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expect that
) ( ) = (1—&'/c')'"(1+5),

If the universal length is

n=k/me=2)&10 '4 cm,
where, for not too high values of e, 6 is of the order of
magnitude

cr((n P) M—c)/It,

then one would have about 40% deviation from the
usual formula. If on the other hand

0.=6X10 "cm,

1.2X10 ',"o-ceT/Ac,

where T is the kinetic energy. As an example let us put

T=400 Mev;

which is just about the accuracy of the present day
value of the muon lifetime. 4

4 See, e.g. , G. Kallen, Ele~nerItary Particle Physics (Addison-
Wesley Publishing Company, Inc. , Reading, Massachusetts, 1964),
p 4

then
T/Pic=2&(10" cm '.

where M is the mass of the particle and I' its energy
momentum vector. This becomes in the lab frame when the characteristic length for weak interaction, '

ra= (1,0) would have
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Einstein s field equations for a perfect Quid coupled to a frozen-in magnetic field are studied in the high-

density limit of gravitational collapse. The assumption of infinite electrical conductivity is used to integrate
Maxwell's equations and the Quid entropy conservation equation; and the integrals obtained show that there
are certain general, physically reasonable conditions under which the electromagnetic energy density can
become much larger than the Quid energy density as the collapse proceeds, even when the electromagnetic
field was initially very weak. The widest possible range of cases is discussed under the assumption that the
equation of state is asymptotically linear. Ways in which the hypotheses used might go wrong are mentioned.

I. INTRODUCTION

~ 'HEORKTICAL studies of the gravitational-
collapse problem have shown that it may be

necessary to allow for the effects of magnetic Gelds in
any real astrophysical case. In particular, the work. of
Ginzburg and his colleagues' ' has pointed to the fact
that the behavior and appearance of the quasistellar
radio sources may be profoundly affected by the pres-
ence of frozen-in magnetic Gelds.

In the present paper we shall use the general theory
of relativity to analyze a collapsing system composed of
a perfect Quid with asymptotically linear equation of

*This work was performed under U. S. Air Force contract
number AF 04(695)-669.
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state coupled to a frozen-in magnetic Geld, and we shall

employ geometric considerations to see whether the
magnetic Geld or the Quid becomes the dominant
dynamic element of the system as the collapse proceeds.

This will be accomplished by following a given Quid

element as it is crushed in the collapse and examining
the local ratio of the Quid energy density e to the electro-
magnetic-6eld energy density P'=F &F'~. We abbre-
viate e/E'=p. We shall show that if the electrical
conductivity is inGnite, as is usually the case for stellar
material, then in a frame comoving with the Quid,
—T4e ——total energy density=e+rsE. Then if P ~ oo

as the collapse continues, one may neglect the effect of
the magnetic Geld on the motion of the system; whereas
if P ~ 0, then the effect of the fluid may be neglected.

The principle aim of this paper will be to show that
there are a rather large number of physically reasonable
cases where the magnetic Geld will finally become the
dominant dynamic component of the system, no matter
how weak. it was initially. Thus for these cases any
dynamical analysis of the collapse problem will be
incomplete unless one allows for the effect of such a
Inagnetic field. This is especially relevant for astro-
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physics since frozen-in magnetic fields are known to
pervade great numbers of stellar and galactic objects.

We shall begin by presenting in Sec. II an outline
of the theory of rela, tivistic magnetohydrodynamics
(MHD) with the assumption of inQnite electrical con-
ductivity a. Most of our calculations will be done
relative to a co-moving frame of reference, which always
exists for a one-component Quid. By "co-moving frame"
we do not mean locally Galilean, but rather a frame in
which the contravariant spatial components of the
fluid 4-velocity vanish identically over all of space-time.
This implies no restrictions on the form of the metric
tensor g;;, but means simply that the network of spatial
coordinates moves fixed in the Quid. It will then be
shown that in the comoving frame the covariant electric
field components Ii4,.vanish and that the magnetic field
components F23, F3~, and F~2 do not depend upon the
time.

It will also be shown in Sec. II that for infinite 0 the
proper entropy of the fluid is conserved locally, there
being no Joule heating. This will also necessitate the
assumption of zero thermal conductivity, and we shall
assume that we are dealing with time intervals so short
that the dynamical e6ects of heat conduction and
thermal radiation may be neglected. 4

In Sec. III we introduce the use of a well-known type
of spatial metric which has inva, riant significance when
restricted to comoving frames of reference. This spatial
metric will then be used to simplify the law of the
conservation of entropy and an expression for Il'.

In Sec. IV we apply the foregoing analysis to a
rigorous discussion of the behavior of the ratio P = e/F'.
It will be shown that the cases P —& 0, ~, respectively,
do not depend on the precollapse value of P, but only on
the limiting form of the equation of state and on the
geometric type of collapse. The dependence will be
derived without assuming any special symmetries,
either spatial or temporal; e.g. , we will not assume that
the cross terms g4, vanish.

Section V will be devoted to a discussion of ways in
which the electrical resistivity and radiation losses
might become important in the high-density limit, and
various conclusions and recommendations will be made.

II. RELATIVISTIC MAGNETOHYDRODYNAMICS

We now develop some results of relativistic MHD
relevant to the collapse problem. We shall assume the
validity of the nonvacuum Maxwell equations together
with the relativistic form of Ohm's law. A local form of
the law of conservation of magnetic Qux through a
closed contour moving with the Quid will be derived,
and Einstein's field equations will be used to examine
the conservation of Quid entropy.

4The assumption of infinite electrical conductivity has been
investigated by Ginzburg (see Ref. 2} and found to be generally
valid for the collapse problem. However, although it is usually
thought that one may neglect the thermal conductivity, a detailed
analysis of this point appears to be lacking.

(2)

where J' is the charge-current 4-vector.
Now let N~ be the 4-velocity of the Quid and a- its

electrical conductivity. Then with u~uI, =—1, Ohm's

law may be written'

~—1(ps+us Jmu ) —u Fms

If we now assume that 0. is infinite, we conclude

I pm' 0 (3)

Let us express this result in a comoving frame of
reference, in which up=0, p=1, 2, 3, everywhere (see
Sec. I). From now on, we shall indicate nonscalar
expressions referred to a comoving frame by a bar, so
that in a co-moving frame we have u" = 84s( g44) —' '

We thus obtain from Eq. (3) u4F4I, 0, or——

F4p ——0, p=1, 2, 3.

We call these the covariant electrical-field components
in the co-moving frame.

Next one may use Eqs. (1) and (4) to get

P„„,4+F4„,„+F„4,„F„„,4=0. ——

Hence the magnetic field components F„„are inde-
pendent of the time $4, or

Fpp=Fpp(x~)q p) p) p= 1q 2q 3.

This result is invariant with respect to transformations
which preserve the co-moving character of the frame.
Note that now any "divergence-free" E„„may be
assigned as an initial condition, so that the electro-
magnetic field tensor may be completely eliminated as
an unknown from the equations of motion.

Let us now consider the law of conservation of Quid

entropy in this context. We write the field equations in
gravitational units (velocity of light and Newtonian
gravitational constant both unity) as

G.Ec 8~+.k

84r[(p+ e)u'u;—+54sp+F„F"

sr'�'F'5,

(6)—

where 6;~ is the Einstein tensor, e is the proper energy
density per unit volume of the fluid, and p is the Quid
pressure. Equation (6) implies the local conservation
law T;~.~

——0, which gives, on contracting with I' and
using u&u;= —1, u''u; s=0, and .,Eqs. (1) and (2),

u'T4s, s= e,u' (P+—e)u,.s, s—+F„JNu&=0.
'R. C. Tolman, Reluti6ty, Thermodynamics, used Cosmology

(Oxford University Press, New York, 1962), p. 104.

Maxwell's equations for the electromagnetic field

tensor Ii'~= —Ii~" are, with a comma representing
partial differentiation and a semicolon covariant
di6erentiation,

F,;,s+Fs',;+F;s.'=o,
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By Eq. (3) the last term on the right vanishes, so that tional waves which couM lead to new ways of testing
we finally obtain general relativity.

e,n, '+ (P+ e)u". i,
——0 (7)

For changes of state involving no heat conduction we
may write the proper fluid entropy density s=s(e,x&)

as a function of the energy density and of the spatial
coordinates x~ in a co-moving frame as'

s(e,x&) =so exp fP(e,x&)+e] 'de,
0'p

where p =p(e,x&) is the local adiabatic equation of state
and sp and cp may depend on x&. This form has also been
used to represent a baryon number density. ~ We write
the divergence expression (»'), , in the co-moving frame
as

(su&) ,;=s.,u&+, su';=s., 4u'+, su&

From Eq. (8) we see that 8,4 Bs/Bx——4= (cis/Be)e4, an, d
thus

(sn'), ,= (P+ e) 's/c, 4u'+—(P+ e)n&, ~],
=(p+ )-"L-,; '+(p+ ).'.;]

This is a tensor expression and hence is true in any
system of coordinates. Using Eq. (7), we obtain then

(su&) ,;= (p+.c) 'sr e,,n—&+(p+e)u& ;]=0.,
Thus the entropy density given by Eq. (8) satisles a

local conservation equation. This result may be ex-
pressed in a more useful form by going back to a
co-moving system:

(»');~= ( g)
'"—L( g)'"»—']8=0

= L( g)'"su'j. = 8L(—)g'"sn'] /xci'.

One may then easily obtain, using u'= (—g44)
'~' and

then integrating and squaring,

~'(e,*')g/g44= f(*'),
where f(x&) is an arbitrary function independent of x'.

This completes our survey of relativistic MID with
infinite electrical conductivity. We note that Eqs. (4)
and (5) constitute a local form of the law of conservation
of magnetic Qux through a closed contour moving with
the material, expressed in nonrelativistic form as
C =ffqS.dA=constant. s It is very easy to derive a
similar scalar integral form which expresses the Qux
conservation law in general relativity, but we shall not
bother to do that here.

It would be interesting to Qg.d exact solutions to Eq.
(6) which correspond to the well-known Alfven waves.
There might also exist other kinds of MID gravita-

6 W. J. Cpcke, Ann. Inst. Henri Poincare A2, 283 (1965).
7 B.K. Harrison, K. S. Thorne, M. Wakano, and J. A. Wheeler,

Gravitation Theory and Gravitational Collapse (University of
Chicago Press, Chicago, 1965), p. 100.' See for example H. Alfven and C.-G. Falthammar, Cosmical
Electrodynamics (Qxford University Press, Neer York„1963),
pp. 101—102.

g PVP.=~:, Ig PI&=1 (13)

»nce g44= ~g"P~/tg'~ =g~g P~, we get g44y=g; thus we

may write Eq. (10) as

s'(e, x~)7= f(x&). (14)

We define a collapse as a situation in which, at some
fixed spatial point Sp& in a co-moving frame, we have
lime(xsp, x4) = ee for some sequence of times x4. There
may be situations in which e remains 6nite and Ii'
diverges, but it is not easy to see how they might occur.

It will now be demonstrated that c diverges for Axed
xp& if and only if p goes to zero simultaneously: %e
must have" 0&p&e, and hence Eq. (8) implies, if
6+ 6p~

sp exp —&s&sp exp
ep 2Q gp

t"

PL. D, Landau and E. M. Lifshitz, The Classical Theory of
Fields (Addison-Wesley Publishing Company, Inc. , Reading,
Massachusetts, 1959), pp. 257—258.

B. K. Harrison, K. S. Thorne, M. Wakano, and J. A.
Wheeler, Ref. 7, pp. 105—107.

III. THE SPATIAL METRIC AND THE
ENERGY DENSITIES

We now introduce a spatial Tnetric which will be very
useful for the analysis of the collapse geometry. Again
restricting ourselves to a frame co-moving with the Quid
we de6.ne'

Y~p g~p g4~g4p (g44) ~ cr) P

and write for a spatial "length"

dp =p~plx dx~. (12)

This dl may be shown to represent physically the
following type of distance'. Suppose that we are given
two neighboring points fixed spatially in the co-moving
frame, pi at x a,n.d ps at x +dx, and suppose that at
time x' a photon is sent from pi to ps and then in-
stantaneously reflected and sent back again to pi, where
it is received at time x'+dx'. At pi the lapse of proper
time is dri (—g44)'"——dx'. The distance between pi and

Ps is then defined as, with the "velocity of light" c=1,
dl = —,'cd7 i———', (—g«)'tsdx'. One may then use the geodesic
equation for the photon ds'=0 to arrive at Eqs. (11)
and (12).

It is easy to show that the form (12) is invariant with
respect to transformations which preserve the co-moving
character of the frame, given by n&=0. In fact, if we

pass from S~ to S~', both co-moving, we must have

u&'= (Bx&'/Bx")u"= (Bx&'/Bx')u'=0, or Bx~'/coax'=0.

Conversely, Bx'/coax'=0. Using these relations one may
easily show the invariance of Eqs. (11) and (12). Thus
it is natural to use this d/ in co-moving systems.

Further, from Eq. (11) it follows that, with &= ~&~P~,
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or sp(e/ep)I" (s(spe/ep. Therefore, for f]xed xpp, e —& pp

if and only if s —& pp. Equation (14) then implies that
if and only if y —+ 0. This fact characterizes

local Quid crushing in geometric terms.
We now examine the electromagnetic energy density

in the co-moving frame: —(T, )44= F& —F4~+ 'F' =—'F'-
by Eqs. (4) and (6). To simplify the discussion we will

suppose that at xo/[& we have oriented our coordinate
system so that F» ——F»——0. The covariant magnetic
Geld "vector" then points in the x' direction. Since
F„,does not depend on x', we may easily arrange this
orientation at any Gxed xo& for all x' by a simple time-
independent transfor mation.

Then F2 —F 3Fab 2(F )2Lg22g33 (g23)27 Input from
Eqs. (13) one may get g"g"—(g")'= ~g e~'r»=p»/&.
Then we have the important result, for the magnetic
Geld pointing locally in the x' direction,

F'y/yii ——/3 (X&),

where h($') =2(F23)' is independent of g4.

Then if n&1, we see that e —& pp implies P=e/F' —&0.
Thus in this case F' becomes much larger than e, no
matter how small F' was initially, provided, of course,
that it did not vanish altogether.

If n= 1, then p yii ' and the answer depends in more
detail on the behavior of y~~. n= j is considered to be the
"stiffest possible" equation of state."

Case II

In this case, where y~y and y both go to zero, but still
yii/7 ~ pp, the following must hold: Either there
exists some number n)1 such that (yII) /y —+ po for
m(n and (yii) /y~0 for m)n; or (yII) /y~ O2 for
all m. Here the Quid element is crushed in the magnetic
field direction as well as in directions perpendicular to
the field. The case e=3 includes the possibility that the
element is crushed isotropically.

Now let m) 1, and use Eqs. (15) and (16) at constant
xpp to obtain, with 5=2(n+1)—',

IV. RELATIVE MAGNITUDE OF FLUID
AND MAGNETI C FIELD

ol
e'7(y»)m'[m '&(F2y)m/['-m)~const,

pm/(m —1)e3—[m/(m —1)]~(+ m/+)I/(I —m) (17)

s so exp
( e )]

I / (a+I)

„42e+e [, ep)
(16)

and Eq. (14) becomes e'«+')y- f(x&) .
We now suppose that ~ —+ and y —+ 0 at the fixed

xo][&. Then there are three possibilities for y~~ .'as in case I
where yii remains nonzero (or even diverges); or as in
case II where yii —& 0 but still yii/r~ pp; or as in
case III where y»-+0 and yii/y remains finite (or
vanishes). There are no other possibilities, and we now
discuss them one by one.

In this case, where y —& 0, but

gyes

remains nonzero,
or even diverges, the invariant length of the Quid
element in the x' direction does not go to zero, so that
the crushing occurs in directions perpendicular to the
field. Dividing Eq. (16) by Eq. (15) we get at the fixed
gp' with 6=2(n+1)—',

epy»/F'= (e/F') e[' ~) /[~+"&II~coilst.

We now analyze the relative magnitude of the Quid
energy density versus the magnetic field energy density.
Equations (14) and (15) will allow us to do this by
stipulating the various ways in which p and y» go to
zero.

It will first be necessary to consider asymptotic forms
of the equation of state. We shall assume that as
e~ ap, the pressure behaves like P 42e, where 42 is a
constant and 0(e(1. More complicated dependencies
could be discussed, but there seems to be no point in
doing so at this stage. Then if eo is well into the region
where p 42e, Eq. (8) gives

We now break case II up into four separate cate-
gories. (A) yii /7 —+ ~ for all m. Then if 42(1, we can
always pick m in Eq. (17) so large that 5)m/(m —1).
Then

pm/(m —1)e3—[m/(m —1)]~(+ m/+)I/(I —m) ~0
implies that since e ~ 40, we must have P ~ 0. Thus
the magnetic Geld density F' again dominates How-
ever, if n = 1, then we can reason as in case I to get
P y» ' —+ ~, and hence the fluid energy density will
dominate. (8) n exists, but n)1 and 5)n/(n —1).
Then since d[] n/(n 1)7/dn—= —(n—1) '(0, there
exists p such that 8)p/(p —1) and 1(p(n. Then
Fq (17) i~plies pI'/(I' I)e [I'/(I' 1)1~ (yIII&/ry) I/(I ")
Since 1&p(n, the right-hand side goes to zero by the
principal hypothesis of case II. Then e ~ ~ implies
P —& 0. Thus the magnetic field is again the predominant
dynamic element. (C) n exists; and either n)1 with
n/(n —1))5, or n=1. Then there exists g such that
g)n, q)1, and B&g/(/t —1). If q=m is then used in
Eq. (17), the right-hand side will diverge since g)n;
and since the exponent of e is now negative, we conclude
that P diverges also. Thus e becomes much greater than
F', and the e6ect of the magnetic field may be neglected.
(D) n exists, n) 1, and /[=n/(n —1).We now see that
by Eq. (17) P"/[" '& (y~p/y)I/[I "& and the behavior
of p depends on the limit of yii"/y.

Case III

In this case, where yii and 7~ 0, but yii/y remains
finite, or even vanishes, Eq. (15) tells us the answer
immediately: F remains finite, or vanishes, and thus t]
de6nitely diverges. Here we seem to have in hand the
possibility that the Quid is "running down the magnetic
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6eld lines, " so that the field does not participate in the
collapse.

Let us now brieQy discuss some special situations
which fall under case II. First, suppose that the col-

lapse is in some sense isotropic, so that v=3. Then if
rr=rs, we have &=I/(n —1)=s, which comes under

category (D). But if 0(n&sr, then B&N/(rs —1), and

category (8) applies, and the magnetic field domina, tes
the scene; and if sr&u(1, then m=3 gives n/(n —1)
= —,') 8, and the field may be neglected. In general, the
"stiver" is the equation of state, the more likely is it
that the Quid will dominate. The case 0.= 3 is of course
the equation of state of an extremely relativistic system
of charged particles plus radiation field.

Secondly, suppose n= 3, and let e vary: For e(3, we

have 8=ss&N/(rs —1), and hence the field may be
neglected; whereas if e&3, the Quid may be neglected.

For the limit e= 1 we have seen that in case II the
Quid always dominates and that in case I the Quid

never dominates absolutely, since then P might go to
zero, but never diverges.

In this section we have covered all the various ways
in which a Quid element can be crushed. However, there
appears to be no way to tell which of the various cases
or categories will occur for given initial conditions
without actually integrating the equations of motion.

V. CONCLUSIONS

The analysis of the preceding section leads us to the
conclusion that a small frozen-in magnetic held may
under certain rather general conditions become the
predominant dynamical element in an MHD system
undergoing gravitational collapse. There are, however,
certain limitations to this result, the main one being
that in the limit e —+ ~ the electrical resistivity of the
Quid may become important, since the particle collision

rates might out-run the particle number densities. "This
would happen more readily for a stiff equation of state;
i.e., a material in which the interparticle forces are
sharply repulsive at close range.

I. M. Khalatnikov~ has also criticized the notion of
infinite conductivity for highly compressed matter.
However, his arguments seem to hold only for a Quid
with a single-charge component; whereas, an electrically
neutral astrophysical plasma must have both positive-
and negative-charge components.

Another limitation, however, would originate in the
violation of Quid-entropy conservation (nonadiabatic
motion) from bremsstrahlung and synchrotron radi-
ation. Also, as F increases rapidly, the induced electric
fields might cause considerable radiation loss because of
particle betatron acceleration. These eGects would
presumably become larger for increasing J', and it
would be very interesting to know more about them in
detail.

Another difficulty might be that the presence of a
strong magnetic field would produce anisotropic
pressures and conductivities, so that, strictly speaking,
pressure and conductivity tensors would be more
appropriate than simple scalars. However, this would
not be apt to change the general conclusions of this

papel ~

Thus it appears that magnetic fields may be impor-
tant for studies of the collapse problem. However, a
magnetic field could very likely not halt a gravitational
collapse, since the field would contribute its own
gravitational forces originating in its mass-energy and
stress tensor.

"In general, electrical conductivities are proportional to
number density times single-particle collision time. See for ex-
ample Alfvbn and Falthammar, Ref. 8, pp. 146-150."l.M. Khalatnikov, Zh. Elrsperirn. i Teor. Fix. 48, 261 (1965)
/English transl. : Soviet Phys. —JETP 21, 172 (1965)g.


