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Using a model of circular coplanar orbits and an analysis accurate to first order in the sun’s gravitational
radius, Ross and Schiff discussed the recent proposal to test general relativity by measuring round-trip
travel times of radar pulses transmitted from the earth towards an inner planet. Their main conclusion, that
such measurements would be sensitive to a nonlinear term in Einstein’s theory, we find to be invalid. Since
first-order differences between Newtonian and Einsteinian orbits are well known to depend on a nonlinear
term in the metric, one might expect the round-trip travel times also to depend in first order on such a term.
Curiously, this expectation is not realized for circular orbits. When expressed as a function solely of clock
readings, the first-order formula for travel time in the circular-orbit model is strictly independent of the
nonlinear term. Even were the combined use of radar-pulse travel times and the results of “‘exact’ optical
measurements envisioned, their sensitivity to this nonlinear term would be masked almost completely by un-
avoidable uncertainties in the estimates of other unknown parameters such as the mass of the sun. For
noncircular orbits, however, the travel-time measurements will be noticeably sensitive to this nonlinear
term through its effect on the advance of the perihelion. In addition to re-examining the circular-orbit model,
we describe the operational procedures that we have developed for testing general relativity with data
obtained from actual planetary observations. These data cannot be expected in the near future to provide
a significant test of more than the first-order influence of solar gravity on radar-pulse travel times and the
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non-Newtonian advance of Mercury’s perihelion, as we previously pointed out.

INTRODUCTION

HE primary purpose of this paper is to discuss the
reasons for our disagreement with the main con-
clusion recently reached by Ross and Schiff! who con-
sidered a simplified model of a radar experiment pro-
posed to test Einstein’s theory of general relativity.?:3
This experiment involves transmitting radar pulses
from the earth towards an inner planet and detecting
the echoes. Ross and Schiff analyzed the first-order ex-
pression for these time delays derived under the as-
sumption that the earth and target planet move in
icrcular coplanar orbits; they concluded that measure-
ments of such delays would be ‘sensitive to a non-
linear term in Einstein’s theory.” In the remainder of
this section we first discuss briefly the general question
of testing relativity with delay data and then examine
the approach of Ross and Schiff, pointing out in detail
the facts that lead to our opposite conclusion. We also
describe the operational procedures that we have
developed for making such tests with actual radar
data. The last section is devoted to a detailed mathe-
matical analysis of the circular-orbit model and pro-
vides the basis for many of the statements made below.
For our present discussion, the data accumulated
from radar observations can be considered simply as a
series of clock readings made by an observer on earth.
That is, we may envision an earth-based atomic clock
which records the time at the instant of transmission of
each radar pulse as well as at the instant of reception
of each echo. The question of which facets of general
relativity such measurements will test is not amenable

* Operated with support from the U. S. Air Force.

1D. K. Ross and L. I. Schiff, Phys. Rev. 141, 1215 (1966).

271. 1. Shapiro, Phys. Rev. Letters 13, 789 (1964).

31. 1. Shapiro, Lincoln Laboratory Technical Report No. 368,
1964 (unpublished).
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to a simple answer. The theory contains some initially
unspecified parameters whose values must be obtained
from the same basic data that will be used to test the
predictions of the theory. The stringency of the test
depends in a complex manner on the accuracy, type,
and number of individual measurements included. In
particular, a significant test requires redundant data,
i.e., more than are necessary simply to determine
specific values for the parameters of the theory. Cur-
rently accepted procedures call for the use of a technique
such as the method of maximum likelihood to estimate
these parameters which will then generally be theory-
dependent as well as measurement-dependent numbers.
Various formal devices or ordinary common sense may
be used to decide whether the theory, augmented by
the specific parameter values, is consistent with the
data and hence “passes” the test.

To ascertain a priori whether or not a proposed set
of delay measurements would constitute a test that
could distinguish between two theories, one can pro-
ceed in several ways. The ambitious can generate a
representative, artificial set of data assuming, for ex-
ample, that general relativity is correct and including
“errors” selected from an appropriate random dis-
tribution. By analyzing these ‘“data” on the assump-
tion that another theory is valid, one can then decide
whether the post-fit residuals are large enough to enable
a significant distinction to be made between the two
theories. The less ambitious can choose to analyze
simple models that involve the essence of the proposed
experiment. If used carefully, the latter approach will
also lead to reliable results. Unfortunately the well-
known principles of the operational method are too
often either ignored or inconsistently adhered to in

41. I. Shapiro, Phys. Rev. 141, 1219 (1966).
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a priori analyses, leading authors to draw incorrect
conclusions.

As mentioned above, Ross and Schiff chose to con-
sider a model in which the earth and target planet are
represented by test particles moving in coplanar circular
orbits about the sun. The gravitational field of the
latter is represented in their work by the generalized
metric introduced by Eddington.® To first-order ac-
curacy in the sun’s gravitational radius, Ross and
Schiff give the expression for the time delay in terms
of the universal coordinates of this generalized metric.
They point out correctly that these coordinates are not
directly measurable quantities and then recast the
formula, replacing the zero-order part by one depending
on the individual planetary orbital periods and on the
mass of the sun. In this form, the time delay appears
to depend on a nonlinear term in the generalized
metric, i.e., on a term in the metric that is proportional
to the square of the sun’s gravitational radius. To be
assured of obtaining reliable results in @ priors inter-
pretations, one should of course express the theoretical
predictions solely in terms of directly measurable
quantities.® But neither the mass of the sun nor the
individual orbital periods are measurable with radar.
The synodic period is the only one that may be deter-
mined directly. It is the time interval between suc-
cessive collinear alignments of the earth, the inner
planet, and the sun, and is measurable since at the
instants of such alignments the time delay is a minimum.
When the first-order expression for time delays is cast
purely in terms of clock readings for the model of
circular orbits, the sensitivity to the nonlinear term
vanishes. Since first-order differences between Ein-
steinian and Newtonian orbits depend on a nonlinear
term in the metric, one would naturally have expected
measurements of interplanetary-travel times of radar
pulses to be sensitive in first order to this part of the
metric. However, such an expectation is not realized
for circular orbits; time-delay measurements accurate
only to first order are insensitive to the nonlinear term.

Since Ross and Schiff mention explicitly only time-
delay data and refer simply to a radar-reflection ex-
periment, one might have thought that their analysis
was indeed based solely on these radar measurements.
In a private communication, however, Professor Schiff
states that they “did not intend to exclude the use of
optical data.” Let us therefore examine in detail how the
inclusion of such data affects the analysis. For the pur-
pose of discussion, we may assume that the individual
coordinate-time orbital periods have been determined
exactly from optical observations. If we use these
values in the Ross-Schiff expression for time delay,
one important parameter will still remain unspecified—

5A. S. Eddington, The Mathematical Theory of Relativity
(Cambridge University Press, New York, 1957), p. 105.

6 Ross and Schiff also stress the necessity for expressing pre-
dictions in terms of measurable quantities. However, they con-
sider parameters such as orbital eccentricity to be measurable,
whereas we find to the contrary that these are theory-dependent

as well as measurement-dependent numbers (see, for example,
Refs. 3 and 4).
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the mass of the sun. This mass is not known from any
measurements with nearly the requisite accuracy in
terms of the gravitational constant, the speed of light,
and either the astronomical or the atomic unit of time.
(Were one to choose units in which the product of the
gravitational constant and the mass of the sun were
unity, and in which, for example, the orbital period of
the earth were unity, then the uncertainty would
merely shift to the imprecisely known speed of light in
these units.) One must therefore use the time-delay
data not only to test for the presence of the nonlinear
term, but to estimate the mass of the sun as well. A
detailed examination shows, however, that the estimate
of the coefficient of the contribution to the time delay
of the nonlinear term in the metric will be highly cor-
related with the estimate of the mass of the sun. When
one further considers that, e.g., the radius of the target
planet must also be estimated from these data, the pos-
sibility of detecting reliably the effect of the nonlinear
term in the metric all but vanishes. More precisely,
whereas the maximum magnitude of the effect on time
delay of the nonlinear term is 13 usec in Einstein’s
theory, the deviation between the contribution to the
time delay of this term and of a suitable linear com-
bination of a change in solar mass and a change in, say,
Mercury’s radius will nowhere exceed about 0.4 usec,
as is shown below. The maximum deviation is even less
when Venus is used or when the uncertainty in the
target planet’s mass is considered. For many reasons,
the detection of such an effect is now well beyond ex-
perimental reach.

We may conclude that measurements of inter-
planetary travel times of radar pulses are insensitive to
a nonlinear term in the metric of Einstein’s theory for
the model of circular planetary orbits considered by
Ross and Schiff. Augmenting the radar data with exact
optical determinations of individual orbital periods
would still not allow the effect of this nonlinear term
to be distinguished experimentally.

What will in fact be tested by the radar time-delay
observations? The actual physical situation is, of
course, far more intricate than the model of test
particles moving in coplanar circular orbits. Complica-
tions are introduced, for example, by the solar corona,’

7 The group delay introduced by the solar corona may be de-
termined by performing simultaneous observations at two fre-
quencies (see Refs. 2 and 3); such measurements can even be
made with one radar by alternating rapidly between transmissions
at different frequencies. (Klystrons are tunable over a wide enough
band to make such a procedure practical.) However, because of
the time-varying characteristics of the corona, the spectrum of
the radar echo will be broadened and consequently the determi-
nation of accurate time delays will be more difficult. Extrapolating
from recent 430-Mc/sec measurements made at Cornell’s Arecibo
Tonospheric Observatory (R. B. Dyce and G. H. Pettengill,
private communication), we find that at least at the present part
of the solar cycle the problem of spectral broadening at the 8000-
Mc/sec frequency of Lincoln Laboratory’s Haystack facility will
not be serious except extremely close to the solar limb. Studies of
solar occulations of radio sources indicate that absorption by the
corona will not be detectable at 8000 Mc/sec; the radar will be
“blinded” by solar noise in the antenna sidelobes before the main
lobe passes close enough to the limb to be noticeably affected by
absorption. The neutral component of the corona appears to be
far too small to be of significance.
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by the rotation, shape and atmosphere of the earth, by
the moon, and by the planets, all of which have non-
negligible masses and nonspherical shapes and move in
noncircular noncoplanar orbits. Over the last several
years, we have developed an array of double-precision
computer programs to integrate the equations of motion
of the moon, the earth, and the planets, to predict
values for the radar observations, and to determine
maximum likelihood estimates of the unknown parame-
ters such as orbital initial conditions and planetary
masses, shapes, and radii; we also evaluate and perform
a “principal-axis” transformation on the correlation
matrix of the parameter-estimate errors that are im-
plied by the measurement errors.® As far as general
relativity alone is concerned, preliminary studies based
on actual data have convinced us that presently
achievable radar-measurement and clock accuracies
will allow in the near future a significant test only of the
first-order effect of solar gravity on time delay and of the
excess advance of the perihelion of Mercury,® as was
previously mentioned.?? Neither the corresponding
secular advances of the perihelia of the three other
inner planets, nor the slight nonsecular predicted
differences between the Einsteinian and Newtonian
planetary orbits and clock rates will be detectable
reliably in the next several years. These conclusions are
contingent on the use of optical data solely insofar as
it is necessary to know the orbits of the outer planets,
which are as yet inaccessible to radar, to calculate their
perturbing effects on the inner planets. Errors in the
conventional determinations of either the orbits or
masses of the former will have only a higher order
effect on the orbits of the latter.

One might object to such a narrow viewpoint and sug-
gest that optical data be incorporated in a more funda-
mental way. Indeed we intend to attempt to utilize the
optical observations fully and, in fact, our computer
programs were written to process these simultaneously
with the radar data and with Doppler data from
Mariner-type space probes which should prove very
useful, especially in estimating planetary masses. How-
ever, because of the extreme sensitivity of the optical
results to nonuniformities in earth rotation, to stellar
location, to planetary phase, to atmospheric turbulence,
etc., the proper interpretation of these observations is a
nontrivial task. Care must be taken not to weight these
data too heavily; their number well outstrips the num-
ber of radar measurements, but the individual measure-
ment accuracies are far inferior to those obtained by
radar. Therefore danger exists in too strong a reliance
on the “square root of V,” since unsuspected systematic
errors in the optical data may then dominate. The

8 For general relativity and for Newtonian theory, suitably
augmented by either of the two obvious assumptions concerning
the interaction of light with matter, the mathematical analysis
was carried out by M. Ash, I. Shapiro, and M. Tausner (un-
published) and the computer programs were written by M. Ash,
A. Rasinski, and W. Smith.

9 At present, we have neither the right type nor amount of data
necessary for a significant test.
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probable errors astronomers quote with their processed
results are, because of this reliance, often far below the
actual errors as determined by independent means.!?
A now classic example is provided by the astromical unit,
the very accurate radar value differing from the result
based on optical observations by ten times the quoted
error of the latter determination.!! More recently, radar
observations of Mercury made at the Arecibo Iono-
spheric Observatory' indicate that some of the “New-
tonian” orbital elements require corrections in the sixth
significant figure!® although the conventional deter-
minations were stated to be accurate to eight. The
astronomical determinations of planetary orbital periods
are supposedly far more accurate. Yet radar observa-
tions indicate, for example, that relative to earth,
Mercury’s orbital longitude is ahead of predictions by
about 1”7 of heliocentric arc. Although it might be
argued that this displacement should be interpreted in
other ways, the logical possibility nevertheless remains
that it could signify an error in the orbital period. A
difference in Mercury’s orbital period of several parts
in 10° would cause a difference in orbital position of 1"
of arc after 100 years. Mercury’s proximity to the sun
makes optical observations notoriously difficult and
perhaps one should not be too surprised to uncover such
a relatively large error.

There is at least one more important problem in-
volved in using the optical data either directly or after
processing: The astronomer’s time scale must be re-
conciled with the atomic-time scale used for the radar
measurements. A comparison made between three
years of lunar observations and corresponding atomic-
clock readings achieved such a reconciliation! to a
stated accuracy of two parts in 10°. Of course, extended
series of radar observations will themselves allow ac-
curate inferences to be made of the values of atomic-
time orbital periods consistent, say, with general
relativity.

To summarize, we intend to test several predictions
of general relativity utilizing in essence only round-trip
time-delay data recorded in atomic time.!s An attempt
to incorporate the optical data will be made as well but,
because of both intrinsic and practical difficulties, we

10 For this reason especially, we feel that an independent deter-
mination of the advance in the perihelion of Mercury’s orbit is
highly desirable.

1 See, for example, I. I. Shapiro, Bull. Astron. 25, 177 (1965).

2R. B. Dyce and G. H. Pettengill (private communication).

3 M. Ash, A. Rasinski, I. Shapiro, and W. Smith (to be
published).

“'W. Markowitz, R. G. Hall, L. Essen, and J. V. L. Parry,
Phys. Rev. Letters 1, 105 (1958).

1 Doppler shits are also measured and there is the faint possi-
bility that a third order term in /¢ may be detectable (Ref. 3).
Spectral broadening introduced by the corona and by the target
planet’s apparent rotation may make necessary the use of milli-
meter wave or optical transponders on natural or artificial planets
to detect this third order contribution. Since in theory it is propor-
tional to the time derivative of the “extra” time delay introduced
by general relativity, this contribution would be maximized near
superior conjunction by placing an artificial planet in a retrograde
orbit that lies in the ecliptic.
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are less than sanguine about the improvements to be
obtained.

MODEL ANALYSIS

Following Eddington® and Robertson,’® Ross and
Schiff! employ the general static spherically symmetric
metric in the isotropic form

ds*=[1— Qam/r)+(2Bm?/¥¥)—+- - - Jdi?
—[14+Q@ym/r)+ - - - J(dx?+dy*+dz?), (1)

where 72=x24y?422, where m represents the mass of
the sun (or, equivalently, its gravitational radius),
and where the gravitational constant and the speed of
light have been set equal to unity. In Einstein’s theory
of gravitation, the coefficients a, 8, and v are all unity.
For the model of test particles in coplanar circular
planetary orbits, the first-order coordinate-time round-
trip interplanetary time delay 7  can be expressed in
coordinate time ¢ as

T=2R+2(1+v)m
xln[r—e <R+re~rp cos(ep— soe)>] o

75 \R+7,cos(0p— ¢o) — 7

where
R2=r2+r,2—2rep cos(0p— @0) (3)

S LR
©p,e= Pp, = - — |t
? ? r,,,es’zl_ 2 Jrpe ’

and where 7, and 7, are the orbital radii and ¢, and ¢,
the angular positions of the inner planet and the earth,
respectively. For convenience, and since the conclusions
will be unaffected by the approximations, we ignored
planetary motions during the travel time of the radar
pulse and followed Ross and Schiff by setting a=1
and by not converting Eq. (2) to proper time. The
formula for 7'(¢) differs from the corresponding Ross-
Schiff equation only in that polar coordinates have been
used here.!” By choosing the directly measurable synodic
period as the unit of time and inferior conjunction as
the origin of time, we may replace ¢,— ¢. by 2=t since,
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by definition, the angle between the two orbital radii
increases from 0 to 27 during a synodic period. Equation
(2) is now manifestly independent of 3, the coefficient
of the nonlinear term in # appearing in the expression
for the generalized metric. But the equation does
depend on two quantities which have not been opera-
tionally defined, namely 7, and 7.. These, of course,
may be estimated from the data at the same time that
the theoretical predictions are being tested. For the
purposes of this model study we may determine 7,
and 7, from two measurements of time delay, say T
and 7';, made at {=0 and at ¢=%.1® This determination
will yield theory-dependent as well as measurement-
dependent numbers. We may write

Yp= 7'PN+ Ar? )

re=rN4-Are,

©®)

where 7,V and 7Y are the Newtonian values deter-
mined from 7¥(#)=2R¥, and where Ar, and Ar, are
of order m. Solving, we find

r =3 P=To) =Ty,

P I=ALQTATET,], ©

and

e e
Arp,= (l—l—'y)m{ 1n<-->
Tetrp  \1p

(rez—l-f'pz)l”l |:re ((rez-f—rpz)m—l—re

SR Y I A

Te7p 7p\ (7e2+7,2)12— )]} ’
( ) Tp )

Tp 7e
1n<——>
Yo t7p 7

+(fﬁ-#rp"’)” ’ ml:f’_e ( (r+r,2)Y 2+re>]} .

7et7yp 7o\ +7,9) 27,

The quantities 7, and 7. appearing in Eq. (7) should
each bear a superscript V. The sought for first-order
accuracy in m will, however, not be affected by deleting
the superscript. Inserting these results in Eq. (2) yields

Are= —(1+7)m{

7o (R+7e—1, cos2mi Te—1p Te
T(¢)=2RN+2(1+7)M{IH[—< )]—( E >cosZ7rt 1n<*)

7p \R-+7, cos2wt—r,

with

Vp
(rP+rp) V2 (1—cos2mt) 7. [(rd+rp2) 247,
- el ©
R 7o \(r 27,5 2 —7,
and with 7," and 7. defined in terms of measurements
by Eq. (6).

RY¥={(r )2+ (r,7)2—2r NrpY cos2mt}i2,  (9)

16 H. P. Robertson, in Space Age Astronomy, edited by A. J.
Deutsch and W. E. Klemperer (Academic Press Inc., New York,
1962), p. 228.

17 Ross and Schiff also present a formula for the time delay in
isotropic coordinates which in this context are completely equiva-
lent to harmonic coordinates. This expression appears to differ
from the corresponding one involving standard Schwarzschild co-
ordinates. Both results had been obtained and explained previously

For this model we see that to first order in m, the

(see Ref. 3); in brief, the difference has no operational significance.
It is simply a question of different coordinate systems leading to
different coordinate values for the positions of the planets. The
formulas, of course, become identical when expressed solely in
terms of measurable quantities.

18 This analysis follows closely the approach used in Ref. 4.
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radar measurements of time delay are in principle in-
sensitive to the nonlinear term in the generalized
metric. Given noncircular orbits, the conclusion will of
course be different; the nonlinear term contributes, for
example, to the secular advance of the perihelion which
can be detected from the radar data.*3

To decide whether a test of the influence of solar
gravity on time delay will be significant, we must
determine the sensitivity of 7'(¢) to errors in either 7'
or 7' A simple calculation shows that such errors would
be magnified by less than a factor of two at most in
their effects on 7'(f). Since for Einstein’s theory the
first-order part of the expression for 7'(f) varies from
zero to about 200 usec at superior conjunction, the test
will clearly be significant if the errors in individual
time-delay measurements are only of the order of
10 wsec.’® Such accuracy is presently achievable at
Cornell’s Arecibo Ionospheric Observatory for observa-
tions of Mercury near inferior conjunction'?; we expect
that it will soon be achievable near superior conjunction
at Arecibo, at Lincoln Laboratory’s Haystack and at
the Jet Propulsion Laboratory’s new Goldstone facility
as well.

How would the inclusion of optical data affect this
analysis? With certain important qualifications, we
could then consider the individual planetary orbital
periods P, and P, to be directly measurable quantities.
Casting the zero-order part of Eq. (2) in terms of these,
we find

T()={2m5/(2m)23}{ P A/?
+Pp3—2(P P )3 cos2mt} /2

te fR+7e—7, COS2
+2(1+v)m 1n[-(K——~—~—i>]
7p \R-+7, cos2wi—r
—2(y+28)m((re+7)/R)(1—cos2at)

with P, and P, given in units of the synodic period. The
orbital radii 7, and 7, now appear only in the first-order
term and may be given their Newtonian values without
disturbing the first-order accuracy of Eq. (10).

Aside from the use of polar coordinates and the
synodic period unit of time, our expression (10) for
T() differs from the corresponding one in the Ross-
Schiff paper only in that the zero-order term is given

(10)

1B R. H. Dicke and P. J. Peebles [[Space Sci. Rev. 4, 419 (1965)]
have stated that this test of the effect of solar gravity on time delay
is “completely equivalent” to the test involving the deflection of
light passing by the sun. They used an index-of-refraction analogy
to argue that the deflection would necessarily be accompanied by
an increase in time delay. Such a conclusion has some validity if a
theory in accord with the generalized metric is assumed to be valid
a priori. But one should not try to prejudge nature. There is
certainly no difficulty in imagining a theory that would not be
consistent even qualitatively with predictions based on the gen-
eralized metric. For example, were we to assume that in a gravi-
tational field photons behaved like mass particles, then the
“extra” delay would be approximately one half the Einstein pre-
diction, but with the opposite sign. The photons would speed up
rather than slow down. The deflection, although again twice as
large in the Einstein prediction, is towards the sun in both theories.
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explicitly here, whereas there it was simply described
verbally. As is evident, the zero-order term now depends
on the sun’s mass which is not a directly measurable
quantity. One might at first think that » may be set
equal to unity and that this problem would then dis-
appear. Second thoughts show that our freedom of
choice in selection of units has already been fully ex-
ploited by setting the gravitational constant, the speed
of light, and the synodic period all equal to unity. Even
were we instead to set only the synodic period and the
product of the gravitational constant and the mass of
the sun equal to unity, we would still be faced with the
necessity of determining the speed of light accurately
in terms of the units of length and time so defined.
We may, of course, estimate  from the data. Following
the procedure used above leads to

{P A3 Ppt13—2(P P ,)%3 cos2mt} /2
{Pe2/3_P92/3}
—2(14+V)m(R/ (re—15)) In(ro/7,)
7e [R+7e—7, cos2nt
+2(1+v)m ln[—<~——~————>:|
7p \R-+-7, cos2wi—r,

—3(v+28)m((r - 7p)/ R)(1—cos2ms) ’

(11)

where m!/3 in the zero-order part has been evaluated in
terms of T, the time delay at inferior conjunction.
Equation (11) depends explicitly on 8. However, we
must still inquire whether or not radar measurements
of time delay could in practice detect the presence of the
B term. First we note that its contribution vanishes at
inferior conjunction and increases monotonically to a
maximum value at superior conjunction; for 8=1 its
magnitude there is 13 usec. Second we must consider
the possibility that the 8 term may be indistinguishable
because its effects on 7'(¢) are nearly identical to those
of small changes in other parameters which must also
be estimated from the data. More precisely, if the
estimate of B is too highly correlated with the estimates
of other parameters, say p;, then the 8 term cannot be
detected; one could not distinguish, for example, be-
tween the two possibilities =1, p;=p and =0,
Pi=pi+Ap;, where the Ap; are suitably chosen to
minimize the effect on 7'(f) of having set 8 equal to
zero instead of unity. As two examples of such parame-
ters, consider the mass of the sun and the radius of the
target planet, neither of which can yet be determined
with sufficient accuracy for our purposes by an in-
dependent means; they must be estimated from the
radar data. We see from a comparison of Egs. (10) and
(11) that any slight change in the estimate of the sun’s
mass (or, equivalently, of 7y) would introduce a first-
order term proportional to R in the expression for
T'(t). Similarly, any change in the estimate of the target
planet’s radius would introduce a constant term. A
simple analysis shows, in fact, that estimates of these
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Fi1c. 1. Hlustration of the high correlation between estimates of
the B coefficient in the generalized metric and estimates of the
sun’s mass and the target planet’s radius (see,text). The upper
label on the graph denotes the negative of the coefficient of 8 in
Eq. (10). The lower label has two parts; the first refers to the
effect on T'(f) of a small change in the estimate of the sun’s mass
and the second to the corresponding effect of a small change in the
estimate of the target planet’s radius. The constants %; and %
were chosen to most closely match the curve defined by the co-
efficient of 8. Including other relevant parameters would lead to a
far better match.

two parameters will be very highly correlated with the
estimate of 8.2 For circular orbits an hypothesis such
as B=1, m=my, pp=ppo, Where p, denotes the target
planet’s radius, would lead to predictions for earth-
Mercury time delays that nowhere differ by more
than about 0.4 usec from predictions based on
the alternative hypothesis =0, m=mo(1—5X1078),
pp=ppo(1—6X107%), as is illustrated in Fig. 1. (The
corresponding differences are even smaller for earth-
Venus time delays.) Not only is this maximum differ-

2 The mass of the target planet affects its orbit and must also
be estimated from the observations. The estimate of this parame-
ter, too, is very highly correlated with the estimate of 8. One hopes
that a sufficiently accurate value for the inner planet’s mass may
be obtained in the future by discerning the perturbations intro-
duced into the orbit of either a neighboring planet or a space
probe that passes reasonably close to the inner planet. At present,
for example, the mass of Mercury has been determined with little
more than one significant figure of accuracy.
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ence more than an order of magnitude less than the ex-
pected standard deviation of the time-delay measure-
ment errors, but at the microsecond level and below
many other effects also contribute seriously to the
masking problem. To be definite, we mention the varia-
tions in planetary topography,® and the previously dis-
cussed uncertainties in the determinations of the target
planet’s mass and of the atomic-time planetary orbital
periods.

For the model of circular orbits, we may conclude
that measurements of interplanetary radar-pulse time
delays are sensitive to the v term in the generalized
metric, but are insensitive to the 8 term. Even were we
to consider an experiment based on ‘“‘exact” optical
determinations of individual planetary orbital periods
in addition to the radar measurements of time delay,
distinguishing reliably a 8-dependent term for circular
orbits would not be feasible. For actual noncircular
orbits, the 8 term in the metric will in fact be detectable
from several years of radar data since it affects the
advance of planetary perihelia. The results of optical
observations will also be required in the interpretation,
but only to determine the effects of the outer planets
on the orbits of the inner ones. The other nonsecular
first-order differences between Einsteinian and New-
tonian planetary orbits will probably not be distinguish-
able with present-day radar techniques. Future use of
radio or optical devices on other natural planets and of
artificial planets with which radio or laser contacts are
maintained should enable significant improvements to
be made in the accuracy of these tests of general rela-
tivity and may also allow some of the smaller orbital
differences to be detected.?!

2 With an artificial planet, conventional optical data for deter-
mining orbital periods will, of course, not be available. In addition
an artificial planet will most likely have an area-to-mass ratio
about 10¢ times higher than that of a natural one and will there-
fore be subject to important sunlight-pressure-induced orbital
perturbations. To calculate these accurately, the orientation
history and reflection properties of the artificial planet must be
known. Perhaps it might someday be feasible to protect such a
body from these perturbations by providing an orbiting solar
screen that is servo-controlled.



