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We study the forms which the conditions for coherence impose upon the density operators for electro-
magnetic 6elds. All 6elds possessing 6rst-order coherence, we show, may be regarded as ones in which only a
single mode is excited; this mode need not, however, be a monochromatic one. The higher order coherence
conditions may be regarded as specifying certain moments of the distribution of the number of photons in
the single excited mode. Full coherence, in particular, is shown to require that the number of photons present
follow a Poisson distribution. The class of 6elds which possess full coherence is shown to be larger than the
class of eigenstates of the annihilation operators. The unique character of the eigenstates, on the other hand,
is demonstrated by means of a number of simple theorems.

I. INTRODUCTION

HE statistical information which describes the
state of the quantized electromagnetic Geld is

implicitly contained in its density operator. We have
shown in earlier papers' —' how the knowledge of the
density operator enables us, for example, to evaluate
all of the correlation functions for the field vectors. An
important property of the correlation functions is that
they furnish a concise description of the coherence
properties of the Geld; when the correlation functions
obey appropriate factorization conditions the Gelds are
described as coherent. Such restrictions on the form of
the correlation functions, it is clear, may also be re-
garded as constraints placed upon the density operator
of the Geld. In the present paper, we shall study in some
detail the constraints which the coherence conditions
impose upon the density operator, and discuss some
explicit features of the fields whose density operators
satisfy them.

It is convenient at this point to recall the definitions
of the correlation functions, and of the coherence
properties which they describe. The 6rst-order cor-
relation function for a radiation Geld described by the
density operator p is given by

G„„&'l(rt,r't') = tr(pE„i—l (rt)E„i+'(r't') }, (1.1)

in which the operators E„&+&(rt) and E„l &(rt) are the
positive and negative frequency parts, respectively, of
the operators for the vector components of the electric
Geld at position r and time t. The correlation function
of eth order is defined as the average of a 2e-fold
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product of components of the Geld strength. We may
write it as

G&"l (xt x„,x~t xs„)
=tr{pE&—l(xr) Ei &(x„)

XE'+l (x„+r) . .E&+'(xs )} (1.2)

where each variable x; is an abbreviation for the space
and time coordinates r; and t; and a vector index p; as
well. A 6eld possesses mth order coherence if the 6rst
m of its correlation functions can be written in the
factorized form

G&"l(xr x,x~r xs ) =II h*(xt)h(x;+ ), (1.3)
j=l

where the function B(x) is a complex solution of the
wave equation. In a previous paper4 we have studied the
restrictions which this succession of conditions imposes
on the structure of the correlation functions. We shall
show that an analysis closely related to the one we have
used in discussing the correlation functions may be used
to derive a number of properties of the density
operators.

The density operators of fields which possess first-
order coherence are discussed in Sec. II. There exists a
sense, as we shall show, in which Grst-order coherence
corresponds to the restriction that only one variety of
photons be present in the field. This variety may cor-
respond to the excitation of an arbitrary superposition
of the various monochromatic modes of the Geld. If we
use this superposition to define a new mode of the field,
which is, in general, a nonmonochromatic one, we Gnd
that the density operator for a first-order coherent Geld
reduces to a form which has only this single mode
excited.

The reduction of the density operator to a single-mode
form makes it possible to specify the operator by means
of a single matrix J3 „,which is its occupation number

4U. M. Titulaer and R. J. Glauber, Phys. Rev. 140, 8676
(1965). We will use the abbreviation CF in referring further to
this paper. The main results of CF, and some of the present paper
as well, are also described by U. M. Titulaer and R. J. Glauber,
Ref. 3, p. 812.
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representation. A diagonal element of this matrix, 8„„,
is the probability for the presence of e photons in the
one excited mode. We show in Sec. III that there exists
a simple connection between these diagonal elements
and the set of real constants g„which were introduced
in CF as a means of describing higher order coherence
properties of the Geld. Each of the two sets of con-
stants, fg } and fB„„},can easily be evaluated if the
other is given. We show, in particular, that for any fully
coherent Geld, i.e., one which is characterized by g„=1
for all e, the probabilities B„„correspond to a Poisson
distribution for the number of photons present in the
field. The coherence conditions, on the other hand, do
not impose any restrictions on the off-diagonal elements
of the matrix 8 „.There exists accordingly a broad
variety of states which fulfill the coherence conditions
precisely.

A well-known example of a fully coherent field is one
which is in an eigenstate of the annihilation operators
aI, for all the modes of the field. ' ' Such an eigenstate,
denoted by ~

fni, }),is characterized by the relation

(1 4)

requirement of Grst-order coherence. Before doing so,
however, we shall Gnd it instructive to examine some
particular examples of Gelds which exhibit Grst-order
coherence. These examples will later be useful as
illustrations of the general theory. We consider them
here since they suggest some of its important features.

One of the simplest examples of a state which has
Grst-order coherence is an arbitrary pure single photon
state, which we may denote by

~
1 phot). For this Geld

the 6rst-order correlation function G&'l(xi, xs) takes the
form

G&" (xi,xs) = (1 phot lE&-l (x,)E'+'(xs) I1 phot). (2.1)

Since E'+l (x) is a photon annihilation operator,
Ei+'(x) ~1 phot) can only be a multiple of the vacuum
state, ~vac&. We may therefore insert the projection
operator on the vacuum state in Eq. (2.1) and write

G ' (xi xs) = &1 photlE' i(xi)
I
vac&

y(vac~E&+l(xs) ~1phot).

This means that for a single-photon field Gol(xi, xs)
fulfills the requirement for Grst-order coherence,

This state can be expressed in terms of the eigenstates
of the number operator by means of the expression~

(~s)"
}&=II~ Z e '"' l~&. (15)

n=o (riI)i/s

G"'(xi xs) = h*(xi) 8(xs),

when we choose the function 8(x) to be

h(x) = (vac~E&+l (x) ~1 phot).

(2.2)

(2.3)

We note that no restrictions whatever are placed upon
the spectral properties of the state

~

1 phot); any pure
one-photon wave packet will do, whatever its frequency
distribution may be.

A second, and more familiar type of coherent Geld is
one which is monochromatic and completely polarized.
Examples of such Gelds are ones in which only a single
mode, say the kth, is excited. To show that such a field
fulfills the requirement for first-order coherence we
make use of the mode expansion for the positive fre-
quency part of the field,

Although these states possess a number of unique
physical properties, they are not the only ones which
possess full coherence. The wider class of states which
satisfy the full set of coherence conditions is discussed
in Sec. III.

In Sec. IV we describe some of the ways in which the
eigenstates of the annihilation operators are distin-
guished from the other states which exhibit full co-
herence. Their Grst characterization, which follows
immediately from their nature as eigenstates of the
annihilation operators, is that they are the only ones in
which the variance of any annihilation operator
vanishes. The characterization proves to be useful in
deriving a number of other unique properties of these
states. We Gnd, for example, that the eigenstates of the
annihilation operator are the only ones for which the
density operator for the field reduces to a product of
density operators for the individual modes, regardless
of which system of orthogonal modes we use. They are,
furthermore, the only states with first-order coherence
in which the function B(x) in the expression (1.3) can
be taken to be the expectation value of Ei+ (x).

II. EVALUATION OF THE DENSITY
OPERATOR

In this section we begin the systematic study of the
restrictions imposed upon the density operator by the

' R. J. Glauher, Phys. Rev. 131, 2766 (1963). See in particular
Sec. III and Eq. (9.1).

E&+'(r,t) =i Pi(—'brute)'t'ui, (r)e '""'aI, . (2 4)

G&'& (xi xs) = tr fpE&—l (xi)E&+& (xs)}
= (s~i)u~+(ri)ui(rs)e'""&'r &» tr fpgitgi} . (2.5)

Since the trace that appears here is independent of g~
and xs, we can obviously construct a field B(x) in terms
of which the correlation function factorizes according
to the coherence condition (2.2). A field confined to a

The summation is carried out over a complete set of
modes, characterized by the orthonormal set of vector
mode functions ui(r) and the corresponding frequencies
cog, . The operator a~ is an annihilation operator for a
photon in the kth mode.

If the kth mode is the only one excited, the density
operator for the Geld must obey the relations
a&p= pa&~ ——0 unless l=k. These relations imply that the
first-order correlation function takes the form
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Such density operators may describe pure states as well
as mixtures.

To exhibit more general forms of coherent Gelds, let
us note that the Geld operator E'+&(r, t) may be ex-
panded in terms of other solutions of the wave equation
than the monochromatic mode functions up(r)e '"".
Ke may, for example, deGne a diferent set of solutions
v/(rt) of the wave equation as the set of linear com-
binations

v1(rt) =i pp y&p(21///000)'/2up(r)e '"", (2.7)

where the coefficients y~~ are the elements of a unitary
matrix, i.e., they obey the unitarity relation

+17ltc 'rim=4m.

If we let bg be the annihilation operator for a photon in
the mode v/(rt), then we require that the positive fre-
quency field operator have the expansion

E~+~ (r,t) =P& v&(rt)b&. (2.8)

single mode can still tak.e a variety of quantum me-
chanical forms; its density operator can be written as

(a t)mp (a&)np

p= g c „, ivac)(vacua . (2.6)
mp, np (m@/)1/2 (22 !)1/2

This form satis6es the requirements for 6rst-order
coherence just as the form in Eq. (2.5) did.

Since the fields we shall consider below are only
excited in the single mode associated with a particular
function v1, (rt), we may simplify the notation a bit by
dropping the indices lo. It is evident that by defining the
transformation coeKcients suitably the function v for
the single mode which is excited may be taken to be any
function of the form

v(rt)=i gpyp( ,'hp/ )-'/'u (r)e '"", (2.12)

The corresponding annihilation and creation operators
are then

b=Z 2 v0*ap,

»=ZP V2aPt.

(2.14a)

(2.14b)

An 22 photon state of the mode (2.12) may evidently
be expressed in the form (e!)—'"(bt)"

~
vac). It follows

then that the most general density operator for which
this mode alone is excited may be written in the form

where the complex coeKcients p& obey the normaliza-
tion condition

(2.13)

Comparison of this expansion with Eq. (2.4) shows that
we must then have

Z1 b/V 10= ap

(bt) n b
p= P 8 ivac)(vac(

m, n (I!)1/2 (m!)'/2
(2.15)

By inverting this relation and its Hermitian adjoint,
we see that bI, and b&t are given by the linear combina-
tions

b1= Qp yu, *ap, (2.9a)

bit=Z0Vn, apt (2.9b)

These operators are seen to satisfy the commutation
relations

[b/, b j=[b1t,b t]=0,
(2 1o)

[b,,b„&)=b, ,

which are of the same form as those of the operators a
and at. The transformation (2.9) which is induced by
Eq. (2.7) is therefore a canonical one. '

Let us now suppose that only one of the modes cor-
responding to the functions v& is occupied, say the one
for i= la. Then the density operator obeys the relations

b)p= pbit=o

for l&lo. By using these relations in conjunction with
the expression (2.8) and its adjoint for the complex
Geld operators, we Gnd that the Grst-order correlation
function takes the form

G&'& (rt, r't') = v/, *(rt)v1,(r't') tr(pb1, tb1,) . (2.11)
' It may be noted that, although the transformation is canonical,

the mode functions v~(x, t) are not in general an orthonormal set,
because of the frequency-dependent normalization factors in
Eq. (2.7).

G„p„&'&(rptp, rt)

Gnpnp (rptpl&rpt0)

where ro, $0 is an arbitrary point for which the cor-
relation function in the denominator does not vanish
for an appropriate choice of po. %hen both sides of this
equation are multiplied by

—'L(2 t/ppp) 1/2gpn+(r) e'"01

summed. over p, , and integrated over r the resulting
equation may be written in the form

a0p=Pg, E'+& (xp) p, (2.16)

where the coeKcients 8 „, like the c „„,in Eq. (2.6),
may be chosen in a great variety of ways.

By generalizing our deGnition of a mode to include
nonmonochromatic solutions of the wave equation we
have derived the density operators (2.15), which
describe a broad class of Gelds possessing Grst-order
coherence. Ke shall now show that the density opera-
tors (2.15) form the most general class possessing this
property; the density operator for any Grst-order
coherent 6eld can be written in the form (2.15).

To demonstrate this theorem we make use of an
identity, satisfied by the density operators of all first-
order coherent Gelds, as shown in our previous paper.
This is the relation CF (3.9a) which may be written as
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where the constant Pi, is given by

ui,„*(r)e'"&' G„,„oi(rpt p, rt)
dr. (2.17)

i(,'tt-pi, )'" G o&(rptp, rptp)

It is easily seen from the fact that G(" satisfies the wave
equation that the dependence on t in this equation
cancels exactly, and the coefficient P& is independent of
time. We show further that gi IPq I' is finite as long as
the mean total number of photons &lV) in the field is
Gnite~; this follows directly from the expression

Kith these preliminaries we are able to evaluate the
density operator p in the occupation number repre-
sentation,

l(~~))&(~p) lt l(~i})&(~i)I.
{nial, ( mph'

If we insert the definitions of the states
I (ei) ) in this

equation we have

(iieet)
~a g.= Z II I-)(-III

(np!, {ml} k (Ny!) I 0 (Ni!) I

(g t) («) '

&&+ I
vac)(vac

I g
(mi!)'" (nzi!)'"

We may now make use of relation (2.16) and its adjoint
and of the commutation properties of creation and
annihilation operators to rewrite this expression for p
in the form

(Pp~i') "'
II I

vac) &vacl [~"'(»)3""'
t

) rlisf, (fsg) k g,y.!
8g tn)

X[8' '(so))*' 'Ivac&&vaclg . (2.1g)
t

We next define n=Pi, rii, and m=Pimi and use the
multinomial theorem to carry out the partial summa-

tions in which n and m remain Gxed. In this way we

obtain

(gi tbita')" (ZiPi*iii)"
t=Z vac vac

n, m m.

&(&vacl[++ (*o)j"p[&~ i(&o)] Ivac). (2.19)

This expression is seen to have exactly the form of Eq.
(2.15) when the coefficients 7~ in the definitions (2.14)
of 5 and b~ are identiGed as

(2.20)

~ The assumption that the total number of photons is finite is a
natural one in the present context. We have assumed that the
modes of the Geld are a denumerable set, as is the case for the
field in any finite enclosure. For such a field there exists a minimum

frequency, and infrared divergences do not occur.

The coeKcients Pi, are given by Eq. (2.17) and the
boundedness of P~IPi, l' was shown for any field with
an average occupation number which is bounded. When
this identiGcation is made, we see that the coefficients
B„ofEq. (2.15) are given by

= (~ty$t) —'to[a„l pp I

pjilpi"+™i

X &vac I
[E'+i (xp)j"p[E'—(xp) g"

I
vac). (2.21)

It is clear from this expression for the coefficients
8„ that they form a Hermitian matrix. From the
definition (2.14a) of b we find the relations b

I
vac) =0

and [b,btf = 1. They enable us to evaluate the trace of
the density operator in terms of the B„„as

trp= p B„(ip!m!) 'tp(vac lb (bt)" Ivac)

= Q B„(e!I!)'"it!8„„

=Pn Bnn= 1.

The matrix B„ therefore has unit trace. Its diagonal
element 8 is easily seen to be the probability that m
photons occupy the mode. Our main result in this
section can be summarized quite concisely. The density
operator for the most general type of Geld possessing
first order coherence is a simple generalization of the
density operator (2.6) for a field with a single mono-
chromatic mode excited. To achieve full generality it is
only necessary to replace the creation operator a&t in
the density operator (2.6) by the more general creation
operator b'( which creates a photon in a particular
superposition of modes. If we think of this superposition
as specifying a particular type of photon wave packet,
then we see that the Geld may be regarded as consisting
entirely of photons of that type. '

We have proved both that a field specified by the
density operator (2.15) has first-order coherence and
that conversely every field with Grst-order coherence
must have a density operator of the form (2.15). This
means that we have obtained a third way of charac-
terizing Grst-order coherent Gelds. The first two are the
factorization condition (2.1) and the maximum fringe
visibility condition. The latter condition and its equi-
valence with the factorization condition are discussed
in CF, Sec. III.

III. FULLY COHERENT FIELDS

To discuss the higher order coherence properties of a
Geld with first-order coherence we consider the sequence

It is perhaps worth noting that this situation strongly re-
sembles the one encountered in the study of superQuids. The
superQuid component has long-range correlations which may be
expressed by means of a factorization of its correlation functions.
This component consists, furthermore, entirely of particles in a
small number of similar quantum states. The fact that these states
may be nonstationary and quite arbitrary in form was stressed
recently by P. C. Hohenberg and P. C. Martin, Ann. Phys.
(N. Y.) 34, 291 (1965).
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of numbers
G("& (xo x()

g~=
[G ' (xo,xo))"

(3.1)

In CI' we showed that these numbers completely
describe the higher order coherence properties of a Geld
which has 6rst-order coherence. Such a Geld is speci6ed,
as shown in Sec. II, by a density operator of the type
(2.15).The correlation functions with all arguments set
equal are therefore given by

G("&(xp .xp) =P B„„(vacua
(m!)'Io

(bt) m

X[&' '(*o))"[&'+'(xp))"
I
vac). (3 2)

(m!)'"

P(&)= P X-B„.,
m, 0

then we see immediately that

B„=[(1/ !)(d/d&)-Z(~)) ~, , (3.1O)

On the other hand, the factorial moments can also be
expressed in terms of F (X) as

(
m. (O

= Q m(m —1) "(m—~+1)B„
(m —yz)! m=n

photons present in it. The distribution is most easily
derived by making use of a generating function method.
A number of details of this method which we shall not
examine here are discussed elsewhere. '

If we define a generating function F(X) as

To evaluate this expression we make use of the com-
mutator

= [(d/d&). z(& ))(, , (3.11)

[b",[&( '(*p))")
= [m!/(m —I)!)b"-"[b,E(—&(xp))" (3.3)

for m&~e. The terms of the sum (3.2) for m(e are
easily seen to vanish.

The relation (3.3) together with its adjoint enables
us to write G("&(xp xo) as

1 — tn! '2

G'"'(xo xo)= ][b,Z' '(xo))['" Q B
m! (m —ii)!

Since Eq. (3.8) tells us the derivatives of the generating
function at X=1, we may construct the function ex-
plicitly by means of a Taylor series expansion about
X=1.In this way, we 6nd

By carrying out the differentiations indicated in Eq.
(3.10) we see that the B „are given by

X (vac
~
b —"(bt)" "Ivac)

B„„=((m) "/e!)e+ &, (3.12)

00 m.
=

) [b,Z(—
& (xp)) ['"Q B . (3 4)

m=n (m —~)!

In particular for n = 1, we have

G ' (xo,xo) =
] [b,~ & (xo)) J

o P B
tn=l

If we introduce the notation

(3.5)

(f(m))=—P„f(m)B„„, (3.6)

we can express the coefficient g„as

G(~& (xp xp) (m!/(m —m)!)
gn=

[G ' (xo,xo))" (m )"
(3.7)

A fully coherent Geld, we have shown in CI", is char-
acterized by g„=1 for all n. This condition can be
written as

(3.8)(m!/(m —I)!)= (m)".

In other words, the factorial moments of the photon
number distribution reduce to powers of the mean
photon number. This characterization of the field leads
uniquely to a Poisson distribution for the number of

which is exactly a Poisson distribution.
The converse of this theorem is also true. If the

density operator for a 6eld takes the form of Kq.
(2.15), and if the diagonal matrix elements B„„form a
Poisson distribution, then the 6eld is fully coherent. To
prove this we need only note that under the conditions
stated the relations (3.8) will all hold, or the g„, in other
words, will all equal unity.

It is interesting to observe that once a Geld possesses
first-order coherence, and the density operator con-
sequently falls into the form of Kq. (2.15), the higher
order coherence conditions only place constraints on the
diagonal elements of the matrix 8 „.The great freedom
which remains available in the choice of the oG-
diagonal elements means that a considerable variety of
mixed states as well as pure ones is capable of satisfying
the conditions for full coherence. (The definition of full
coherence has intentionally been chosen to admit
appropriate types of mixtures as well as pure states,
since virtually no optical experiments deal with pure
states. )

The eigenstates of the photon annihilation operators
are obvious examples of pure states which are fully
coherent. We may use the theorems we have proved to

' See Ref 2, Lecture XVII
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B„=C*C (3.14)

in which the set of coefficients C obey the normalization
condition

The density operator which results from substituting
Eq. (3.14) into Eq. (2.15) may be regarded as a pro-
jection operator on the state

(3.15)'"2- L~-/(I!)'"3(b')"lv«),
where p is an arbitrary phase angle. This is the most
general pure state which possesses first-order coherence.
The conditions for full coherence impose the further
requirement that the B„„=lC l' be given by Eq.
(3.12). By satisfying this requirement we see that the
most general pure state which has full coherence may
be written in the form

g ((m)"/2/e!)e & "&/2+""(-bt)"lvac), (3.16)

where the phases H„may be chosen arbitrarily. Com-

parison of this expression with that for an eigenstate of
a photon annihilation operator, Eq. (1.4), shows that it
is an eigenstate of the operator b if and only if the 0

obey a linear relationship of the form

8 =F8+/ (mod2~) (3.17)

for some 8 and Q.

Byinaking use of Eq. (3.18) of Ref. 5, we can easily
show that an eigenstate of b, denoted by lP&, is also an

eigenstate of each of the annihilation operators a~. +le
use the definition of b, Eq. (2.14a), and the cornmuta-

tivity of all aI, ~ and uI, for k~k' to write

lP)= expDlbt —P*b)
l vac)

=expLZk(PVk'kt —P*Vk*'k)]
l v«)

=gk exp' kckt —p*pk*akf lvac)
= l{Pvk}). (3.18)

Here l{pyk}) is the eigenstate of the operators ak with

eigenvalues Ppk. The constants yk are defined in Eq.
(2.2o).

The diBerence between an eigenstate of the anni-

hilation operators" and the more general type of fully

'0In Ref. 5 and elsewhere the eigenstates of the annihilation
operator have been referred to as coherent states. We have used

derive a more general class of pure states which possess
the same property. To do this we note that for any pure
state, l), the density operator takes the form p= l)(l.
Its matrix elements in the occupation-number repre-
sentation must therefore take the form

({Ãk}lP l {18k})=r*({Nk})r({78k}), (3.13)

where r({mk}) is a suitably determined function of the
occupation numbers. Ke see then that if a density
operator of the form (2.15) is to represent a pure state,
the matrix 8 „must factoiize according to the scheme

It is interesting to compare this average value with
the one we obtain if p corresponds to a mixture of
eigenstates of b with the same amplitude, lP l

= (m)'/',
but different phases,

P =&8P~ I
(~)'"'"'&((~)'/2~"'I, (3.2o)

where the p; are non-negative numbers and have the
normalization P;P, =1. For this density operator we
find, in place of Eq. (3.19),

tr{p(b")ibm} —(~)(l+e)/2+. pgi(n E)8i , (3 —21)

Comparison of this result with Eq. (3.19) shows us that
for each l and I we can construct a set of coeKcients p,.
and 8; such that the result (3.19) is reproduced by a p
of the form (3.20). The average expressed in Eq. (3.19),
in other words, is equivalent to one in which the phase
of the field is allowed to vary while the modulus re-
mains fixed. For diferent l and e, however, we must use
diferent sets of p; and 8;.

The density operator (3.20) corresponds in the classi-
cal limit to an ensemble of fields with fixed modulus and
a phase randomly distributed among certain discrete
values. A state of the field of the form given by Eq.
(3.16) can evidently be replaced, within the context of
Eq. (3.19), by such a random-phase ensemble. While
this observation is of help in picturing the physical
character of the states (3.16), we must remember that
the equivalent ensembles will be diGerent for each pair
of integers l and e in Eq. (3.19).

The subtle correlations which may be present in a
quantum mechanical state cannot be reproduced faith-
fully by means of a single classical ensemble, as can be

their lengthier and more specilc designation in the present paper,
ho~ever, in order to avoid confusion in discussing broader classes
of states which satisfy the coherence conditions. Since the eigen-
states of the annihilation operators are the only easily generated
members of this set, and mathematically the most useful ones,
their designation simply as coherent states will remain convenient
in most other contexts

coherent state, described by Eq. (3.16) does not become
manifest in experiments, which can be described com-
pletely in terms of the correlation functions G&"~, since
these functions are the same for both. Examples of such
experiments are measurements of the field intensity,
photon coincidence rates and the distribution functions
of the number of photons counted. The quantities these
experiments measure are independent of the absolute
phase of the field. A typical example of a quantity
which does depend on the absolute phase is an average
value of the product of unequal powers of the creation
and annihilation operators b~ and b. If p is the projection
operator on the state (3.16), such a quantity is given
by

(m&&
tr{~btlbn} —(~)(l+e)/2p '—(m)8'(8y+„-88+8) (3 19)

l
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seen by considering a state (3.16) for which

0.=&0+ ( 1—)-y

of CF which shows that the identities (4.2) imply

(ai n—i)p= p(ai. t n—i,*)=0 (4.3)

This state may show a large phase uncertainty in the
expression for tr{pb}, but none at all in that for tr{pb'}.
States of such thoroughly unclassical nature" will, of
course, not be produced by everyday light sources.
However, in a complete quantum mechanical discussion
we cannot exclude them from consideration.

IV. UNIQUE PROPERTIES OF THE
ANN'IHILATION OPERATOR

EIGENSTATE8

The eigenstates of the annihilation operators can be
distinguished from the more general class of states
which exhibit full coherence in a variety of ways. We
shall discuss several of the respects in which these
states are unique in the present section.

It is well known that the eigenstates of the anni-
hilation operators are ones for which the product of the
uncertainties of the coordinate and of the momentum
of each field oscillator is a minimum. This minimum
property does not characterize the eigenstates uniquely,
however, since each oscillator has a continuum of states
with the same value of the uncertainty product. A Inore
useful way of characterizing the eigenstates of the
annihilation operators is through the discussion of a
rather diferent type of uncertainty. For this purpose
we note that for any density operator p, and any set of
complex numbers {ni,}we have the positive-definiteness
inequalities"

tr{p(a~t —rri,*)(az:-nz) })0, (4.1)

which hold for all k. If the field is in a pure eigenstate of
the annihilation operators corresponding to the eigen-
values {ui},i.e., we have p= I{ni})({ni,}I, then it is
clear that the averages given by Eq. (4.1) vanish for all
k. Since the numbers {ni} are in that case the mean
values of the mode amplitudes, ni, tr{pai,}, the ei——gen-
states of the annihilation operators may be said to
ininimize the uncertainties (i.e., the variances) of the
complex field amplitudes. LThere exists some ambiguity
in defining the variance of a non-Hermitian operator.
The expression (4.1) is chosen so that the zero-point
oscillations do not contribute to the variance. $

To show that the minimum property we have just
exhibited characterizes the eigenstates uniquely, let us
assume that for some sets of amplitudes {ni,}we have

for all k. It is clear from these relations that o.j, is the
mean value of aI, and nI,* is that of the conjugate
operator. By using the brackets ( ) to denote statistical
averages, we may therefore write Eq. (4.2) in the
alternative form

(ai, tay) —
I (az) I'=0. (4 4)

Let us consider the case of a field in which only the
kth mode is excited. For brevity we shall temporarily
drop the index k. The density operator for this field can
be written in the occupation number representation as

p= P Izz)(zzIpIm)(mI. (4.5)

(vac I p I vac) = e ~ ~'. (4.7)

We see then that p is a projection operator on the eigen-
state In) given by Eq. (1.5). Hence the necessary and
sufhcient condition that Eq. (4.2) holds for a single-
mode excitation is that the mode be in the eigenstate of
the annihilation operator having eigenvalue n.

The generalization of this result to the case in which
arbitrarily many modes are excited is immediate. By
expanding the density operator in the occupation
number representation for the full set of modes and
again using the identities (4.3) we may see that p is the
projection operator on the state I{n&}) which is an
eigenstate of all the operators a~.

The theorem we have just proved applies to non-
monochromatic modes as well as monochromatic ones.
Thus if the operators bi are the set defined by Eq. (2.9a)
and there exists a set of complex numbers Pi such that

tr{p(bit —Pi*) (bi —Pi)}=o (4.8)

for all /, then the Pi must be the mean values of the bi,

We may now use the definitions of the states Izz) and
the identities (4.3) to bring the density operator to the
form

an (at) m

p= g Izz)(vacI p Ivac)(mI
(n!)'" (m!)'"

Q (&w)m= (vac
I p I

vac) P„ I zz) P„(mI . (4.6)
(zz!)'I' (m!)'I'

Since trp=1 we must have

«{p(ai,t —ai*)(a~—aa)}=0 (4.2)
Pi——tr{pbi}, (4.9)

for all k, and solve for the density operator p. As a first
step we may make use of the theorem proved in Sec. II
"We may note, incidentally, that this state is an example of one

which cannot be represented by means of the P representation
defIned in Ref. 5. It is a particular case of the example stated in
Ref. 3, Eq. (23)."See, e.g., CF, Eq. (3.1c) or the Appendix of Ref. 1.

and p must be the projection operator on the state

I {Pi})= exp( —-' ZiIPil')2- L(EiPibi') "i~.]I
vac)

= expI Pi(Pibit —Pi*bi)$
I
vac), (4.10)

which is an eigenstate of the {bi}.By using Eqs. (2.9a)
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ns Zl pl7lli ~ (4.12)

To obtain further insight into the meaning of the
inequality (4.1), let us consider a single mode for which
the annihilation operator is a, and introduce a co-
ordinate and a momentum operator for it by writing

q= Pi/2oi)i" (at+a), (4.13a)

p =i (»/2)'" (at a)—

If we then let the constant o. be

(4.13b)

~= (o)= (2») '"{~(V)+i(p)}, (4.14)

where the brackets ( ) stand for statistical averages, we
find that the inequality (4.1) may be written in the form

( / )(4—(V))')+(») '((P—(P))')—s 0 (415)

The eigenstates of the annihilation operator are the
states which reduce this particular linear combination
of the variances of q and p to its minimum value. The
linear combination is a familiar one. For the case
(~i)=(p)=0, the inequality asserts simply that the
energy of any state of the oscillator exceeds that of its
ground state, sr». It is clear, furthermore, that for (q)
and (p) different from zero, the state which minimizes
the sum, i.e., the eigenstate of the annihilation operator,
may be found simply by displacing the ground state in
coordinate and momentum space. The latter property
of the eigenstates of a has already been noted in Ref. 5.
The inequality (4.15) may indeed be shown to be a
consequence of the uncertainty principle. If we apply
first the arithmetic mean-geometric mean inequality
and then the uncertainty principle we find

s~'((c—(V))')+ s((p—(P))')
& ~{((v—(v))')((P—(P))')}'"&l ».

It is interesting to apply the inequality we have been
discussing to the set of states which correspond to fully
coherent fields. If we let b be the annihilation operator
de6ned by Eq. (2.14a) and let P be an arbitrary complex
number, then the inequality becomes

{~(b'—P*)(&—l3)}&o. (4 16)

If, in particular, we let P be the average value of fi,

P = tr{pb}= (b), then Eq. (4.16) reduces to the Schwarz
inequality

(4.17)(f'b)& I(f) I'.

and (2.9b) to expand bi in terms of the sets of operators
{&s} and {uy,t}, respectively, we see that the state
I {Pi})may be written as

I {Pi})=pi,expI Pi(Pn is~i, —Pi"yn*rii) jIvac). (411)

We have shown in Eq. (3.18) that such a state is an
eigenstate of the {ui,}.It may be written alternatively
in the form

I {ni}),where the eigenvalues ns are given by

As we have noted earlier, all states which possess full
coherence have Poisson distributions for their occupa-
tion numbers; the distributions which correspond, for
example, to the states specified by Eq. (3.16) are all
identical and have the mean occupation number
(btb) = (m). The mean value of the operator b is there-
fore constrained in such states by the inequality

(~)& I(f) I', (4.18)

and the upper bound of
I (b) I

is only attained when the
state reduces to an eigenstate of b.

Our discussion at the end of Sec. III of the physical
nature of the states (3.16) indicates that the difference
between the two members of the inequality (4.18) arises
largely from the phase uncertainty of the operator b.
The phase uncertainty of the field evidently tends to be
minimized, within the class of fully coherent states, by
the eigenstate of the annihilation operator. "

One of the interesting features of the eigenstates of
the annihilation operators is evident in Eq. (3.18).When
a Geld with only the b mode occupied is in an eigenstate
of b, then its state vector, when written in the repre-
sentation associated with the aI, modes, factorizes into
a product of eigenstates of the {aq}.The density opera-
tor for the Geld, in other words, tal~es the product form
p=gi, ps, and measurements made on the individual
modes yield statistically independent results. We shall
show that this condition of statistical independence is
actually sufhcient to single out the eigenstates of the
annihilation operator from among all states of the Geld
which possess coherence of any order. To do this let us
suppose that the density operator p describes a first-
order coherent Geld. Then, as we have noted earlier,
only a single mode of the field is excited, and we label it
the b~;mode. We shall assume that none of the orthog-
onal set of modes we label with the amplitudes {at}is
identical to the b~;mode. These statements imply, as
we shall show, that if p can be expressed in the factorized
form gs pi„ it is a projection operator on an eigenstate
of the annihilation operator b~,. The factorization, in
other words, is a sufhcient condition for the Geld to be a
pure eigenstate as well as a necessary one.

To begin the proof of this theorem we note that the
b&;mode may be regarded as a member of an orthogonal
set of modes for which the b~ are given as linear com-
binations of the {ai,}by Eqs. (2.9a) and (2.9b). These
relations are

bi=& yis*os,

ht=g Vuost,

(4.19a)

(4.19b)

where the coefficients y~I, form a unitary matrix. The

"Calculations verifying that the eigenstates of the annihilation
operators possess relatively well-defined phases have been carried
out by P. Carruthers and M. M. 5ieto LPhys. Rev. Letters 14,
387 (1965)j. The phase uncertainties are small in the sense that
they approach the lower bound set by the commutation relations
for (m)))1, and are not far from this limit for smaller values of
(m).
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b~-modes with l&lo are not excited. We therefore have

b&tp= pb&=0, for l/l&&, (4.20)

a statement which implies that the variance of b~ also
vanishes;

tr{p(b~t —&bgt)) (b~—&b~))}=0, for /&l&&. (4.21)

This variance can also be written as

tion are just the probabilities for having a specified
number of quanta in each field mode. It is easily shown,

by calculating the diagonal element that the joint
probability distribution for the set of occupation
numbers {ms} is

(4.27)

where
tr{p Ps y», (a& t—ns')gs. y&s.*(us.—&rs.)}=0, (4.22)

&ms)= IysI'&m), (4.28)

reduces to the form

~k= El brylk,

blpglpk p

(4.25)

(4.26)

and the coefficient yappy is simply a phase factor. This
statement contradicts our explicit assumption that the
excited mode is not one of the set associated with the
amplitudes ag, .

The relation (4.24) has been shown earlier in this
section to imply that p& is the projection operator on an
eigenstate of the annihilation operator ap. The over-all
density operator p is therefore the projection operator
on a simultaneous eigenstate of all the a~. This result
completes the proof of our theorem. '4

It is perhaps worth noting that the general class of
fully coherent fields only possesses a factorization
property much weaker in form than the one we have
demonstrated for the eigenstates of the annihilation
operator. The density operators for fully coherent fields
are given by Eq. (2.15) with the diagonal coef6cients
B„„pseci e6d by Eq. (3.12). The diagonal elements of
the density operator in the e-quantum-state representa-

"For the particular case in which the excited mode is a super-
position of two other modes a related result has been noted by
Y. Aharonov, D. FalkoG, E. Lerner, and H. Pendleton, Ann.
Phys. (N. Y.) (to be published); a partial report is contained in
the conference proceedings mentioned in Ref. 3. These authors
give a physical interpretation of the result in terms of a comparison
between quantum mechanical and classical features of measure-
ment processes. The demonstration we have given provides a
rigorous basis for their theorem in that it overcomes the reserva-
tions they point out at the end of Sec. II of their paper. Further-
more, it extends their theorem to deal with arbitrary numbers of
superposed Inodes.

where &rA,
= &as) is the expectation value of us.

If p is assumed to factorize into the form gs ps it is

clear that the terms with k&k' vanish in Eq. (4.22).
The vanishing of the variance (4.21) therefore implies
the condition

Zs Iv&s I' tr{ps(est —&rs*) (as —&rs) }= 0, for tWt&&. (4.23)

Since, according to Eq. (4.1), all the terms of this sum
are non-negative, we must have

tr{ps(ug, t—&r&*)(us—&rs)}=0, (4.24)

for all k, providing there exists at least one value of
l&lo such that yp, &0. If, on the other hand, no such
value of / exists, i.e., we have y~1,=0 for i&to, then the
relation which is inverse to Eq. (4.19a),

and Vs is given by Eq. (2.20). The joint probability
distribution for the occupation numbers of the modes
reduces to a product of independent Poisson distribu-
tions. The factorization property of the density opera-
tor, however, need not extend to its off-diagonal matrix
elements. The various modes will not, in general,
contribute in a statistically independent way to physical
processes which depend on such matrix eleInents.

We conclude this section with another corollary of the
theorem proved at the beginning of this section. We
note that the positive frequency part of the Geld at
x= (r,t,y) is an operator of the form (2.14a) with
ps* i(rsfio——».„)'~' N&,„(r)e '~"' Vani. shing of the variance of
E&+&(x) therefore implies vanishing of the variance of
as for all k such that Ns„(r) WO. If we require the vari-
ance of E&+& (x) to vanish for all x, then the variance of

aq vanishes for all k, and the field is in a pure eigenstate
of the annihilation operators.

On the other hand, the variance of 8&+&(x) can be
written as

t {P~' '(*)~"'( )}—&~"'( ))*&~"'())
=G&'& (x,x) —&8&+& (x) )*&8&+&(x)) . (4.29)

Here we have used the de6nition (1.1) of G"&, and have
written &E&+& (x)) for the expectation value of E&+& (x).
If we compare the condition for the vanishing of the
variance,

G&'& (x,x) = &E&+& (x) )*&8&+&(x)), (4.30)

with the condition (2.2) for 6rst-order coherence, we see
that the 6eld h(x) in terms of which G"& factorizes,
must be equal to &E&+& (x)), apart from a phase factor.
It is obvious, furthermore, that Eq. (4.30) is obeyed by
any eigenstate of the annihilation operators. Thus we

may formulate the following theorem.
A field which obeys the first-order coherence condi-

tion (2.2) is in a pure eigenstate of the annihilation
operators if and only if the function 8(x) in this condi-
tion may be taken to be the expectation value of
g&+& (x)

This result may be formulated somewhat differently
if we introduce a larger set of correlation functions
defined by

G ' (xr' ' 'xs~xs+r' ' 'xs+m)
= tr{pZ&—

&(xr) .E&—'(x )
X«+&(x~r) . &&+&(x~ )} (431)
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It is seen immediately that if the Geld is in an eigenstate as
of the annihilation operators we have

7b n+m
G'" "&(xr. x.+ ) =g t'*(x;) g 8(x;) (4.32)

j=n+1

for all rt and rrt. The function $(x) may be identified

Factorization of the Gt" & as indicated in Eq. (4.32)
implies, in turn, that the Geld is in a pure eigenstate of
the annihilation operators. This result is in fact implied,
according to the theorem proved earlier, by just the two
conditions (4.32) for (tt, tN) equal to (0,1) and (1,1).
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The reaction E P —+ hco, as observed in the Lawrence Radiation Laboratory's 72-in. hydrogen bubble
chamber, has provided over 4600 examples of co decay. The distribution of pion momenta in the decay
op —& g+2r m', of which 4200 examples have been seen, is found to be consistent with C conservation. W'ith
the assumption that the or spin is 1, the pion-momentum distributions predicted by two di6'erent decay
matrix elements are compared with the experimental distributions, as a test for Gnal-state interactions. It
is also shown that a spin of 3 for the co is unlikely. Branching fractions of other decay modes with respect
to the 2r+2r m. decay mode are: neutrals, 0.097&0.016; qy, &0.017; 7J2r', (0.017; ~+2r p, (0.05; e+e,
&0.0003; and ts+ts, &0.0017. The &o ~v+v branching fraction lies between (0.17+0.03)'=0.029 (co-
herence between the p and the co production amplitudes assumed) and 0.082+0.020 (incoherence assumed).

I. INTRODUCTION

E present here some measurements of co decay as
seen in the reaction E p ~hco, with incident

E momentum between 1.2 and 1.8 BeV/c. The decay
modes studied provide information on C conservation,
St'f(3) symmetry and p-co mixing, the electromagnetic
structure of particles, I conservation, and the spin of
the co.

TABLE I. Decay modes of the m meson.

Rate'
Decay mode of or Other experiments This experiment

m.+2r 2'
All neutrals

gy —+ neutrals
~+~, complete

incoherence assumed
complete

coherence assumed
~+~ v
7tIV

e+e

p p

12 MeV
0.106&0.010

=0.10
~ ~ ~

0 0080

~ ~ ~

=0.0001
&0.001

~ ~ ~

0.097&0.016
~ ~ ~

&0.011
0.082~0.020

(0.17&0.03)' =0.029

&0.05
&0.017
&0.017
&0.0003
&0.0017

a All fractions represent the absolute rate divided by the Lo ~ 7r+7r 7' rate.
b See Ref. 4.
e See Ref. 11.

*Work done under the auspices of the U. S. Atomic Energy
Commission.

f National Science Foundation Predoctoral Fellow.

The conservation of C forbids the decays co —+ pm' and
~ —+ pp, and also forbids an asymmetry between the x+
and x in the decay ~ —& m+x z'. Measurement of these
properties therefore tests C conservation. According to
SU(3) symmetry, the to is a vector meson that is a
linear combination of co8, a member of an octet of vector
mesons, and cot, an SU(3) singlet. The decay mode
co ~ sty bears upon this presumption, called p-co mixing.

The z+~, vr+x p, pp, e+e, and p+p decay modes of
the co have an intimate connection with the electro-
magnetic structure of mesons. The two-pi decay mode
is crucial to an understanding of the possible electro-
magnetic mixing between p and cu.

The distribution over the internal-momentum vari-
ables in co —+ x+x m' allows us, because of our large
amount of data, to look for Gnal-state interactions and
to explore the possibility that the co spin is J~=3
rather than J~=1 .

Table I summarizes the decay properties of the co.

II. EXPERIMENTAL IDENTIFICATION OF
THE REACTION

Approximately 4600 events of the reaction

E p~Aco

have been identified in a E—exposure of the 72-inch
hydrogen bubble chamber. The momentum settings
were 1.22, 1.32, 1.42, 1.51, 1.60, and 1.70 BeV/c. The


