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leaves the first integral to evaluate. Now from (6.4) and (6.18), we see that
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Finally, we see from (6.18) and (A4.10) that we can write
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For a quantum system describable in a Markoffian way, via a set of variables a= {a1,az,- + -}, we show that
the Langevin noise sources F, in the operator equations of motion da,/d¢=A4 ,(a)+F, possess second mo-
ments (F,()F, (#))=2(D,,(a,))5(t-u). The diffusion coefficients D,, can be determined from a knowledge of
the mean equations of motion via the (exact) time-dependent Einstein relation 2(D,,)=—(4,4,)—(2,4,)
+d{a,(#)a,(#))/dt, where ( ) represents a reservoir average. The sources F,,F, do not commute with one
another, and as a result the commutation rules of the @, are shown to be preserved in time. The mean motion
and diffusion coefficients are calculated for a harmonic oscillator, and for a set of atomic levels. We prove that
two dynamically coupled systems (e.g., field and atoms) have uncorrelated Langevin forces if they are
coupled to independent reservoirs. Radiation-field-atom coupling adds no new noise sources. We thus obtain
simply the maser model including noise sources used in Quantum Noise V. Direct calculations of the mean
motion and fluctuations in a system coupled to a reservoir yield relationships in agreement with the Einstein
relation. For reservoirs violating time reversal, anomalous frequency shifts are found possible that violate the
Ritz combination principle since Awis-+Awes+Aws: need not vanish.
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1. INTRODUCTION AND SUMMARY

UR treatment of quantum noise in this paper and

the preceding papers in this series® closely parallels

a corresponding discussion of noise in classical systems.?
The first paper (I) in our classical series provides a quasi-

1 A reference to QV is a reference to the author’s fifth paper on
quantum noise and relaxation. QI: Phys. Rev. 109, 1921 (1958);
QII: Phys. Rev. 129, 2342 (1963); QIIL: J. Phys. Chem. Solids
25, 487 (1964); QIV: present paper; QV: in Physics of Quantum
Electronics, edited by P. L. Kelley, B. Lax, and P. E. Tannenwald
(McGraw-Hill Book Company, Inc., New York, 1966); QVI:
“Moment Treatment of Maser Noise” (unpublished) ; QVIL: ““The
Rate Equations and Amplitude Fluctuations” (unpublished).

2 A reference to IV is a reference to the author’s fourth paper
on classical noise. I: Rev. Mod. Phys. 32, 25 (1960); I1: J. Phys.
Chem. Solids 14, 248 (1960) ; III : Rev. Mod. Phys. 38, 359 (1966) ;
IV: Rev. Mod. Phys. (to be published); V: Bull. Am. Phys. Soc.
11, 111 (1966) ; VI: ibid.

linear approach to stationary Markoffian random
processes. In the quasilinear case, it was easy to obtain
the corresponding Langevin theory of noise sources.
This work was generalized in (III) and (IV) to include
classical nonstationary nonlinear Markoffian processes
treated first from a Markoffian point of view and
second from a Langevin noise-source point of view. In
Paper 1V, we emphasized the advantages and flexi-
bility associated with the Langevin noise-source
approach.

The present paper extends the noise-source technique
to quantum systems. Quantum (and classical) systems
experience dissipation and fluctuations through inter-
action with a reservoir. Qur philosophy is that the
reservoir can be completely eliminated provided that the
frequency shifts and dissipation induced by the reser-
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voir are incorporated into the mean equations of
motion, and provided that a suitable operator noise
source with the correct moments are added.

Thus, if a={ay,as,---} is some set of system oper-

ators, and &a,)/di={A,(a)) 1.1)

are the correct mean?® equations of motion including
frequency shifts and damping, then we propose that

da,/dt=A,(a)+F,(a,t) (1.2)

is a valid set of operator equations provided that the
operators F, are endowed with the correct statistical
properties. Thus the reservoir has been replaced by the
familiar electrical engineer’s black box describable by
an impedance (the dissipative resistive terms and
frequency-shift-producing reactive terms incorporated
into 4,) and an associated noise source F .

The mean equations of motion in more fundamental
recent papers on noise in masers are obtained by
eliminating the reservoir to second order in perturbation
theory. If one calculates, for example, the time rate
of change of the occupancy of some state, one obtains
the usual sort of transport equation [see Eq. (1.13)
with 7=4] whose coefficients are transition proba-
bilities calculated to second order. One then adopts the
form of the resulting equations of motion as a model for
a maser—but regards the coefficients as experimentally
determined, i.e., as the correct, not the second-order
transition probabilities. Moreover, the models usually
chosen are Markoffian in the sense that the future of all
operators (or equivalently of the density matrix) is
determined by the present without requiring an inte-
gration over past histories.

Although the F’s are operators, for most problems
we only need to know the reservoir averages over low-
order moments and commutators of these operators.
We regard our task then, as the determination of the
moments of the F,, in terms of the experimental dis-
sipation coefficients, within @ Markoffian description.

The most obvious method of attack is to calculate
the reservoir contribution to 4, to second order in the
system-reservoir interaction V [see Appendices A and
B]. Then one must calculate the mean moment
(F,()F,(u)) to second order in V (see Appendix B).
By comparing the coefficients in these two calculations
we arrive at a fluctuation-dissipation relation valid for
nonequilibrium situations. We shall show in Sec. 2,
that the relation so obtained is indeed exact.

To see how to implement this program, we note that
Egs. (1.1) and (1.2) have been so chosen that the first
moment of the Langevin forces vanish:

(Fu)=0, Au(ap)=(e,(+A)—a,@®))/At. (1.3)

3'We use single brackets, { ), to denote an average over an
ensemble of reservoirs. However, we are dealing with a single
system. Thus (a,) is still a system operator. A subsequent average
over an ensemble of systems will be denoted by double brackets.
Thus ({(a.(#))) is now a number, but it may be time-dependent,
if the system is started off in a nonsteady state at time #. We will
use {{a,))ss or d, to denote the steady-state system average.
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Thus, by computing the change in @, over some suitable
short time interval* A, due to the interaction V, we can
determine the reservoir contribution to 4,.

Next we note, that if the reservoir forces possess a
finite correlation time, i.e., (F,()F,(x))7#0 for |i—u)|
~ ¢, the system will acquire a memory of the past and
become non-Markoffian. Thus we shall take our
moments of the random forces F, in the form

(Fu@F,(u)y=2(D,,(a,t))6(t—u). (1.4)

[A direct proof that (F,(t)F,(u))=0 for {u is given
in IV (8.12) for the classical case, and in (2.19) for the
quantum case. |

Setting ¢{=s, u=s" and integrating (1.4) from ¢ to
i+ At on both these variables, we obtain®

1 At t+At
2<DW>=Z;,/ ds/ ds'(F,(s)F,(s")). (1.5)

Integrating Eq. (1.2) over an interval A¢, and inserting
the results into (1.5), we obtain

2Dw)=(Lan(t+20)—a,(t) JLa,(+A0)—a, (1) 1)/ At (1.6)

after discarding terms (4 ,At)(4,Af)/At that disappear
as At— 0. Equation (1.6) is reminiscent of the tra-
ditional definition of a spatial diffusion coefficient :

2D=([x()—x(0) P)/¢.

Equation (1.6) is also the basis of our direct pertur-
bation calculation of the diffusion coefficients in
Appendix B. We calculate the change Aa, in a, over
the time interval A¢ induced by the interaction V, and
average Aa, Aa, over the reservoir variables. Since this
average depends on the order of the factors, D,, is not
symmetric. Thus F, and F, do not commute.

The exact method of Sec. 2 consists in noticing that
the equation of motion (2.7) for {(a,a,) involves (D,,)
and emphasizing that this equation can be inverted to
solve for (D,,):

2ADy)y=—(4a,)—(a,4,)+d{a,(O)a,(®))/dt. (1.7)

This equation is well known to us as I (5.12). What is
new is that we notice that a knowledge of the mean
motion of all operators provides us with the fluctuation
moments D,,. In the steady state, the last term of (1.7)

¢ We shall choose this time Af to be long compared to the
reciprocal natural frequency (ws)™? of the system, and short com-
pared to the system relaxation time I'". More precise restrictions
will be given in footnote 5 below.

5 We actually assume that the correlation time =, of the
Langevin forces is short compared to all system relaxation times,
T, but not zero. This correlation time is usually long compared
to the reciprocals of the natural frequencies (ws)™! of the system.
In such a case, the system behaves in an essentially Markoffian
way when changes are observed over time intervals Az that obey
(0s) 1 <7, <AIKIT1. Thus the diffusion coefficients (1.5) or (1.6)
are calculated in Appendix B by the use of such time intervals.
The motion of a(f) in Fu(a(f),t) during such time intervals is
important as shown in Appendices A and B and in IV, Secs. §, 6.
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can be omitted and (1.7) reduces to the Einstein
relation between diffusion coefficients and mobilities
[seeI (5.18), I (6.14)7. The generalized time-dependent
Einstein relation (1.7) is the basis of our exact calcu-
lations of D,, for harmonic oscillators in Sec. 3 and
nonuniformly spaced multilevel systems in Sec. 4. The
resulting exact ‘“fluctuation-dissipation” relations be-
tween D, and the reservoir contributions to 4, are in
precise agreement with those found by direct use of
perturbation theory. The Einstein method, however,
guarantees that products of operators propagate
properly so that commutation rules are necessarily
preserved in time.

Note that (D,,) as calculated by (1.7) is not only a
system operator,® it is, in general, time-dependent.
Thus, the way in which the noise sources change during
the turn-on of a laser is simply described within the
present scheme.

With the noise sources included, our Egs. (1.2) are
valid operator equations. In particular, if variables
@sy1, ***, G vary more rapidly than ay,a,,- - -,a,, we
can solve for the fast variables in terms of the slow
variables, and obtain a set of equations for the usually
mauch smaller set of slow variables. The price paid for
this is that the slow variable equations contain integrals
over history and nonwhite noise sources. If, however,
one examines the solutions only at frequencies small
compared to the decay constants of the fast variables,
then it is adequaie to treat the slow variables as Markoffian
and the corresponding noise sources as white. When this
is done, an enormous practical simplification has been
achieved in the solution of complicated problems such
as laser noise.

Since our equations are operator equations, the
equations for db/dt and dbt/dt (where b and b are
destruction and creation operators of a photon field)
determine the equation for db'8/dt, the rate of change
of the number of photons. By applying the technique
just discussed to eliminate all other variables but the
upper state population N, in a maser and 475, we show?®
that the Markoffian equations for 4’6 and N, are the
familiar rate equations. Moreover, these equations
contain just the shot noise sources discussed by
McCumber,” plus some thermal noise sources important
in masers but not lasers. In summary, we have estab-
lished the rate equations (and their noise sources) on
firm theoretical grounds, as valid when 5% and N, are
the slowest changing variables in the complete set
required to describe a maser or laser.® This adiabatic
approximation can be avoided, however, permitting
the extension of the noise calculation to higher fre-
quencies, or to systems with other slowly varying
populations or polarizations.?

6 See paper QVII, Ref. 1 (to be published).

7D. E. McCumber, Phys. Rev. 141, 306 (1966).

8 The nonadiabatic treatment (to be published) represents work
done jointly with D. E. McCumber.
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Summary

Before discussing the details of our computations,
it may be worthwhile to swmmarize our principal
results:

If b and b" are the destruction and creation operators
associated with a harmonic oscillator, whose com-
mutator is unity, then we find that the appropriate
equations including dissipation and fluctuations are

db/di=— (iwet37)0+f(1);  (f())=0, (1.8)
dbt/di=(iwo— 30"+ 1105  (f1())=0. (1.9)

The parameter v is the decay constant of this harmonic
oscillator. The nonvanishing moments of the Langevin
forces are provided by

(O f ) =yd(t—u),
(fe) f1@)=r@+1)s(t—u).

The parameter % can be regarded as defined by the
second-moment equation

d{d'bY/dt=~i—~{b'b);

(1.10)

@y—n, (1.11)
i.e., the reservoir drives the system occupation number
b'b toward a mean value of . A harmonic reservoir at
equilibrium would do this if its temperature Tr were
given by

= [exp (hwo/kTR)— 1]*1 ,

as shown in Eq. (C11).
Our atomic equations in the absence of any regu-
larities of energy spacing are given as

d (aﬂa,-)/dt = ('L'wi,-—— Pij) ai“a,-
484 2k wanart art+F;,
Ty=Tji; wiy=—wj; Fj=Fy)t,

(1.12)

(1.13)

where the w; is a transition probability and the I';
and w;; are defined in
Ty=3+ )+ Tap=0;
wij=wi—wj+Aw¢j.

(1.14)

The superscript ph denotes a contribution to the results
associated with phase fluctuations. We define

=2 wiy; w;=0, (1.15)

k]

so that T; represents the total transition rate out of
state j. Our random forces F;; have a vanishing first
moment and second moments defined in

(Fiy=0; (Fi()Fia(u))=2Dyj2) (t—u) , (1.16)
Dijr= (Duji)*. 1.17)

An explicit and nontrivial expression for the general
diffusion constant {D;;x) (in the absence of regularities
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in energy spacing) is?

2(Dijiry =08 Lsj+Tri—TaKalar)
F0adiwigladaq)
—diwirlar ar)— driwri{ai ;)

— 8 (witon—wa){ada). (1.18)

The form of Eq. (1.13) was obtained by a perturbation
treatment in Appendix A. However, once we grant this
form, the diffusion constants of Eq. (1.18) follow with-
out approximation. The parameters I';;, wi can be
regarded as experimentally determined. The last term
in Eq. (1.18) vanishes in all cases in which w;; can be
decomposed into two parts, one associated with w; and
another associated with w; in the usual subtractive
fashion. Whether or not w;; can be written in such a
subtractive form is not a formal but rather a physical
question. If the interaction between our system and
our reservoir takes the form of

V= hZa,-*ajfﬁ y (119)

where f;; represents a set of reservoir operators, then
the transition probabilities above are given in

e / 0t exp(—icmid) fym(D) frs()). (1.20)

—0o0

The phase contribution to the damping constant is
shown in Appendix A to be given in the form of

1 0
Fﬁ"“=5 / L fi(0) = f3i(0), fu(®— fz()14), (1.21)

and the change in w;; is given in

Awij=Aw,~—-ij+Awi,-ex, (122)

ij= Z Im

m#j

dt exp(—”:wmthfim(t)fmi(O))
i / AL, 150D, (1.23)

A==} / AR f35(0), fs() D) (1.24)

The “extra” term shown in Eq. (1.24) is not ordinarily
decomposable in a subtractive way. We shall show in
Appendix A that this anomalous frequency-shift term
vanishes in cases in which the reservoir obeys time
reversal symmetry and the levels ¢+ and j are non-
degenerate levels with respect to time reversal. More-
over, we show that this extra term in Eq. (1.24)
vanishes whenever the reservoir forces can be decom-
posed into independent excitations such as phonons or
spin waves, provided that these excitation operators
belonging to different modes commute with one another
at all times. Thus to see an anomalous frequency shift
it is desirable to use a reservoir violating time reversal,
for example, a ferromagnet or an antiferromagnet. In
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this case, the extra frequency shift will involve the
interactions between the spin waves.

The general formula (1.18) for the diffusion constant
Djji1 is not particularly illuminating and it is worth-
while to display explicit results for a number of special
cases. From now on if the subscripts of D are indicated
by different letters then they are understood to be
necessarily different unless otherwise indicated. Our
first results are those appropriate to shot noise:

2Disisy= 2 wifad'al)+Taia:)

i
=atomic (rate in+rate out), (1.25)

2Diiji)=—wsiaifa;)—wia;la;)
= — (transfer rate). (1.26)

Equation (1.25) describes the typical rate-in plus rate-
out contribution to the shot noise source associated with
population of level 7 and Eq. (1.26) contains the sum of
the transfer rates from levels ¢ to j. These results have
previously been obtained for classical systems in I,
Sec. 12 and IV, Sec. 9. The diffusion constant most
relevant for off-diagonal elements of the atomic density
matrix is given in

2(Dyjji)= (Ty42T) afa)+2 wiladaq), (1.27)

which has no simple classical analog. This moment
D;j;; is valid even in the presence of coupling to a
radiation field that induces transitions between levels
7 and j. In this case the transport equation for the
population of level 7 is given by

d(@"di)/di =— I‘i(aifai)'i’z wiq(“q*aq>+ <B,) ’

B;=radiative rate into <.

(1.28)
(1.29)

Assuming that we are in the steady state, in other words
setting Eq. (1.28) equal to 0, we can simplify the right-
hand side of Eq. (1.27) to obtain the steady-state
second moment?

2<<Diiji>)steady state™ 2I‘ij(<aifai>>ss_ <<Bi>>ss . (1 30)

The subscript ss is to remind us that the steady-state-
system ensemble average is understood here. This
result is stated without proof in QV (2.7) using & and
B; as abbreviated notations for the ss averages. A more
complicated diffusion coefficient is given in
UDyjj)= (Tj+ T+ TPr—T i) {ai a)
-i(wi,-+wﬂ——wu)(aﬂaz), (131)

which appears to depend on the anomalous frequency
shifts. Some diffusion coefficients descriptive of corre-
lated population and phase fluctuation are given by

2UDijrey=—wr{ala;), (kcanequals) (1.32)
UDsiy=—walastar), ( canequali) (1.33)
UDiizy=Taia;), (1.34)
UDiji;)=Txada;). (1.35)



114

In Sec. 5, we establish that if two systems that
interact with independent reservoirs are coupled to-
gether dynamically, no new noise sources are intro-
duced, and no correlations occur between the noise
sources associated with different reservoirs. The original
noise sources are shown to be slightly modified by the
dynamic interaction.

In Sec. 6, we use the results to construct the model
of a maser used in QV. In Sec. 7, we obtain a “com-
mutation rule Einstein relationship” and use it to show
how the moments must be modified if the population
difference in a maser is treated as a number rather than
an operator.

Relation to Previous Work

There is, of course, an extensive literature on dis-
sipation in quantum mechanics which we cannot hope
to review properly here. This literature can be divided
roughly into five categories:

(A) The consideration of a system in interaction
with a reservoir, and the (approximate) elimination of
the reservoir to obtain effective equations of motion for
system operators, or the system density matrix.® The
disadvantage of this procedure, including our own
QIII, is that it provides information only about oper-
ators, or fluctuations at one time. To obtain two-time
correlations one must use the equilibrium fluctuation-
dissipation theorem, as in Sec. 7 of QIII, or one must
use our generalization of this theorem in QII to non-
equilibrium systems. Only in this way, can Scully,
Lamb, and Stephen?® argue that the decay constant they
find is indeed the maser spectral linewidth.

(B) Green’s function and moment methods'® attack
two-time correlation functions directly, but generally
can be solved only by applying a truncation procedure
or a linearization.

(C) A number of papers have been written intro-
ducing classical noise sources in a heuristic way.!

(D) Quantum noise sources have also been intro-
duced into maser calculations in a heuristic way, or by
methods similar to the perturbation techniques adopted
here.1?

9 Many earlier references are given in QIII. Recent papers with
application to masers and lasers include W. Weidlich and F.
Haake, Z. Physik 185, 30 (1965); M. Scully, W. Lamb, and M.
Stephen, Physics of Quanium Electronics, edited by P. L. Kelly,
B. Lax, and P. E. Tannenwald (McGraw-Hill Book Company,
Inc., New York, 1966).

1 . E. McCumber, Phys. Rev. 130, 675 (1963) ; V. Korenman,
Phys. Rev. Letters 14, 293 (1965) and Physics of Quantum Elec-
tronics, edited by P. L. Kelley, B. Lax, and P. E. Tannenwald
(McGraw-Hill Book Company, Inc., New York, 1966). See Sec. 6
of QV; also QVI. C. Willis, J. Math. Phys. 6, 1984 (1965); R. H.
Picard and C. R. Willis, Phys. Rev. 139, A10 (1965).

1 K. Shimoda, T. C. Wang, and C. H. Townes, Phys. Rev. 102,
1308 (1956) ; W. Lamb, in Quantum Optics and Electronics (Gordon
and Breach Science Publishers, Inc., New York, 1965). H. A.
Haus, IEEE J. Quantum Electron. 1, 179 (1965). C. Freed and
H. A. Haus, Appl. Phys. Letters 6, 85 (1965). E. I. Gordon, Bell
System Tech. J. 43, 507 (1964). W. G. Wagner and G. Birnbaum,
J. Appl. Phys. 32, 1185 (1961).

2 H, Haken, Z. Physik 161, 96 (1964); 182, 346 (1965). H.

MELVIN LAX

145

(E) Detailed consideration has been given to the
harmonic-oscillator'® and two-level systems.!* Louisell
and Walker!® have provided an exact solution for the
system harmonic oscillator interacting linearly with a
bath of harmonic oscillators, for ‘thermal” initial
conditions.!’® Although the Louisell-Walker calculation
is exact, it suffers from the usual objections to method
(A) above. Schwinger and Senitzky have actually
written down harmonic-oscillator equations with quan-
tum noise sources. Senitzky,'* in our notation,'® uses
the equations

Q=P, P=—yP—wQ+F(), (1.36)

7 1
<F(t)F(u)>=27hwo[(ﬁ+%)6(l—u)——2—6’t—_—u:|, (1.37)

where we have corrected a sign in the last term in-
volving the principal-valued reciprocal. We show, in
Appendix C, that Senitzky’s commutation rule

iyl

1
(P___
T —u

(CF@O,F(w)])=—

leads to a commutator

<EQ’P]>=M[1-$(§0>+OGO>2] (1.39)

that is close to the desired value when y<<wo, whereas
the correct commutation rule [see Eq. (C33) when v
is not frequency-dependent ] for the Langevin forces

(LF @), F (w) )= 2ityd' (1— ) (1.40)

leads to precisely the correct commutation rule for Q
and P, as shown in (C37).

(1.38)

In any case, the commutator is odd in {—u. Hence
its Fourler transform is odd in frequency w and the
spectrum of noise for a quantum oscillator can then not
take rigorouly the white (flat) form needed to make the
treatment Markoffian.

Of course, a noise spectrum need not be exactly
white for the Markoffian approximation to be a good

Haken and H. Sauermann, zbid. 173, 261 (1963); 176, 58 (1963).
H. ]J. Pauwels, thesis, Massachusetts Institute of Technology,
1965 (unpublished).

18W. H. Louisell and L. R. Walker, Phys. Rev. 137, B204
(1965); 1. R. Senitzky, ibid. 119, 670 (1960); 124, 642 (1961);
J. Schwinger, J. Math. Phys. 2, 407 (1961).

4], R. Senitzky, Phys. Rev. 131, 2827 (1963); 134, A816
(1964) ; 137, A1635 (1965).

15 An extension of Louisell and Walker’s work to the initial
condition of a definite excitation state has been made by H.
Cheng and M. Lax, in Quantum Theory of the Solid State, edited
by Per-Olav Lowdin (Academic Press Inc., New York, to be
published). See also A. E. Glassgold and D. Holliday, Phys. Rev.
139, A1717 (1965).

16 Since Senitzky (Ref. 13) uses a harmonic oscillator that
couples to a reservoir via its momentum (whereas we use the
coordinate), comparison with our notation can be made by the
transformations: Q -—P, P—Q, B=v, D@#)=F(), and by
setting his 4rc?=we?.
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one. It need only change little over the width of the
resonance. Our method of calculation of the strength
of the noise sources seems to (automatically) replace
nonwhite sources by white sources whose strengths
agree at the resonance frequency. For the harmonic
oscillator, a special difficulty arises because there are
fwo resonant frequencies wp and —wo, and the noise
does not agree at these frequencies. However, these
frequencies must be well separated we>y, in order
that*®

WK ALY, (1.41)

which is required for a Markoffian description to exist.
If y<<wo the rotating-wave approximation!’” (RWA) is
valid, and the relation P« (b7+45) is essentially a split
of P into its positive and negative frequency parts,
and F« fi+f is a similar split. Thus f* should have a
white spectrum that corresponds to the spectrum of F
at wo, and f is similarly determined by the spectrum
of F at —wo. When we treat b and 4 as our fundamental
variables, in the RWA in Sec. 3, these results appear
automatically. If, however, we had insisted on using
Q, P as variables, without the RWA, we could not have
achieved a consistent Markoffian description that pre-
served the commutation rules.

The two-level analysis of Senitzky'* does not seem
to express the moments of the Langevin forces in terms
of transition probabilities and populations so that it is
difficult to make a comparison. The work of the Haken
school® has so far not indicated any population de-
pendence of their noise sources. Their quantum-noise-
source treatment also seems to be special to a two-level
system.

Our general formula (1.18) for the noise sources in a
multilevel system seems therefore to be completely new.
The phase or zero-phonon contributions to the decay
and frequency shifts in (1.13) are most closely related
to the work of McCumber.!® The general expressions
for the phase contributions to the damping and fre-
quency shift (especially the anomalous shift) in a
multilevel system seem to be new.

2. EINSTEIN RELATIONS, DIFFUSION
COEFFICIENTS, AND EQUIVALENCE
TO MOMENT METHODS

If we rewrite our fundamental Langevin equation in

the form
da,/di=A,(a))+F.(a)), (2.1)

17 For a harmonic oscillator, the RWA consists in neglecting
the counter-resonant term #vb! in db/dt= —iweb—%y (b+b1)+7,
and a corresponding term ivb in dbf/dt=dwebT—3y (b+01)+ fT.
The distinction between the free decay frequency [we—3vy? ]/
and wp is thus neglected. The RWA has been extensively exploited
in magnetic resonance problems: I. I. Rabi, N. F. Ramsey, and
J. Schwinger, Rev. Mod. Phys. 26, 107 (1954); A. Abragam,
Principles of Nuclear Magnetism (Oxford University Press, Oxford,
England, 1961), Chap. II; F. Bloch and A. J. Siegert, Phys. Rev.
57, 522 (1940).

18 D. E. McCumber, Phys. Rev. 135, A1676 (1964); J. Math.
Phys. 5, 221, 508 (1964).
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then the assumption that the system has a Markoffian
description can be phrased in the form

F,(s) is independent of @,(¢) if s>¢. (2.2)

In particular, these operaiors must commute. If (2.2)
were not obeyed, the statistics of the random forces F
would depend on past history and the system would
acquire memory effects. For present purposes we only

need this independent assumption in the much weaker
form

(F,(s)Ca@®))=(C@@®)F.(s))=0 if s>t, (2.3)

which merely describes a lack of correlation between
the random force, at time s, and an arbitrary operator
C(a) at an earlier time f£. We now write down the
algebraic identity

a,(t+Aha, (tH A —a,(D)a, ()

=Ag,Aa,+Aae,+aha,, (24)
where
Aay=a,(t+A)—au(), (2.5)
Y
Ag,= A,‘At—l—/ F,(s)ds. (2.6)
t

From Eq. (2.4), we can now write down the equation
for the mean motion of the product of two operators:

Ha,(B)a,(®))/dt=2Du)+{A0,)+(a,4,). (2.7)

In the steady state when the second-order operator
does not change with time we obtain the standard
Einstein equation

2<Duv>steady state™ — {4 uav>ss_ <auA V>ss . (28)

Aside from the preservation of the order of the oper-
ators, Egs. (2.7) and (2.8) are identical to corresponding
classical equations. See, for example, I (14.27) or III
(5.10). It is convenient to rewrite Eq. (2.7) in the
mnemonic form

2D,,)=— {{da,/dt}a,)—(a,{da,/dt})
+(dau(t)a,(D1/dt), (2.9)
{da,/dt}y=da,/di—F,=A,. (2.10)

We see, therefore, that D,, is a measure of the extent
to which the usual rules for differentiating a product is
violated in a Markoffian system. Equation (2.9) is
indeed a useful computational formula because it
permits the diffusion coefficients to be calculated in
terms of the mean motion of certain system operators.
This is in contrast to Eq. (1.6) which requires the direct
calculation of fluctuations. Indeed, our presentation in
Secs. 3 and 4 will be based on Eq. (2.9). The direct
determination of the diffusion constants from the
fluctuations moments using Eq. (1.6) is done in
Appendix B.

Higher order diffusion coefficients may be determined
by a simple generalization of (2.9). But higher moments
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of the Langevin forces are related in a more complicated
way to the diffusion constants as shown in IV.

Equivalence of Langevin and Moment Procedures

We would now like to establish the equivalence of
the Langevin method of this paper with the moment
procedures adopted in QIL. The principal result of
paper QII is summarized in the statement that the
solution for the mean motion at one time,

(@ (Da;(1))=2 05" (11){a," ()ag (1)), (2.11)

can be used to obtain the moments containing operators
at two times

(@it ()a;Oait ) (t))
=3 057 (1t )(a,' )as()art ()ar(t)). (2.12)

This two-time result (2.12) possesses the same ¢ de-
pendence as the transient solution (2.11) of the mean
motion equations. This is an expression of the Onsager
hypothesis concerning the regression of fluctuations,
established for a quantum-mechanical system not in
equilibrium nor even necessarily in a steady state.

For comparison with the results in this paper, it is
necessary to avoid direct use of the Green’s function
04,7 and replace it by a differential relationship. We
note, however, as remarked at the end of paper QII
that this principal result (2.12) did not depend on the
system being Markoffian. If we assume that the system
is Markoffian its future must be predictable from the
present, in other words, its time derivative at time ¢
must be expressible in terms of other quantities ex-
pressed at time /. In terms of the Green’s function the
Markoffian requirement takes the form

dO,“.ﬁ(t,t')/dt= Z BijmnOgp™™ (t,i') . (2-13)

If we now differentiate Eq. (2.11) and make use of
(2.13), we obtain

{dai (D)a;(D)/dt—" Bijmnanm' (Daa(t))=0, (2.14)

which expresses the time derivative of a;'a; in terms of
similar operators taken at the same time. Applying the
same procedure to Eq. (2.12) leads to

([das ()a;(£)/di—Y Bijmnan' @)an(t)]
Xait (#)a(t))=0. (2.15)

Since the quantity in brackets in Eq. (2.15) is the
difference between the time derivative of the operator
a;la; and the corresponding mean motion, it represents
the fluctuating random force Fy;. Thus, we obtain

(Fii(ait @)au(t))=0, (2.16)

But Eq. (2.16) is precisely the same as Eq. (2.3), which
we took as our expression in the Langevin point of view
of the Markoffian nature of our problem. Thus we have
established the equivalence of the two procedures.
When both are used without further approximation

>t
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they should yield equivalent results for the mean motion
and the noise in a quantum-mechanical system.
Taking the derivative of (2.16) with respect to #, we
obtain
(Fij(Odai’ ()ar(t))/dt')=0, 2.17)

Taking the appropriate linear combinations of (2.16)
and (2.17), we establish that

(Fii(F 54 (#))=0, (2.18)

A similar argument proves the same result for ¢<#, so
that we establish

<Fij (t)qu (t’»: 0,

>,
>4,

1#t. (2.19)

3. THE DAMPED HARMONIC OSCILLATOR

To obtain the diffusion constants using (2.9), it is
necessary to obtain the mean equations of motion for
operators linear and operators quadratic in the oscil-
lator displacements. In Appendix A, we modify slightly
some results of QIII which analyzes a system in inter-
action with a reservoir and then determines the effective
equations of motion for the system after averaging over
the reservoir. These results of QIII are sufficiently
general to include memory effects. After eliminating
these memory effects when the correlation times are
short, we arrive at Eq. (A13) for an arbitrary system
operator M. Equation (A13) is valid even if only
reservoir averages® (( ) instead of {{ ))) are taken—
see (B16). Thus, we can write

oM
Xy
ot

du{(Fi(u)F;)((M,Q:]Qi(—u))

0

1
——X
/2

—(FiFi(u){Qi(—w)[M,Q:])}. (3.1)

In (3.1), the Q’s are system operators and the F’s are
corresponding reservoir operators that when multiplied
together provide the coupling V between the system

and reservoir: -
V=—2:Q:F;.
The operators F;(#) and Q;(—#) are in the interaction
representation
F;(u)=exp(iRu/h)F; exp(—iRu/%),
Qi(—u)=exp(—iHu/%)Q; exp (iHu/%)

where H and R are the system and reservoir Hamil-
tonians, respectively. [The slightly more general equa-
tion (A13) must be used if H depends explicitly on the
time. ]

For the harmonic-oscillator system, we take

H=hwb'd; V=1ih(bTg—bg"). (3.2)
With this choice an arbitrary system operator M obeys
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the equation of motion
M)/ ot= (M, H))+a(6'[ M ,b])—B(M b ]p")
— (M 5T1o)+B*LM ), (3.3)

where the coefficients @ and 8 are integrals over averages
of reservoir operators:

am f du e=ven{gg! (),
’ (3.4)

B= / du e=eu(g" (u)g).

Introducing the interpretations
yii=2 ReB (3.5)

of the parameters a and 8 in terms of new real parame-
ters v, 7, and Aw which have more direct physical
meaning, we obtain the equation of motion for the
fairly general operator (5%)78°:

o((87)0°)/ 0= [iwwo (r—5)— 3 (r+35) N (6")0°)

Frsyn{ (0 1+1).  (3.6)
These equations are exact in this Markoffian limit when
the reservoir consists of a set of harmonic oscillators.
(See Appendix D.) In (3.6) wo is the renormalized
frequency of the oscillator after the frequency shift
Aw produced by the reservoir has been absorbed. The
most important special cases of Eq. (3.6) are given by

8(b)/dt=— (iwo+37)(b),
a(bt)/at= (iwo—3v)(B'),

3(b%0)/dt=~ni—~(b'b).

y—iAw=a—0, wi=w.+Aw,

(3.7
(3.8)

We now write out our complete Langevin equations
including the noise sources as

db/dt=— (iwo+-3n)b+1(0),
dbt/d= (iwo—3)BT+ 11(0).

Our second moment has the typical §-function form
(1) f(w))=2Dstsd(t—u) (3.10)

where the diffusion constant is computed by means of
Eq. (2.9) in the form

2Dty =d(bTb)/dt— ({dbt/dt}b)— (bT{db/dt} ) =~7. (3.11)

(3.9

Repeating this calculation with the opposite order of
the factors yields

(f@) f1(8))= 2D i3 (t— 1) = v (A+-1)8(t— ) ,

a second moment clearly distinct from that in (3.11).
Indeed, this lack of commutation of the reservoir forces
at f and f'is shown in Appendix C to preserve the
commutation rules. We also compute the additional

(3.12)
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second-moment equations
d{(B2)/dt=— 2Ziwo(b®)—v(b%),
d((0)2)/dt=+2iwo (B)2)—v((7)?),  (3.13)

and learn from them that the remaining second

moments
O f @)= {f1®) f1(w))=0 (3.14)

are zero.

4. ATOMIC DIFFUSION CONSTANTS

For an arbitrary quantum-mechanical system (which
we shall visualize as an atom) whose frequency differ-
ences w;; possess no degeneracies, we shall adopt as our
typical equation of motion (A23):

d(ai'a;)/dt= (iwij—Tij)aila;+8: 2 wipay'ap+Fi; (4.1)
2

obtained in Appendix A by the use of Eq. (3.1). Second
moments are defined by?

(Fij®OFa(u))=2(D1)6 (t—u). (4.2)

The second moments as usual are calculated by Eq.
(2.9) which represents a nonstationary Einstein rela-
tionship. For the present case, Eq. (2.9) takes the form

d d
2 Dijry=—(aia;ar’ar)— < {——aﬁaj } ak‘“al>
dt dt

-—<a{fa,{ditak“az}> , (4.3)

where the bracketed symbols defined by Eq. (4.4)

d d
{—aifaj} E——a@de"Fij (44)
dt

di
simply describe the mean motion of the operators a'a;.
In the space of one atom, _a;fa;=1, we have the
identity
(4.5)

derived in QII. Inserting the bracketed quantities (4.4)
into Eq. (4.3), our results immediately simplify into a
bilinear expression of the form

2UDijr) =005 2, Wip{ap'ap)

P

a;*ajakTalz 5jkdiTlIz

—d;win{ar’a))—dpawri{ada;)
+(aita)sp T+ T—Ta)—i(witeu—wa)], (4.6)
whgre the quantities I",r,- and w;; have the symmetry and
antisymmetry properties
Ti=Ty;, 4.7

We see that our results for the second moments depend
on the form of Eq. (4.1) and not how the parameters
were obtained. Equations (1.19)-(1.24) display, how-

Wi = —Wji.



118

ever, the values of these parameters obtained from the
explicit reservoir calculations shown in Appendix A.
Equation (4.6) is the general result quoted in Eq. (1.18)
and important special cases of the diffusion constants
were already presented in Egs. (1.25)-(1.35).

5. COUPLED SYSTEMS: INDEPENDENT
RESERVOIRS

Our systems 1 and 2 are coupled together dynami-
cally via the Hamiltonian Hy,:

H=H1+H2+H12, V1=—'Z QJ'FJ"
Va=—2_ gifi. (5.1)

Here V1 and V, are the couplings of systems 1 and 2,
respectively, to their corresponding independent reser-
voirs. The reservoir forces F; and f; are definitely
uncorrelated since they come from quite independent
reservoirs. If M and m are arbitrary operators belonging
to the first and second systems, respectively, they obey
the Heisenberg equations

aM /di= (M, Hy+Hw)—% (M,Q)F;, (5.2)
dm/dt= (m, Hy-+H1s)—3 (m,q:) fs. (5.3)
The direct use of Eq. (1.6) then yields
UDosey=([m(t+At)—m ()]
XM (+AD)—M (1) ])/At (5.4)
t+AL t+At
~Zong010) [ as[ a
X{fi(s)F;(s))/ AL, (5.5)

where the first terms in (5.2) and (5.3) have been
dropped since they lead to terms of higher order in At.
The assumed &-function character of the correlations
of the random forces permits the system operators to
be evaluated at the initial time ¢ and removed from the
integration in Eq. (5.5). The result involves the reser-
voir forces F and f directly and these are by hypothesis
uncorrelated. The vanishing of D, implies that the
effective Langevin forces that enter the equations for
dM /dt and dm/dt are necessarily uncorrelated.

The proof we have given, however, is unnecessarily
restrictive. The reservoir forces are not in general &
correlated.® They merely possess a correlation time
that is short compared to all of the typical system
relaxation times. In general, however, their correlation
times are long compared to the reciprocals of the various
oscillation frequencies of the system. Under these
circumstances it is not permissible to remove the system
operators from underneath the integral sign in Eq. (5.5),
and a new proof is needed. The methods of QIII were,
in fact, designed to deal with such situations in which
the correlation time is short but not zero. The net
result of that paper reduced to the Markoffian limit is
Eq. (3.1). If we apply (3.1) to calculate the equation of
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motion of the operator mM, we obtain
d{mM)
——= (M 1))
dt
1 ]
—— % [ a0 30—
—(FiF i(w) XQi(—u)[mM ,Q:1)}
1 0
—— % [ aul( X 0T~ )
—(fifs(w) Xgi(—u)[mM ,q: 1)} . (5.6)

In Eq. (5.6), correlations between F and f forces have
been omitted. However, the time dependence of the
system operators is retained underneath the integral
sign. If, however, we expand the commutators in Eq.
(5.6) and compare them with the corresponding sepa-
rate equations for the operators M and m, we find that
our result has the structure

d(mM)/di= (m{dM /dt} )+ {{dm/ds} M )+0 (5.7)
from which we can deduce that the diffusion constant
2Dmu=0 (5.8)

vanishes. The result (5.8) establishes that the Langevin
noise sources that enter the equations of two systems
that are coupled to independent reservoirs are uncor-
related. While this result is intuitively very reasonable,
it is not, in fact, obvious. The Langevin forces are not
identical to the reservoir forces which are automatically
uncorrelated. Thus, for example, the Langevin force
F;; of Eq. (1.13) is not identical to the reservoir oper-
ator fi; of Eq. (1.19). The Langevin forces, in effect,
involve products of reservoir forces with system oper-
ators. Since the time dependence of these system
operators must be taken into account, the lack of
correlation of the Langevin forces requires the proof
just given.

A similar procedure with m and M both taken from
the first system yields the same formal expression for
Dy as if the second system were not present. The
interaction operators, however, now include the effect
of the dynamic interaction. Unless this interaction is
extremely strong, however, its influence during the
short correlation time of the reservoirs will be unim-
portant. This is equivalent, for example, to neglecting
the change of atomic state of an atom due to a laser
field during the course of its collision with a second
atom. Our procedure permits us to include such effects,
but we shall omit them in the maser model of the next
section.

6. STOCHASTIC MODEL OF A MASER

Our model of a maser is schematically described in
Fig. 1. The electromagnetic field is described in terms
of a single-cavity mode, although it is easy enough to
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generalize to the presence of several modes. There are
a set of IV atoms labeled by the index M. These two
systems are coupled by the radiation coupling

N
Hrap-atom=iku Y, [bf(ataz)"—b(astar)™]. (6.1)
M=1

As shown in Fig. 1, the set of atoms and the radiation
field are each coupled to its own reservoir. Indeed, for
practical purposes, we can assume that each atom is
coupled to its own private reservoir. This is why we
have indicated the atomic Langevin forces by a super-
script M. Our Langevin equations of motion now take
the form

db/dt=— (iwe+37)b+1 X (afas) ™+ f,
d(aita)™/di=— (T12M+1wM) (a1tas) ™
+ub(as’as—ar’ar) M4-F1o™

d(as'as)™/dt=wao(ao' a0) M+wa1(as'ar) ¥

(6.2)

(6.3)

—I‘z(dzTag)M—BM—l-Fng N (64)
d(ar'a))™/dt=w1o(ao'ao) ™+ wis(as’as) ¥

—I‘1(01fdl)M+BM+F11M, (65)

BM=pu[ bt (astaz) ™+ (astar)Mb], (6.6)

(@t aotaifartastar) =1,

M =@M — M

(6.7)
(6.8)

where w0 and w1 are pump terms. We have assumed,
for simplicity only, that the interaction between the
atoms and the field is equally strong for all atoms. In
such a case it is appropriate to introduce averages over
the various atom operators:

o= (UN) T (afa)",
M=t

D=oy—o01,

(6.9)
(6.10)

o=(1/N) % (atas)™ exp(iwo). (6.11)

Moreover, we shall introduce a new field operator
b’ =b exp (iwot) (6.12)

that has absorbed most of the steady motion in the
maser so that 4’ changes only quite slowly with the time
primarily because of the Langevin forces. In the fol-
lowing equations we shall for simplicity drop the prime
on b. The average rate of radiation per atom is then
given by

B=(1/N)>_B¥=p(blo+0o'b) (6.13)

and the appropriately averaged atomic random force
is given by

F,'j: (1/N)ZF¢,M €xp (iwj«,'t) . (6. 14)
Strictly speaking Fi, contains a factor exp (iwof) rather

than exp (iwaif),but the spectrum of Fy, can be assumed
not to change much over the small difference between
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F1G. 1. Model for maser or laser: Radiative transitions (wavy
arrow) are induced by the dynamic atom-field coupling. Non-
radiative transitions (straight arrows) and quantum noise sources
are derivable consequences of the coupling to the reservoirs. We
assume in this paper that the transition rate from 3 to 2 is so fast
that we are effectively pumping directly into state 2.

these two frequencies. Our coupled atomic and field
equations now take the form

dose/dt=wso00+wa1011—'2099— B+ Fa2, (6.15)
doy/dt=wio00+wis022—T1o011+B+F11, (6.16)
db/dt=—[3v+i(wc—wo) Jo+Nuo+F, (6.17)
where F= f exp (iwet), as in (C19), and
ge=1—0c11—c22.

The case of homogeneous broadening can be obtained
by making the specialization

wM=g,, TpM=T. (6.18)
In this case Eq. (6.3) reduces to the form
do/dt=— [T+i(wa—wo) Jo+ubD+Frz. (6.19)

The moments of our Langevin forces are now given by

(F(OF ™ (w))=(Fs;"(w)F (1))=0,  (6.20)
(Fi™ ()F ™ (u))=0 for M'#M, (6.21)
(FT(O)F (u))=~Ad(t—u) , (6.22)
(F)F1 ()=~ (+1)8(—u), (6.23)
(FiM(O)F 1™ (1)) =2(D;jns™)o ({—u) , (6.24)

(Fsi()Fra(u))= (1/N)2(Dijr1)d (t—u), (6.25)
(Dijrry=(1/N) X2 (Diji™). (6.26)

Here =7 (wo) as in (C40).

The atomic and field forces are uncoupled as they
should be. The factor 1/N that appears in Eq. (6.25) is
essentially a consequence of the fact that the individual
F¥ are uncorrelated. The most important diffusion
constants for the discussion of phase noise in a maser
above threshold are given in

2(D1pa™)={(a:ta:)")[ T+ 2T o]
+> wlp((a'pfaz))M> , (6.27)
Pl

2(D1901)={{o11)[T242T 154 ]+ é wip(opp)}.  (6.28)
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In the steady state these results can be simplified as
shown in Eq. (1.30) to the form?

2((D12n1))se= {G1u[ T+ 21520 ]+ T'151,— B}
=[2I61—B]. (6.29)

The corresponding diffusion constant for the operators
taken in reverse order takes the corresponding form

2<<D2112>>ss= [2F6’22+B] . (630)
The additional diffusion constants

2(D1111)= 2 w1p{opp)+T1(ow1), (6.31)

Pl
2<Dz222>= Z w2p<0'p]2>+r2<0'22>; (6~32)

P2
2(D1120) =2(Das11) = —[w1s({o22) Fwai{o11)], (6.33)
2(D1gss)=Ts(0); 2(Daziz)=—wa(o), (6.34)
2(Dora)=—wa{a"); 2(Dasar)=T'{c"), (6.35)
Diji= (Duji)* (6.36)

can be obtained directly from Egs. (1.25)-(1.35).

The random forces F;; can by the law of large
numbers be taken as Gaussian random variables since
they are averages over a large set F; of identically
distributed variables. In the optical region the F (¢) are
produced by the vacuum fluctuations of the electro-
magnetic field and are clearly Gaussian. In the micro-
wave region, the source of electromagnetic noise will be
the cavity walls. Since many atoms contribute to this
“black body” radiation, we can again take F as
Gaussian.

7. PRESERVATION OF COMMUTATION RULES
(AND SECOND MOMENTS)

Since we have computed our diffusion constants by
comparing the mean equations of linear operators with
the mean equations of motion of quadratic operators,
we have necessarily guaranteed that the correct equa-
tion of motion is obtained for the product of any two
operators. Since this is true for either order in which
the product is taken, commutators obey the correct
equations of motion. Thus, if the commutation rules
are obeyed at an initial instant of time they will neces-
sarily be preserved in time. In spite of this, it is of some
interest to display directly what the commutator of the
Langevin forces

(CFu®,Fy(w))=2(Dyp— Dy )3 (t—u) (7.1
depends on. Let us rewrite Eq. (2.7) as
d{a,a,)/dt="2(D,,)+{A,a,)+{a,A4,). (7.2)

We can next interchange the indices p and » and
subtract to obtain

d(Lawa,])/dt=2((Dypy— Do) )+ {[Aa.])

+{lan,4,]). (7.3)
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Thus, the commutators of our random forces are ex-
pressed by

2<(Duv— D,,))= (La,4,]4+[4 »@y])

+d(Lawa,])/di (74)
=(Law{da,/dt} ]+ [{da./dt},a,])
+d(Lawa,])/dt (1.5)

in terms of certain commutators and their time
derivatives.

Let us work out one important case for the maser
problem as an example. The forces in the population
equations commute and therefore we shall not consider
them. Instead, let us consider the forces that enter the
off-diagonal equations. The appropriate commutator
taking account of the factor 1/N in (6.25) is

AD1zs1— Danie)/N={[o",{do/dt} ]+ [{do"/dt} 0 ])

+d{[o,0])/dt, (7.6)
where the quantity in brackets is given by
{do/dt}=[T+i(wa—wo) Jo-+ubD. (7.7)
Thus, we obtain
2(D1991— Da12)/ N=— 2T ([ot,0 ))—d([o",c])/dt
+u(lo",DI+[D,o J6T). (7.8)
The necessary commutators are
[¢t,e]l=D/N, (7.9)
[¢t,D]=—2¢"/N; [Dyo]=—2¢/N. (7.10)

Thus, our commutators in the steady state take the
simple form of

2{{D1221— D2112))ss/N=—2(I'/N)D—2B/N
=—(2/N)[TD+B]. (7.11)

This commutator is precisely what one obtains if one
subtracts Eq. (6.30) from Eq. (6.29). Below threshold
in paper QV, however, we treat D as a ¢ number. This
means that the commutators involving D vanish. Thus
if the “dielectric” approximation is made, the last term
in Eq. (7.8) must be omitted and the commutator
reduces to

2((D1221— Da112))ss/N=—2(T'/N)D

as quoted in QV.

Note added in proof. After the completion of this
manuscript (and after the results summarized in Secs. 1
and 6 were presented at the 1965 Puerto Rico confer-
ence) we have learned that several members of the
Haken school have adopted a Markoffian approach
closely related to our own. See H. Haken and W. Weid-
lich [Z. Physik 189, 1 (1966)]; C. Schmid and H.
Risken [4bid. 189, 365 (1966)]. These papers treat the
atomic fluctuations and lead to moments in agreement
with ours. For the electromagnetic field, the noise
sources are not derived by them but are taken from

(7.12)
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Senitzky—see, e.g., H. Sauerman, Z. Physik 189, 312
(1966). Our procedure obtains the field noise sources
by the same method as that used for the atomic noise
sources, and moreover derives the independence of field
and atomic sources.
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APPENDIX A: MEAN MOTION BY
DENSITY-MATRIX METHODS

As discussed in the text, our aim is to calculate the
system density matrix accurate to second order in the
coupling. We are not concerned with treating the bath
to the same accuracy, therefore we shall not follow
QIII precisely, since the latter treats the bath on the
same footing as the system. The chief difference is that
we shall now set the density matrix of system and bath
p=o0fo+Ap, where o= trgp is the system density matrix
and fo=exp(—pBR)/tr[exp(—BR)] is the unperturbed
bath density matrix. (Previously, we had set
p=0f+Ap.) The pattern of calculation is the same as
in QIII, and most results look very similar with slightly
different meanings for the symbols. To avoid confusion,
and establish notation, we shall outline the key steps
in the argument.

We start with a total Hamiltonian Hr=H-+R+V
decomposable into a system part H, a reservoir part R,
and an interaction

V=—2 QiF;, (A1)

where the Q’s are system operators, and the F’s are
reservoir operators whose mean values vanish in the
decoupled reservoir:

trz(Fifo)=0,

where
Jo=exp(—BR)/trlexp(—BR)]. (A2)
The density matrix p of system--reservoir obeys
dp/0t=(H+R+V,p), (A3)
where
(4,B)=[A4,B]/ih. (A4)
The trace of (A3) then yields
d0/0t= (H,0)+trg(V,Ap). (AS)
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Subtracting fods/d¢ from (A3), Ap=p— foo obeys

dAp/ 8= (H+R, Ap)+ (V,0 f0)+C(2p)

C(Ap)= (V,Ap)— fo tre(V,Ap). (A6)
A systematic expansion in ¥V can be set up by first
ignoring C and the iterating. Since we wish ¢ to second

order in V, i.e., Ap to first order, we stop at the first
term

Ap~Apy= / V(00 ) fo)dl

‘ (A7)
6a/6t= (H,O')"I— day’ trR(V7(V(t,)t)ao-(t:tl)fo)) ’

—0

where
VEn=UH) VUG,
o (L) =U e (YUY =u(tt)o @ )u(tt)™, (A8)

where U (4,t') is the operator solution of the unperturbed
Schrédinger equation

thdU (@) /dt= (H+R)Utt),
ui=1,
Utt)=u(tV) exp[—iR(—1)/ 1],
ihdu(t,)/dt' =H @Q)u@t’).
Equation (A7) is very similar to QIIT (2.23) with
f@t) in the latter replaced by fo, and V obeys
trgV fo=0, but the system average of ¥ need not
vanish. We have obtained the same result found by
Argyres by projection techniques.?

Inserting (A1) into (A7), we obtain the analog of
QIII (3.6):

(A9)

do
= (H:a')
at
+2 | d{GLE—=1),F 10050 (F 0,0 (41)))

H((F:(=1),F)) Q5305 (¢',0),0 (4,¢) 1)} -

The trace of (A10) against an arbitrary system operator
M vyields

M)/ or=(((M,H)))

(A10)

—it % [ GG 0Fi)

—00

XM (1,8),0:(5¢) 1,0 ))e
H([F:(t— 1), Fi(GIIM (60),0: (1) 1,0: 1)}, (Al1)
where (L)p=trsLo(t"). If the reservoir correlation

P, N. Argyres, in Magnetic and Eleciric Resonance and
Relaxation, edited by J. Smidt (North-Holland Publishing
Company, Inc., Amsterdam, 1963), p. 555.
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times are short, the important (¢') are close to £ In
this small time interval, the system may change rapidly
due to its unperturbed motion, but dissipative effects
can be assumed small. Thus we can set ¢ (4,t') [which,
by (A8) is the density matrix at ¢ obtained from o (¢')
by propagating with neglect of interactions] approxi-
mately equal to o (Z):

ot )=ult,t)o()u@tt) =a(f). (A12)

This makes our density matrix equation (A10)
Markoffian. Equation (A11) then reduces to the
Markoffian form

A0 de=(( (M, 1))
—12 S [ () EN M0, , 1))
— (B3 ()0, (1=, OTMLQ.TY}

If the system has a time-independent Hamiltonian,
H(t)=H, then

Qi(t—u, t)=exp(—iHu/h)Q; exp ((Hu/h)
=Qi(—u), (Al4)
and (A13) reduces to the result (3.1) quoted in the text.
We now wish to apply Eq. (3.1) to the case of an

atomic system. The interaction Hamiltonian takes the
form

(A13)

V="0ry anttnfmn,
and Hermiticity guarantees
VI=V;  fan'= fam.
Making use of the correspondences
Q:— aifa;, Fi— hfu,
Qi(—%) = an'an exp(—iwmat),
Fi— Wfmn, M=aa;,

(A15)

(A16)

(A17)
we obtain our equation for the mean motion of an
atomic operator ¢;fe; in the form?°

daita;)/dt=iwi{aa;)
=2 Wumnt{[a:Taj,05 @] an an)

+Z wmnkl_<amTan[a’iTai;akTa’l]> ’ (AIS)
where the coefficients defined by
Wit = / 01t €5 (— it (i) fun (0)),
° (A19)

S f it exp (— i) Fun(0) fea (1)),
0

® For simplicity of notation we change double brackets to
single brackets. This is permissible in view of (B16). In this
appendix, w;;=w;—w; is an unperturbed frequency difference.
In the body of the paper, the perturbed frequency w;—w;+Awi;
is represented by wi;, for the sake of brevity.
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obey the Hermiticity property

(wmnkl_)*= 'wlknm+ .

(A20)

Making use of the identity (4.5), Eq. (A18) can be
simplified to the form

d{aifa;)/dt=1iw:{ata;)
+Z [-— <aiTan>wjmmn++ <ak1an>w1cijn+

F(0m 0 Wmisim— (@' @YW mnni~].  (A21)

We shall now retain only the secular terms, i.e., those
on the right-hand side of (A18) or (A21) that vary as
etiit, This is equivalent to retaining those wiimnt for
which®
wptwnn=0, (A22a)

ie.,

k=n, l=m or k=l m=n. (A22b)
After removal of the rapid time dependence contained
in a;'a; these are the only terms which survive a short
time average: average over a time Af short compared
to any of the relaxation times but long compared to
the reciprocal natural frequencies of the system. An
explicit proof of this point is given in Appendix B. The
set of conditions (A22) define the only ways in which
energy can be conserved if the levels are irregularly
spaced. In this Appendix, we henceforth assume that
there are no special degeneracies such as would occur
for example, in a harmonic oscillator. For this reason
we have given a separate treatment of a harmonic
oscillator in Sec. 3. Retaining only the secular terms
then, Eq. (A21) reduces to the form?

d(aita;)/dt= (iwi;—T;%)(aila;)
+6ij Z wim<amfam> 3

m#Eg

(A23)

where the transition probability w;,, is defined by
Wim=Wmiim' + Wmiim

=[ it exp(— i60int) i () fon(0))  (A24)

v —0
and the complex parameter I';;¢ is given by

Tyjo=—[wasjit+wiisi 14+ 22 (@imms "+ Wimmi™) , (A25)

all m
Tyje=T"y—1ilAwi;, (A26)
D=3 (+T,)+ TP, (A27)
Aw". = _Im[ Z wjmmj++ Z wimmi_]""Awijph, (A28)

m#Zj m#AL
where T';, T'; are the decay rates (1.15) and the first
term in (A28) is the “Lamb shift” (second-order

21 The terms in (A22b) always satisfy (A22a). If the system
possesses special regularities of spacing, as in a harmonic oscil-
lator or spin system, then (A22a) permits more secular terms than
those explicitly shown in (A22b).
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perturbation theory energy shift due to reservoir
interactions). The contribution of phase fluctuations
or in a solid what might be called zero-phonon con-
tributions'® are summarized in

(Pij— 180 PP = w55+ Weisi— Wit —Wais™

_ / [ £ O) I Fis ) — £ ]

—[fii(u)— fi;(w) 135 (0)), (A29)
1 0
Pijph=5/ du([ f::(0)— f3;(0), fui(u)
O —f5@1), (A30)
ity / [ O+ £5(0), Fis(w)
' —fu@]) (A31)
= —1Aw PP 7Aw jph"‘ iAwijex , (A3 2)
—mw,.ph% / " T Fa0), S, (A33)
1 o0
iy / [ 5(0), f) ). (A34)
2 —

The extra contribution to the frequency shift described
by (A34) is anomalous in that it is not expressible as
the difference between a frequency shift of level ¢ and
a shift of level j. In order to understand these formulas
we have applied them to the case where the electronic
levels are coupled to lattice vibrations through the
interaction (A1S) with the reservoir forces defined in
terms of the normal phonon coordinates by

fu(w)= (B 2, Ay, (u).

Neglecting anharmonic interactions between the
phonons, the time dependence of these phonon coordi-
nates is given by

(A35)

(1) = g, coswt+ (pu/ Mw,) sinw,u (A36)
and the commutator is given by
EQM (0)7QV(M)]= 51” (ih/Mw,‘) sinwuu. (A37)
Expressing the time integral
/ du sinw,u=0(1/w,) (A38)
0

in terms of the principal-valued reciprocal, the shift in
level 7 due to zero-phonon contributions is given by

Awpr=—33 (4,5 (hMw,?) (A39)

and the extra anomalous frequency shift for this case
vanishes:
(A40)

Aw;#*=0.
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Wi +aWij

F16. 2. Configurational coordinate curves of electronic energy
E versus normal coordinate ¢ are shown for an electron in two
electronic states ¢ and j with wij=w;—w;>0. The dashed curves
neglect electron-phonon interactions. The solid curves show the
shift produced by such interactions. In particular Acw;; is the
change in separation between minima.

The complete energy shift then takes the form
hhwiy=—52 [(4,7— (4,77 (Mw?).  (Adl)

This result was previously obtained in Eq. (6.7) of our
paper on the Franck-Condon principle.?? The frequency
difference w;; is simply the distance between the
minima of the two parabolas shown in Fig. 2 and the
level shift Aw;; is the extent to which this separation
has been changed by the linear interactions with the
lattice. It is to be emphasized that the perturbative
equations on which our mean-motion equation (A23)
is based have disregarded the effects of multiphonon
transitions. Thus, the frequency w;; refers to what is
customarily called the gzero-phonon line.!® This line is
indeed a transition from the lowest phonon state in
one parabola of Fig. 2 to the lowest phonon state in
the other parabola. Since we have neglected changes
in the curvatures in these parabolas the zero-point
phonon energies cancel and the zero-zero difference is
simply the difference between the minima of the
parabolas. To see why the anomalous frequency shift
vanishes in this case we note that if ¢ is any operator
whatever, we can make use of stationarity in the form

(Lg(0),g() =—([q(,¢(0)])

=—([q(0),g(=0)]). (A42)
Thus the integrand of Eq. (A34) is an odd function of
the time whereas the integration is taken over an even

interval in the time. To get a nonvanishing frequency
shift it is necessary therefore to obtain cross terms

(Lgu(w),g. (D70 for Aw;=0.  (A43)

We shall now show that even when such cross terms
are available if the reservoir obeys time reversal the
anomalous frequency shift will vanish.

2 M. Lax, J. Chem. Phys. 20. 1752 (1952).
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The influence of time reversal on our system operators
is given by

KajTK—1= deT , Ko, K1= arq, (A44)

where 7'j and 7% are the time reverses of the states j
and 7. For any reservoir obeying time reversal, however,
we have established?

(Ly=(L),

where the barring operation is the combination of
Hermitian conjugation and time reversal which obeys

(A45)

Voua=V=KV'K™; (4AB)pu=DBA4;
B(t)bar=B(—1). (A46)
Making use of
V=103 (al¢;)ourfii= W2 arilanifi;,  (A47)

we find that the reservoir operators are changed under
barring into

Jis= friri. (A48)
In this way, we derive
(Lfii(0), fs) D= L fri,vi(—n), fri,ri(0)])
=—(Lfrsri(0),frsri(—u)]). (A49)

It is clear then that the anomalous frequency shift will
vanish unless either 7% differs from 7 or 7' differs from
j or (L) does not equal (L), in other words, if the
reservoir violates time reversal, as it would, for example,
in any magnetic or antiferromagnetic material.

APPENDIX B: DIRECT CALCULATION
OF TRANSPORT EQUATION AND
DIFFUSION COEFFICIENTS

An arbitrary-system Heisenberg operator M obeys
idM/di=[M,Hy]; Hr=Ho+V; h=1, (B1)

where Ho=H-R is the sum of system and reservoir
Hamiltonians and V is the interaction. We shall assume
in this appendix that Hr does not depend explicitly on
the time, so that (HT)Heisenberg = (HT)Schr(jdjnger and shall
hereafter regard Ho, and V as Schrédinger operators.
The transformation

M(t) = gtHo(t—t0) gy (t)e—illo(t~to) (BZ)

leads to an operator m(f) that varies much more slowly
in time [see the similar transformation IV (5.21)7]. We
can then treat the drift and diffusion of m(f) as if all
correlation times are short compared to this motion.
After the drift (Am/At) is included in the equation for
dm/dt, the reservoir is then eliminated and replaced by
Langevin forces with zero correlation time that lead to
the same diffusion. Then, we can transform back to M

B M. Lax, Symmelry Principles in Solid-State Physics (to be
published), Chap. 10.
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equations at the time instant ¢ Thus
1d(M)/dt=[M,Ho]+eHo~i{Am/Atye—Ho(—t0) = (B3)
2D yy)=eHot—)(AmAn)/ Ale~"Holt—t0) | (B4)

where

Am=m(t+At)—m(¢) (B5)

and ( ) are reservoir averages. These procedures are
not equivalent to calculating (AM/At) and (AMAN)/ Al
(which would unnecessarily smooth the unperturbed
motion) but are precisely equivalent to our classical
procedures IV (5.24), (5.25). The slow operator m
obeys

dm/ds=—i[m(s),V (t7—s)], (B6)
where V ({o—s) is an interaction operator
V (tq—s) = etHolt—8) [V g—iHo(to—s) | ®7)

Equation (B6) can be converted to an integral equation
and solved iteratively:

At
Am= —i/ [m(s),V (to—s) Jds

e ~A'm+AT"m, (B8)
AIm=—i/ [m @),V (to—s)]ds,
t+At
Ay =— / ds
X [ a0,V =3V G091,
(Am/ Aty ~ (Alm—+ Am )/ At={(A"m/Al). (B9)

Inserting (BY9) result into (B3), we obtain

(M) 1 A
= —i[M,H]—— / ds
dt At J

X/ ds'"(([M 0,V (i—s)1,V(—s)]. (B10)

Note that ¢, the arbitrary time at which the repre-
sentations become identical, has disappeared from
(B10). This is also true of our expression for the
diffusion constant:

1 t+At At
2= —— / s f a5 M),V (1= 5)]
At J, P

X[N@),V(iE—s)]) (B11)

obtained by inserting Alm Az into (B4).

Equation (B11) is consistent with (B10) in the sense
that the use of (B10) plus the Einstein relation (2.9)
leads, after combining two sets of terms, to (B11). If
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we insert (Al): V=—> Q.F,, use the stationarity of
reservoir averages, and restore #’s, we obtain

At
-<——)=((MH0)) (h%t)“lfH ds/ ds’

XL (Fi(s—s")F;(0)){[M (1),Q:(t—5)]Q; (t—+))

—(FiO)Fi(s—sINQi (t— )M (1),Q:(t—5") 1)}, (B12)
2Dyy=— (tht)"_l Z o ds
Y
X/ ds'{F;(s—s")F;(0))
X([M,Q:(t—s') I[N, Q;(t—s)]). (B13)

Again these results are consistent. Let us integrate first
over s and set s=s'+# to obtain

d t+At tHAt—s’
()= (M, 10)= (200 / as’ f du
t 0

X2 AT ()F;(0))[M,Q:(t—5")1Q; (t— 5" —u))

—(FiO)F:()XQ; (t— ' —u)[M,Q:(t—3s") 1)} -

The integral over (F;(#)F;(0)) converges when the

upper limit is greater than the correlation time 7, over

which (F;(#)F;(0)) is appreciable. If we choose A>T,

we can replace the upper limit i4Ai—s’ by «. With
=s5'—1¢, we get

( )

(B14)

={((M,H))— (#*A5)™ / dv / du
xz ()5 0)([M,0:(~9)J0s(—v—))
~ (F5O)F:(u))(Qs(—v—)[MQu(—0) ]}

The integral over # represents an integral over the
duration of the collision between system and reservoir.
The average over v (or §') is an average over the starting
time of the collision. It is permissible in this average to
let At— 0 to obtain

d(M) L[
7—((MH)) h/o

X2 F i) F;(0))[M,0:10;(—u))

(B15)

—(Fi(O)F:()XQi(—w)[M,Q:1)}, (B16)

the result (3.1) derived in (A13). This result, however,
retains certain rapidly oscillatory terms whose effect
on the long-term motion is of second order. These terms
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will automatically disappear if At is kept large enough.
In particular, the system-operator time dependence
must be representable as a sum of exponentials

Qi(t) =2 o Qiae™it.

The integral over v will involve integrals of the form

(B17)

1 At
— / dv exp[iw*+iw;fL]. (B18)
At Jo

For w;*+w;f#0, we shall choose At large enough so that

(wirtwf) A1, (B19)
All such terms can then be neglected unless
0%t wif=0. (B20)

For the secular terms which obey (B20), the integral
over v is insensitive to Af and one can let Af— 0. Thus,
the sole effect of the average over v (or §’) is to retain
only the secular terms when (B15) is expanded using
(B17). Our result can be written in the form

-<*—>=((MH)) i 30 8w,
dt

'HZ}

—wf)
X{ / e iB*(F.(1) F;(0))du{[ M Qi 1Qis)

- / e“"""’“(Fj(O)Fa'(u»du(Qm[M,Qm])}, (B21)

where the Kronecker delta, §(w:%, —w;f), selects the
secular terms.
If we apply a similar procedure to (B13), we get

0

—#2 Y S(wi, —wf) [ e wifudy

ai,Bi e

X(F(w)F;(0))}{[(M,QieJLN,Qis]) -

If the Einstein relation (2.9) is applied to (B21), and
the summation indices «¢ and Bj are interchanged in
the second term, the same result (B22), is obtained.
Thus the Einstein method and the direct method are
necessarily in agreement.

The variables Q; can often be so chosen that

Q;(t)=Q; exp(iwjt)

and the indices «, 8 are superfluous. For a harmonic
oscillator, this suggests the use of b and &' rather than
Q and P. For multilevel “atomic” system the variables
ai'a; already obey this requirement. The translation
of variables

2Dyn=

(B22)

(B23)

M —aitae;, Qi— ai'ar, Q;— an'an,

B24
Fi—=tfu, Fi— hfnn (B24)
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in (B21) leads to
d(a.-'fa,-) / di= M{j(d,jd»
_26 (wkl; - wmn) { ([ai_rdj)akfal]am?an>wklmn+
—{an'e[aia;aifar)wpima}, (B25)
ie., to Eq. (A18) with the selection of secular terms

built in, and the wt, w— defined as in (A19).
A similar translation of variables in (B22) leads to

2ADjjr)=—2 8(Wmn, —wpg){[ai'aj,an'an]

Y X[artana,t 0 ) Wmnpe, (B26)
wmnm=/ du €= frun (1) 54 (0))
- =Wmnpg +Wnnpg+  (B27)
Using (4.5), (B20) can be simplified to
2 Diju)=2_{—ai'awjnigt o awinnt
+ '@ Wmirdint Om' @ Wmiji).  (B28)

In (B28), we assume each factor @Wmap, carries with it,
the corresponding selection factor 8(wmn, —wye). Equa-
tions (B25)-(B28) are sufficiently general to include
such regularly spaced systems as harmonic oscillators.
If no regularities occur among the spaces, the only
secular terms that remain obey (A22b), i.e., the sur-
viving terms have the form Wmanm and Wmman-
For the former, one has the identification

(B29)

(see A20 and A24) in terms of transition probabilities.
Retaining only these secular terms, (B28) reduces to

Wmnnm™= wmnnm++ (wmnnm+ *= Wam

2D;si=wii{aa;)8—wi{ar ar)di;

+ 3 Win@m @n)didin +{aitar)

m#=i

X [Tjtwssii—wisjitwin—wiuldm. (B30)
Using Eqgs. (A20) and (A29), we can write
(T4j— 1hwi) P2 =3[ wjji+ wisei— 2wiiji] .~ (B31)

Thus, the coefficient of the last term in Eq. (B30) can
be rewritten in the form

Titwjiii—Wisii+win—Wiju
=T+ Ti—Ta—i(Awi+Awj—Awi), (B32)

which brings it into agreement with the result (4.6) of
the Einstein method.

APPENDIX C: A MARKOFFIAN AND NON-
MARKOFFIAN DISCUSSION OF
HARMONIC-OSCILLATOR
COMMUTATION RULES

Markoffian Commutation Rules

If we subtract Eq. (3.8) from the corresponding
equation for (bb'), we find that

&([b,6"1)/dt=v—v([6,0"]) (C1)
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so that, if the commutation rule {[5,6"])=1 is obeyed
at any time, it will be obeyed forever after, even in the
Markoffian approximation.

As a further check on our consistency, let us define*

(b,Tba)=

—0

bt bO—'1 °t"’bebd
( (t)(»—g/_we (BT,

e b1 (1)b(0))dt,
(C2)

The transforms of Egs. (3.9) then yield
v tiwo—w)Jbe=fo; [Fy—i(wo—w)1bu'=fu", (C3)
(ba'00)=[ G+ @o—wPTfu fo),  (C4)

0

(f'foy=| e 1O f(0))di=m.

—0

Set =0 in the second Eq. (C2) and insert (C4) to
obtain

b'h ! ) 1.)2 2 Tlypdw="7n. (C6
( >—5;/_w[<ﬂ>+(wo—w>] yido=1i. (C6)

(C5)

Similarly, Gyt 1
=7

and again the commutation rules are preserved.

(C7)

Relation between Langevin Forces and
Reservoir Forces

Because of the linear nature of our system, there is
little distinction between the Langevin force f (the
extra term on the right-hand side of a dynamic equa-
tion), and the reservoir force g that gives rise to the

% For any two random operators 4 (£), B(f), we define
A@w)= / cind (s)ds,

BHw)= f Bt di=[B()T".
—0
Assuming stationarity, setting ¢=s+}u, and integrating over #,
we find for the product average

(4 (@)Bt (o)) =2a8(0—w'){4uBu1),
where

{4.B.N)= f ) due=io+{4 (0) B (x)).

This procedure follows our classical discussion IV, footnote 13,
with @ — Bf, a* — 4 since in the quantum-mechanical case, it is
usually the daggered operators that carry the positive frequencies.

Similarly,
(41(w) B(w) =28 (0—'){4o!Bu),
(4.1B.)= / (41 () B(0)).
A simple rule to remember is that if we stick to exp(—iwn), it is
always the daggered operator that carries the time dependence,
and orders of operators are always preserved. One can readily
verify, by integration by parts, that it is appropriate to use the

rules
(dA/dt)u=—iwd ; (dAT/dt)e=twA 0.
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Langevin force. The Heisenberg equation
db/dt=—iwb+g ()
suggests that we set

JO=g0)—(e®)»; (g(A)p=—Grv+idw)d, (CI)

where ( ), is an average over the reservoir as it is
perturbed by the system. This interpretation is per-
missible for non-Markoffian systems. We have, how-
ever, made a Markoffian approximation by giving f a
flat (“white”) frequency spectrum chosen automatically
by (3.4) to coincide with the spectrum of g at the
frequency w,. Thus, for example,

(C8)

R du e—twew +
Reg efo u e~ w(gl (u)g)

fi=——=

7 Re [ dus e~1oeu(, g1 () ])

(C10)

= [exp(hwo/kTr)—1]. (C11)

To obtain the last step, we split g'(#)g into an anti-
commutator plus a commutator. We next use the fact
that the anticommutator is a real; even function of #,
and the commutator is an imaginary, odd function of «
to extend the integrals to — . If the reservoir is at
equilibrium at temperature Tz, we can then use the
usual relation QIII (7.7) relating commutators and
anticommutators to obtain (C11).

The dissipation coefficient 1y and frequency shift
Aw regarded as functions of w, can be written

3y (we =——i/ du sinou([g,gf()]), (C12)

Aw(w,)= i/m du coswu([ g, (w)]), (C13)

so that the Hilbert transform relationship

1 /® sinwu
coswu=—0F / dw (C14)
™ —o W W,
leads to a Kramers-Kronig relation?s:
1 /™~ do
Aw(we)= ——-(Pf 1y (). (C15)
T JW— W,

For the case v(w)=vy=const, Aw=0. In any case, Aw
is usually small compared to the range of frequencies
over which y(w) varies significantly. Since we must
assume that the spectrum of g varies slowly near o,

2% N. N. Bogoliubov and D. V. Shirkov, Introduction to the
Theory of Quantized Fields (Interscience Publishers, Inc., New
York, 1959), Sec. 46. Equation (C15) is really an equation for
Aw(w;) —Aw(0), but we can usually assume Aw(®)=0.
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we cannot, with the accuracy of the present discussion
distinguish between v(w.) and v(wo). We shall con-
jecture, that a somewhat more self-consistent analysis
would require us to absorb Aw into a new unperturbed
frequency wo and, in our Markoffian analysis, evaluate
y=7(wo), B=n(we) at the new frequency wo.

It is really more accurate to write

(etwot f1(f)giwon f (1) ) = y7id (£— ) (C16a)
than
(1O f)~yns(t—u), (C16b)
since these equations imply
vi= [ oo 1)
or - .
vi= [ (ff(®)f(0))dt, (C17b)

—00

respectively. Within the Markoffian limit of delta-
function autocorrelations, there is no distinction
between these alternatives, but if the correlation time
is long compared to wg™!, the first of these alternatives
is preferable. We shall therefore define

b= beiwot’ (b’)f= bfe—iwot , (C18)
F= feiwt ~ Fi= flg-iuot, (C19)
so that our new equations of motion are
dy'/dt=—3vb'+F (),
a@)/di=—3y(®)V+F' (), (C20)
with
(FH(OF () ~vns(t—u),
(F)Ft () ~y(Aa+1)8(1—wu). (C21)

The §(t—u) could then have a width of the order of the
correlation time without changing the results appre-
ciably. These points are somewhat beyond the scope of
a Markoffian approach.

Non-Markoffian Discussion of Harmonic
Oscillators

As mentioned in the Introduction near Eq. (1.41),
this consistent fusion of quantum mechanics with a
Markoffian description has been achieved by using a
rotating-wave approximation (RWA). The RWA was
introduced by the choice of the interaction ¥ in (3.2).
The full interaction would have been

V=-0G; G= (2hoo)'*(g+g"), (C22)
Q= (h/20)"%(b—b"); P=(3hw)2(6+8")  (C23)

and would have lead to a decay term of the form
1y (b+b") in both the db/dt and db'/dt equations, or to
the equations

dQ/dt=P; dP/dt=—wiQ—yP+F(f). (C24)
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A proper comparison with the full interaction procedure
can only be made outside the Markoffian framework.
The Langevin equations (C24) when combined and
written in Fourier form lead to*

=iy 10u=F. (c25)
so that the spectrum of F is given by
PJF=DQQu; D=[lod—at+@pF], (C26)
where .
(010, = f QO (C27)
can be found from QIII Sec. 7 to be
Q10N = 2y @len@)/DE),  (C29)

where the dissipation coefficient v in the non-Markoffian
case is allowed to be frequency-dependent. In this way,
we find

(Fo'Fo)=2v(w)hon () , (C29)
(FoFut)=2y (@)l (w)+1], (C30)
7i(w)= [exp (ho/kT) — 177, (c31)

where T is the temperature of the reservoir with which
the harmonic oscillator interacts. If the reservoir con-
sists of a set of harmonic oscillators, these results are,
in fact, exact.?®

The results (C29), (C30) are not independent since

FJf=F_,; v(—w)=v(),

Ai(—w)=—[A(w)+1]. (C32)
The commutator is given by
([F o,F "]y = 2hery (w) (C33)

an odd function of w. The noise cannot therefore be made
white even when v(w)=v=a constant. It is easy to
verify in this case that the commutation rules are
obeyed by using

1 00
0P~ / do[QuPS]),  (C34)
P, t= in,,," , (C35)

1
([Q,P])=,2— / dwio([Fu,Fu'])/D(w). (C36)

26 By using the Heisenberg equations of motion and solving for
the reservoir oscillators in terms of the known motion of the system
oscillator, one can readily show that the mean equation of motion
of our system oscillator, e.g., QIII (4.13) (omitting j#¢ terms)
is exact. The spectrum (C28) or QIIIL (7.11) is then exact since it
uses only the correct mean motion and the fluctuation-dissipation
theorem. Note, however, that if y(w)s“constant we must also
regard wif=w’+Reb(w) of QIIL (4.13) as frequency-dependent.
The moments of the Langevin forces (C29), (C30) are expressible
directly in terms of y(w), independently of wo.
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If we use the commutator (C33) with y(w)=7;
wp= const,

VA
<[Q,PJ>=% / do

Yool

(@*—wd) =+ (0v)?

Senitzky® has chosen the commutation rule (1.38) in
terms of principal-valued reciprocals. Thus,

=ih. (C37)

<[F wF wf]>Senitzky = 2vhwow/ [ C"I . (C38)
The insertion of (C38) into (C36) then yields
(Q,P])=1h[1—p* ]2
X{1—1/x arctan[ 2u(1—u2)¥?]}, (C39)

where p= (v/2w,). This result has errors of first order
in y/we as shown in (1.39).

If we were to regard (C22) as a split of F into its
positive- and negative-frequency parts, we would have

(fofo')= (w/w)¥[A(w)+1], >0

=0, w<0.  (C40)

If, furthermore, we were to set w=w, in (C40), this
would lead to a spectrum that is white except for a
jump at w=0 from the spectrum at —w, to that at wo.
This is Senitzky’s result. Our procedure is equivalent
to the choice

(fufoy=7[A(wo)+1],
<fw1fw> = 'Yﬁ (wO) ’
i.e., two white spectra with no jump. Within the RWA,

our procedure leads to exact preservation of the com-
mutation rules as shown in (C1) and (C6).

all w,

all w, (C41)

APPENDIX D: SOLUTION OF THE MARKOFFIAN
HARMONIC-OSCILLATOR DENSITY-
MATRIX EQUATION

Instead of proving the exactness of (3.6), we shall
instead derive an equation for the density matrix o of
a Markoffian harmonic oscillator. We shall then solve
the equation for ¢ and show that the solution for ¢ is
identical to the exact solution found by Louisell and
Walker'® for the case of rotating-wave coupling to a
reservoir consisting of a set of harmonic oscillators.

An equation for ¢(f) can be obtained by combining
(A10) and (A12). To avoid having to re-identify the
constants, we shall start instead by rewriting (3.3),
using the identification (3.5), in the form

(M )/ dt= (M ,fucoob'd))+3v(b'[M ,b]— [M 5" )

+yad(o, (M6 ]]).  (D1)
We then note that if
90/dt=2"; AioB;, (D2)
where 4; and B; are any operators,
HM)/3t=3"; (BMA;) (D3)
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so that the equation for o can be obtained by inspecting

the equation for (M). After some rearrangement, our
equation for o takes the form

0/ dt= (hesob'd,0)+vo+3v{07[b,0 ]+ 0,616}

+v (ﬁ'l" I)EEb,O'],bT] ) (D4)
90/ dt= (hwobtb,c)+vo+3v{b'90/3b-+ 30/ b0}
+v(#+1)3%/3bbt, (D5)
where we use
d d
I Rt A8 T N0

8b obt

The Louisell-Walker solution’® (when no external
driving forces are present) is a function only of 5%.
For such a o, the first term in (D4) or (DS5) vanishes.
The remaining terms in (DS5) have, with malice afore-
thought, been arranged so that if e=¢™ is in normal
order?” (all 5" operators to the left of all & operators)
these terms are already in normal order.

To solve (DS) we use the normal ordering operator
9t discussed by Louisell.?” If g(b,b") is any classical
function of the ¢ numbers b and b, and if g~ (5,b") is
the same classical function arranged so that all (b%)’s
appear to the left of all d’s, then the operator obtained
by replacing b by b and bt by &' is written

g" (0,6 =a{g" (6"} D7)

Thus, the operator 9 converts a ¢-number function to
an operator (that is already in normal order) by a
definite rule.

Let us now assume that a solution to (D5) can be
written in the form

e™ =S ()}; z=b'. (D8)
Since differentiations do not disturb normal order, we

have
3™ /3bb=91{ 3S (3)/bb} . (D9)

% For a lucid account of normal ordering and the normal
ordering operator 97 see W. H. Louisell, Radzation and Noise in
Quantum Electronics (McGraw-Hill Book Company, Inc., New
York, 1964), Chap. 3.
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Underneath the 97, we have only ¢ numbers, and can
use the usual rules of differentiation, and can write
factors in any order. Thus,

30 ™ /9bb={b13S/92b} = 9{z0S/9z} , (D10)
Eq. (D5) can in this manner be rewritten as
3S(2) 9
ETC{ } = {'y~ (25)
¢ 0z
as
@ {o2)]} @
dz
from which we obtain the ¢-number equation
aS(zt) 0 ar, oS
e CORRT R Pl P GHE)
0z JdzL 0z
By direct substitution, we can verify that
S0 =[y(OT* exp[—2/y()] (D13)
is a solution of (D12), provided that y obeys
dy/dt=~(+1)—vy (D14)
so that the density matrix is given by
o=[y(OT'9{exp[—b'b/y() 1} . (D15)
The relationship Eq. (3.68) of Louisell?”
9t{exp[ (e*—1)b'b ]} = exp (xb'd) (D16)
permits this result to be rewritten in the form
1 1 -bte
=—[1——:| (D17)
yOL ()
from which it is evident that
tro=1. (D18)

The relations (D14), (D15) define the exact Louisell-
Walker® solution for the case y=const (independent of
frequency), and y(#) has the interpretation

y(O) =@ (). (D19)



