instead derive an equation for the density matrix 0- of
a Markman harmonic oscillator. We shall then solve
the equation for o- and show that the solution for 0- is
identical to the exact solution found by Louisell and
YValker" for the case of rotating-wave coupling to a
reservoir consisting of a set of harmonic oscillators.

An equation for o. (t) can be obtained by combining
(A10) and (A12). To avoid having to re-identify the
constants, we shall start instead by rewriting (3.3),
using the identiftcation (3.5), in the form

r'1&~)/r'lt =
& (M, htopbtb) &+-,'y&bt LcV,bj—$3II,btfb&

+»&Lb, l:~b'j]& (D1)
%e then note that if
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so that the equation for 0 can be obtained by inspecting
the equation for (M). After some rearrangement, our
equation for 0- takes the form

Bo/Bt= (Acspb'b, o)+go+ ', y{-b'$b,o]+$o b']b)
+y(n+1)LLb, r],bt], (D4)

Underneath the X, we have only c numbers, and can
use the usual rules of differentiation, and can write
factors in any order. Thus,

Bo &"&/Bbb= OI{5tBS/Bs5}=K{sBS/Bz}, (D10)

Eq. (D5) can in this manner be rewritten as

Bo/Bt = (Aced pbtb, o)+go+ ',y{bt-Bo/Bbt+ Bo/Bbb)

+7(n+1)B'o/BbBbt, (D 5) X
where we use

8 80 8 80—=LLb, ],b']= —=—Lb, L b']] (D6)
Bb Bbt Bbt Bb

BS(s) B
=X ~—(sS)

8] BZ
B (BS)

+y(n+1)—si (, (D11)
Bs EBs)

The Louisell-Walker solution" (when no external
driving forces are present) is a function only of btb.
For such a o., the erst term in (D4) or (D5) vanishes.
The remaining terms in (D5) have, with malice afore-
thought, been arranged so that if 0.= o.&"~ is in normal
order" (all bt operators to the left of all b operators)
these terms are already in normal order.

To solve (D5) we use the normal ordering operator
K discussed by Louisell. " If g(b, bt) is any classical
function of the c numbers b and bt, and if g" (b,bt) is
the same classical function arranged so that all (bt)'s
appear to the left of all b's, then the operator obtained
by replacing b by b and bt by bt is written

from which we obtain the c-number equation

BS(s,t) B,„BS
=y—(sS)+y(n+1)—s . (D12)

BZ BZ- BZ—

(D13)

(D14)

(D15)

By direct substitution, we can verify that

S(s,t) = 9 (t)] ' expr —s/y(t)]

is a solution of (D12), provided that y obeys

dy/dt =y (n+1) yy—
so that the density matrix is given by

o = $y(t)] 'K{expL—P5/y(t)]) .

g"(b bt) —=K{g"(b bt)) .

Thus, the operator K converts a c-number function to
an operator (that is already in normal order) by a
de6nite rule.

Let us now assume that a solution to (D5) can be
written in the form

The relationship Eq. (3.68) of LouiselP'

K{exp[(e*—1)5tb]) = exp (xbtb)

permits this result to be rewritten in the form

0= 1
y(t) — y(t)-

(D16)

(D17)

o &"& (b,bt) =K{S(s)) s= btb (D8)
from which it is evident that

Since diGerentiations do not disturb normal order, we
have

tr0-= 1. (D18)

Bo&"&/Bbb = Ot{BS(z)/Bbb) . (D9)
'7 For a lucid account of normal ordering and the normal

ordering operator see W. H. Louisell, Radiation and Eoisein
Quantum 8/ectronics (McGraw-Hill Book Company, Inc. , New
York, 1964), Chap. 3.

The relations (D14), (D15) de6ne the exact Louisell-
Walker" solution for the case y= const (independent of
frequency), and y(t) has the interpretation

y(t) = (b(t)b'(t)). (D19)


