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Electron Scattering from an Aligned Deformed Nucleus*

H. B. GREENsTEIN

Institute of Theoretical Physics, DePartment of Physics, Stanford University, Stanford, California

(Received 7 December 1965)

The problem of scattering high-energy electrons from a deformed nucleus which has been aligned in a
magnetic field is considered from the point of view of the Schiff approximation for high-energy potential
scattering. Integrals for the scattering amplitude are evaluated in the asymptotic limit of large P (P—=QR)
assuming a model for the charge-density distribution which is equivalent to a uniformly charged ellipsoid of
revolution. It is found that terms bilinear in the quadrupole strength must be retained. The formalism is
extended to take account of nuclear spin-state transitions. I.ow-lying rotational levels are summed over,
using the Bohr-Mottelson model in the strong-coupling limit. Application is made to the case of the holmium
nucleus.

I. INTRODUCTION

HE problem of scattering high-energy electrons
from a deformed nucleus aligned in a magnetic

field is now within experimental bounds and offers a
new method for probing this type of nuclear structure.
Asymmetries in the cross section which are a reRection
of nuclear asymmetries are expected to be enhanced
according to the degree of nuclear alignment.

The theoretical description of such scattering has
until now been based on either of two methods, the
Born approximation or the distorted-wave approxima-
mation. ' A complete phase-shift analysis is feasible
only for spherically symmetric potentials. Another
approximation for high-energy potential scattering was
developed by Schiff' who suggested that it may have
special value for nonspherical potentials. The work here
is based upon this suggestion. There are two modish. ca-
tions. First, the integrals which appear are evaluated
asymptotically. This approximation was first made by
Tiemann' for the case of spherical potentials. Secondly
the formalism is extended so as to account for spin-
state transitions of the nucleus.

As a point of departure to a discussion of the Schiff
approximation, and because it provides a natural com-
parison, the 6rst Born approximation is discussed in
detail in Sec. II. The nucleus is described by means of a
density matrix. Nuclear spin-state transitions are de-
scribed using the Bohr-Mottelson collective model in
the strong-coupling limit.

In Sec. III the Schiff-Tiemann method is applied to
a classical deformed-charge distribution. It is then
shown how the effects of nuclear spin transitions can be
handled.

Section IV is devoted to a summary and discussion of
the general results. It also includes a special application
to the case of the holmium nucleus.

A number of assumptions have been made throughout.
Those which shall not receive further mention are:
(1) only the Coulomb part of the interaction is im-
portant for the excitation of collective modes' (except
in the backward direction); (2) the effect on the motion
of the electrons of the magnetic field used to align the
nucleus is negligible; (3) the electron mass is negligible
at the energies considered here and will be set equal to
zero; (4) electron polarizations are of no interest since
only the scalar part of the interaction is treated;
(5) the recoil of the nucleus can be ignored.

Some of the material of the following sections is dis-
cussed in a more expansive fashion in the thesis' upon
which this paper is based.

fn(Q) = (~t7o~~) f(Q),

f(Q)=2 p(Q)/()' ( )o)
(2.1)

(2.2)

(Units: cr=e'=1(137.) Here p(Q) is the Fourier trans-
form of the charge density p(x),

p(Q) = dsx e'o'*p(x) (2.3)

and Q is the momentum transfer

Q=k,—kf.

II. FIRST BORN APPROXIMATION

A. Classical Scattering

Suppose we are scattering high-energy electrons from
a nucleus and wish to consider the scattering amplitude
in first Born approximation. For the moment we ignore
nuclear spin and represent the scattering center by a
classical charge distribution p(x), in which case the
amplitude for scattering may be written as

For the Dirac scattering amplitude fg&(Q) we have
factored out the part involving the Dirac spinors u;
and Nt (in order to facilitate comparison with the
Schiff-Tiemann approximation, to be described later).

*Work supported by the U. S. Air Force through Air Force
OQice of Scientific Research Contract AF 49(638)-1389.

'A good summary of approximation schemes pertinent to the
problem of Coulomb scattering may be found in D. R. Yennie,
F. I . Boos, and D. G. Ravenhall, Phys. Rev. 137, B882 (1965).
A brief discussion of some of these is given in Sec. IV.' L. I. Schiil, Phys. Rev. 103, 443 (1956).' J. J. Tiemann, Phys. Rev. 109, 183 (1958).

I.. I. Schiff, Phys. Rev. 96, 765 (1954).
'H. B. Greenstein, Ph. D. thesis, Stanford University, 1965

(unpublished).
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Qo
——(8~/5) qoR', (2.12)

The amplitude f(Q) would be appropriate for elec- Here po(Q) and p&(Q) are easily computed via Eq.
trons satisfying a Schrodinger equation. For the cross (2.8). In terms of the quadrupole moment Q, ,
section we have

«/dfl= lunou'I'If(Q) I' (2 4) we find that

(normalization: uu=1). If we average over initial and
sum over final electron spins, we obtain in the limit of
relativistic electrons (v =c), where

„(Q)=(4 ) t 3z.j (P)/P,

(Q) = —(3 )'"(Qo/R') j (P),
(2.13)

(P I uyyou;
I
'),,= (E'/mo) cos'(oi 0), (2.5)

where 0' is the angle of scattering. From this it follows
that

(2.14)

(ii): a uniformly charged ellipsoid of revolution.
Assume Q makes an angle eo with the major axis. By
direct calculation of p(Q), using Eq. (2.3), we find that

de/dQ= (E'/m') cos'(-'0~)
I f(Q) I

'. (2.6)

.(Q)=Z .(Q)I ..*(0.),
p(x) =Xi p&(r)1'i(cos~).

(2.7)

A description in terms of multipole distributions
may be obtained through the expansions'

where
p(Q) =3Zeji(x)/x,

x'=p'I 1+o'Eo(po)$,

P=QR,

"=o((~'—&')/(R)'),

(8)'=-'(u'+2b')

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)
Equation (2.3) then implies that

pi(Q) = 4vri' rodr ji(Qr) pi(r)
2t+1

(2.8)

If we regard as the input the radial density functions

pi(r), then use of the above equations allows us to find
the scattering amplitude (2.2). Assuming only monopole
and quadrupole distributions are present, the cross sec-
tion then takes the form (po=—cos8o)

do- e' E' cos'(0/2)
I po(Q) ['

dQ m Q4

+2(5)'"po(Q)p (Q)1' (u )+5lp (Q) I'L1' ( )j' (2 9)

lim po(Q) =(4~)'t'Ze,
Q -+0 (2.10)

lim p (Q) = —(Q /6)(4~)'&oQo.
Q~0

It is of interest to consider the following two models:

po(r)=po, r&R (po=3Ze/4vrR')

=0, r&E.

p, (r) =q,5(r—R)/r'.
(2.11)

6 These expansions assume that the charge distribution possesses
a symmetry axis. If in addition there is invariance under the trans-
formation 8 ~ m —8, then only- even values of l will enter.

The functions pi(Q) are essentially form factors for
the nucleus at rest. In the limit of Q ~ 0 they are re-
lated to the static moments, which for /=0 and l=2
are the total charge Ze and the quadrupole moment Qo.
The relations are

Assuming e'&(1, we can expand this expression to first
order in o', whereupon we find that p(Q) assumes the
form (2.7) restricted to 1=0 and 1=2. The functions
po(Q) and po(Q) are again as given in Eqs. (2.13) except
that the radius R must now be replaced by the average
radius B.The eccentricity ~' is related to the quadrupole
moment Qo by

Qo
———',Zen'(8) '. (2.20)

We conclude that to first order in e' the quadrupole
behavior of an elbpsoid of revolution is equivalent to
that of a surface delta function, provided the surface is
taken at r=B.

A(Q)=Z T.(Q)F. *(~.). (2.22)

The operator T' (Q) is an irreducible tensor operator of

B. Scattering from a Nucleus with Syin

1.Amp/itude

If we wish now to account for the nuclear spin, we
must replace the classical quantity p(Q) by the matrix
element of a nuclear charge-density operator taken
between the initial and final nuclear spin states. De-
noting this operator by Zo(Q), we have then that

p(Q) ~ &j'p'I ~o(Q) I jp),
f(Q) ~ (2me/Q') (j'ti' I Jo(Q)

I jp) .
(2.21)

We have designated only two nuclear quantum num-
bers, the total angular momentum j and its component
p along a fixed s axis. As before, we wish to describe the
nuclear charge density in terms of multipole distribu-
tions. To do this we make a multipole expansion of the
operator Jo(Q):
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rank / (component m) for the nucleus. The amplitude
(2.21) may now be written

f(Q) = (2m'/Qs)Q(j'a'I T' (Q) I
j&&I'4, ~(12q). (2.23)

l, m

To evaluate the nuclear matrix elements we apply
the signer-Eckart theorem, ~

(j'p, 'IT'.
I jp)=(—)"-"'I l(j'IIT'll j) (2 24)

&—p,
'

nz p)

and consider the reduced matrix elements (j'IIT'll j);
it is necessary to consider separately j'= j and j'&j.
In the former case we observe that the amplitude (2.23)
for the transition

I jj& —+
I jj& has the form

f'(Q) =(2~e(Q')&4»'(Q) I'i, p*(~)Q), (2 25)

where we have used the definition

(3). For final states
I
j'p'&, all orientations 14' will be

sunimed over.
(4). Transitions to states of j'= j+1 and j'= j+2

(which are the only two states available by quadrupole
excitation) will be treated using the Bohr-Mottelson
model to describe the permanently deformed nucleus.

For purposes of actually performing the calculation
we shall use the density-matrix formalism to describe
the initial nucleus. The density matrix' may be defined
according to

P = ((j~ I 4)(sl jr'&&',

where ( ); ind'icates an ensemble average over initial
states li& If .the symmetry axis of the nuclear charge
distribution (we always assume one to exist) is chosen as
the quantization axis, the density matrix will then be
diagonal and will have as diagonal matrix elements the
statistical weights p„. Calculation of the cross section
involves the quantity

~i'(Q)=—(jjl T'o(Q)
I jj& (2.26) (P~ I f(Q) I

s&. (2rrreyQs) s

(jllT'(Q)ll j&=I . . I pi'(Q)
E,—Joj) (2.27)

Comparison with Eqs. (2.2) and (2.7) shows that the
amplitude f&(Q) differs from the classical amplitude
only in that the classical density p&(Q) has been re-
placed by the matrix element (2.26). Hence all the
equations of part A can be considered appropriate here
provided we make the substitution

u() u'(),
where pi4'(r) is interpreted. to mean the radial charge
density for the nucleus in the state

I jj&. These func-
tions are now to be regarded as the input, and the
densities pr'(Q) are to be computed according to Eq
(2.8). Then from Eq. (2.26) we have that

XT1(p~Jpt(Q)/p(Q) j (2.28)

where the trace is understood to be carried out in a
matrix representation corresponding to the initial
spin j, i.e., a (2j+1)by (2j+1) representation. In this
expression we have used Eq. (2.21) for the amplitude
f(Q). The role of the final states may be seen explicitly
by inserting a complete set of states between the opera-
tors Jpt(Q) and Jp(Q).

The trace (2.28) may be computed in a straightfor-
ward way if the operators appearing there are ex-
pressed in a spherical basis. For the operators Jp(Q)
and Jpt(Q) this is accomplished directly through the
expansion (2.22) in which the nuclear multipole opera-
tors T' (Q) are irreducible tensor operators of rank /

(component ns). The density matrix p' m.ay be written
in an operator representation according to'

Evaluation of (j'IIT'll j) for j'N j is more conveniently
deferred to the next section Lsee Eq. (2.34)j.

2j A

(2.29)

Z. Cross SectiorI,

%e shall now derive an expression for the cross sec-
tion for scattering from a nucleus with spin starting
from the amplitude (2.21). We shall proceed as follows:

(1).For the charge-density operator Jp(Q) we shall
restrict the rnultipole expansion (2.8) to l=O and l=2;
i.e., we consider monopole and quadrupole charge
densities only.

(2). The orientation of the initial nucleus will be de-
scribed in terms of statistical weights p„giving the
occupational probability for the sta, te

I jp&.

7 The notation and conventions for all angular momentum cou-
pling coeKcients are those of A. R. Edmonds, Angular Momentum
in Quantum Mechunics (Princeton University Press, Princeton,
New Jersey, 1957).

where the Js, are a linearly independent set of (2j+1)'
irreducible tensor operators of rank. k and are built up'

8 For a general discussion of the density matrix see U. Fano,
Rev. Mod. Phys. 29, 74 (1957). Some properties relevant to the
spherical basis representation are given in Appendix A of Ref. 5.

9 This may be accomplished in the following way. For k =0, we
have the identity operator:

J'p=—I.
For 4 =1, the description in terms of a spherical basis is already
familiar:

J'~y ——WJ~/v2, J~=J +4J„,
Jlp —J

We use the Clebsch-Gordsn series Lthe inverse of (2.31)g to define

J 4=—[JrXJrj44=Z ~ (1ng1rs'~112.g)Jr Jr~.
Similarly we dehne

J3 =PJ1XJ2$4
J4 IJ2XJ2j4

It will be seen later that J~~ for k&4 will not be needed.
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from the angular momentum operators J„J„,J,. For a
diagonal density matrix the parameters u&, , are related
to the statistical weight p„according to the equations

TAsLz I. If(J,j) I'for J=j', j+1, j+2.

IfV j) I'

(2k+1)8, , 0 g k
!Z. p.(—)' "

&jll~'ll j&

j k j
P,= Z ~..0(—)' "

k=0 —p 0

(2.3o)

6(2J+S)

(2j+4) (2j—t)

12(2j+2)
(2j+4) (2j) (2j—~)

Use of these expansions allows the quantity p'Jot/o to be
expanded into a sum of products of irreducible tensor
operators. Each such product is reducible but may be
expanded into its irreducible components by means of
the Clebsch-Gordan series:

and j is the ground-state spin. The function
I f(J,j) I

'
may be tabulated for J=j, j+1, j+2 (see Table I). It
satisfies the following two sum rules":

T"~,P'~, =Q &lgnzgl2m2
I
lglglm&l T'&X T'2j'„. (2.31)

(2j+3)(2j+2)
(2j)(2j-1)Tr(s ') = ~~,o&,o(2j+1)"'(jlls'll j) (2 32)

l,m 2
(i) Z~l j(~ j)l'= (2j+1)

To take the trace we merely apply the rule that all jo —P-
irreducible tensor operators are traceless unless they are
of rank zero:

The result may be expressed in terms of individual re-
duced matrix elements by use of the rule jj J'' (2.36)

kg k2 k
&j'III s~'xs"&l~ll j)=P(2k+1)'I

j j' j"
x(—)"+~+~'&j'lls'

ll j")(j"lls' ll j). (2.33)

Transitions to 6nal states having j'&j will be re-
flected in the presence of factors (j'IIT'(Q)ll j). These

may be evaluated by reference to the theory" which

treats the collective modes of oscillation of a nucleus

having both a permanently deformed core and a struc-
ture due to single-particle motion. Such nuclei are
characterized by energy-level schemes resembling rota-
tional bands. Within each band the levels j, j+1,
j+2, , etc. are separated typically by 50—100 keV.
Since in most experimental situations it would be difB-

cult to resolve these levels, it is desirable to consider
their effect on the cross section. In the Bohr-Mottelson
theory the rotational motion is described by means of a
5) function and is treated in the adiabatic approxima-
tion. This assumption is sufficient to yield the follow-

ing relationship which holds for states having angular
momentum J and belonging to the ground-state band:

Ke note that

(2j+1)

(2 2 kq f j k j~
&0 o 0]&-j o j)

) j 2

k—jo ji

J i+~ 2 2
~-(j,k) —= 2 . . (-)"'Ij(~,j) I'. (2»)

I'or elastic scattering we put m=0. Then

2 2 k

since
I f(J,j) I

' is zero for any other value of J. In the
expression for the cross section the sums over the rota-
tional states J can all be expressed in terms of the func-
tion Z„(j,k):

where
PIIT'(Q) IIj&=f9,j)&jllT'&Q) II j& &2 34& ~.(j,k) =(-)" .j j

j(~,j)=(-)'-
2j+ 1)

&joj)kjop
"J.D. Kalecka (unpublished); A. Bohr and B.R. Mottelson,

Kgl. Danske Videnskab. Selskab, Mat. I'ys. Medd. 27, 16 (1953).

To include the effects of transitions to the two states
which are available by quadrupole excitation we set
n=2. Z2 can be evaluated by means of the second of
two sum rules given above in (2.36).

"Proof of these sum rules rests on Eqs. (3.7.7) and (6.2.6) of
Edmonds (Ref. 7).
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The 6nal result for the scattering cross section n1ay
be written

do 4E' cos'(-,' 0) j 2
Fs+ As 5

dQ Q' —j 0 j)

where f(kf, k;), computed on the basis of the Schrodinger
equation, is

f(kr, k;) = (2me/Q') e' '*e' &*'

(2 2 k) ( j 2 j)'
X&oI's(I o)+2 &. I(000) k-j 0 j

and

L(x)=—

X
I

1—2Q VL(x)/Q jp(x)dsg, (3.2)

L V(x—k;s)+ U(x+k~s) jds. (3.3)

where

and

~o= (e'/4~)
I c o'(Q) I

'
FQ= 2(5)"'( '/4 )LPo'(Q)~ '(Q)j

~oo = 5(e'/4~) I»'(Q)
I

'
(2.39)

The effect of electron spin has been included by means of
Eq. (2.1); spin summations were carried out as in
Eq. (2.5).

In the following section these calculations will be re-
peated, but with the Schiff-Tiemann approximation for
the amplitude replacing the Born approximation (2.21).
The density-matrix formalism, the trace technique, and
the method of summation over low-lying rotational
levels will be applied in the same manner as they were
here.

A. Classical Scattering

Expressed as an integral over the charge density, the
Schiff approximation to the scattering amplitude is

III. SCHIFF-TIEMANN APPROXIMATION

Permanent deformations are characteristically associ-
ated with high-g nuclei for which the first Born ap-
proxirnation is not generally reliable. A more sophisti-
cated approximation scheme, valid for large Z, has
been developed by Schiff' in which the infinite Born
series is summed after each term is approximated by
the method of stationary phase. An asymptotic ex-
pansion for the Schiff amplitude, useful for QR))1, was
developed by Tiemann. ' We shall apply these approxi-
mation methods to the scattering of high-energy elec-
trons from an aligned, deformed nucleus. As in the
treatment of the first Born approximation, we ignore
for the time being the effects of nuclear spin and first
compute the scattering from a classical charge dis-
tribution. Then we shall extend the formalism to cover
scattering from a nucleus with spin.

(We assume throughout that the electrons are fully
relativistic, i.e., that s=c=1.) This approximation is
expected to be valid when kR))1 (k=

I k;I =
I kr I) and

for scattering angles 0" which are large compared with
(M) '~'. However, there are no restrictions on the range
of Ze, which in the Born approximation was required
to be much less than one.

Because of the presence of the factors containing
L(x) Lthe Born approximation obtains in the limit of
L(x) ~ 0) it is no longer possible to give simple rela-
tions between the radial charge densities and the ampli-
tudes as was done for the Born approximation in Eq.
(2.8). For this reason we shall discuss the Schiff ap-
proximation in terms of a model, i.e., a particular choice
for ps(r) and p&(r). As before, we regard these two func-
tions as the input. The model we choose is that of Eqs.
(2.11). In Sec. II we discussed this model and showed
that it was equivalent to the uniformly charged
ellipsoid of revolution. Hence we expect that it provides
a realistic description of a deformed charge distribu-
tion except for the neglect of surface-thickness effects.
This point wil1. receive further attention in Sec. IV.

The expansion (2.7), with /=0 and 2 only, will be
assumed for the potential-energy function U(x) and for
the phase function L(x), so that

L(x)=Lp(x)+Ls(x) (3.4)

where Lz(x) is obtained by insertion of Vz(x) into (3.3),
with

U)(x) = —e p((x')d'x'/
I
x x

The calculation of Lp(x) and Ls(x) for the model (2.11)
is described in Appendix A. Obviously Lp~Ze, and
Ls ~ (q&e). Since q&e, the dimensionless quadrupole
strength, will be small (for holmium, which has a large
deformation, a value" of Qs=2 10 s'e cm' implies that
eqs

——0.92n, n=1/137), it is feasible to evaluate the
amplitude (3.2) in a power-series expansion in (qse).
At the same time Tiemann's asymptotic expansion in
powers of 1/P(P=—QR) will be applied. For convenience
in-classifying the types of behavior to be found, we shall

fr (kr, k;) = (u~sg;) f(kr, k~), (3 1)
~ K. Alder, A. Bohr, T. Huus, B. Mottelson, and A. anther,

Rev. Mod. Phys. 28, 432 {1956);see Tsb1e V.3, p. 531.
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write the amplitude (3.2) in the following way: the result being

where
f(kf,k;) =fp(kf, k~)+ f2(kt, k~), (3.5)

f&(kt, k;) = (2222e/Q2) p&(x)E(kt, k;,x)dpx (3.6)

drldn= 4E' cos'(-'O~)/g'

XP'o+& (p )& +I' (p )&
+[& ( Q)]'EQQ+I' (pQ)I' (t )EQ }. (3.g)

and
E(kf,k;,x) = e'Q'e*~&*)[1—2Q V I( x)/Q'] (3 7)

It is found (see Appendix 8 for details) that fp and f2
have the following asymptotic behavior (Ze' is here
assumed to be of order 1):

fo: 1/P', 1!P',";(qpe)/P'

(q2e)/P', ; (q2e)'/P', (q2e)'/P', . ; etc.

f2: (q2e)IP (q2e)/P ''' (q2e) IP,
(q2e)'/P', ; etc.

We note that whereas the leading monopole term goes as
1/P', the leading term linear in quadrupole strength
goes as 1/P. Since P is assumed large (for A=165,
Q= 300 MeV, we would have P= 9), these terms can be
of the same order of magnitude. Hence, calculations
based on the model (2.11) predict a quadrupole en-
hancement whereby quadrupole scattering can be as
important as monopole. In Sec. IV this point is given
further consideration; it is argued that the introduction
of a nonzero surface thickness would probably not alter
this behavior.

For the calculation of the cross section, which is pro-
portional to

~
fp+f2~', we shall require that all neg-

lected terms are smaller than the retained ones at
least by a factor of 1/P or (q2e). In addition we shall
include the first 1/P correction in the Tiemann asymp-
totic expansion. Therefore we keep the following terms:

1/P 1/P (q2e)/P (q2e)/P (q2e) /P (q2e) IP

The terms in the amplitude which contribute to the
above terms in the cross section are:

f.: 1/P', 1/P', (q")/P,
f2: (q2e)/P, (q2e)IP (q2e) IP.

Hence we have calculated fp and f2 to these orders. The
results and some of the details are given in Appendix B.
The cross section may be computed according to
[cf. (3.1)]

do/do, =
i 2tt7pN; ['i f(kt, k~)

i

',

Here p, @ and p, z are de6ned by

tiQ ——Q 8,
pp= T'8 )

(3.9)

where 8 is a unit vector along the symmetry axis of the
charge distribution, and

Q=k;—kt,
T=k;+kg.

(3.10)

The quantitites Fo, F@, etc., are written out in full in
Sec. IV [cf. Eqs. (4.3)].

B. Scattering from a Nucleus with Spin

1. Amp/itude

We wish to extend the treatment of the complete
Born series which was made by Schiff for a classical
density p(x) to the case that the nucleus is described
by a charge-density operator Zp(x). To do this we as-
sume for the time being that the electrons satisfy the
Schrodinger equation and consider formally the entire
Born series, the eth term of which will contain the
operator 3p as a factor 22 times. Then we make the
multipole expansion (2.22) for Zp(Q), assuming only
1=0 and 1=2, and retaining terms no higher than
second order in the quadrupole (rank two) part, in
accordance with our findings in part A which indicated
the necessity of second-order terms. Hence, the terms
which we keep contain, aside from any number of
rank-zero operators T'0, either zero, one, or two rank-
two operators T' . This observation allows us to de-
termine the angular momentum properties of the opera-
tor 5, the matrix element of which gives the amplitude
for the transition

~
jti) ~

~

j'ti') according to

amp=(j't 'IS jt ). (3.11)

Indicating various multiple sums and the integrals over
all internal coordinates by a symbolic sum over P,
we assert the most general form of 5 to be

g —g(P)+g(i)+g(2)
where

S~') =Pi [A &')]'p Y() p*,

S =g([a, ]„I',,„*(n,)y[a, »]„»,„*(n,)},
X,m

~"'= Z &[CQ'")]' LDQ'"']' I' *(~Q)»,-*(~Q)+[CT'"']' LDT'"']' I'2,-*(0T)I'2.-*(1lT)
X,m, m'

+[CQT ]m[DQT ] rn'X 2[I 2,m (IlQ) I 2,m' (flT)+», m (IIT)I 2,m' (0Q)]}~

(3.13)
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[In this notation the order in quadrupole strength is
indicated as a superscript for S('), S('), and S(').]This
assertion is justihed as follows: For 5(" only rank-zero
operators are involved, so the result can always be rep-
resented as another rank-zero operator. For 5&'~ there
is always one operator of rank two, all the others being
of rank zero, so these may be represented as some rank-
two operator. Since the amplitude S"'must be a scalar,
the nuclear operator P), [8(")]' must be contracted
with a rank-two operator from the rest of the system.
The only possibilities are I's, ~*(Q@) and Ys ~*(II&)

[Q and T are defined in Eqs. (3.10)]; hence the most
general form for 5(') includes both these possibilities.
For 5&" the reasoning is similar. "

Application of the Wigner-Eckart theorem [cf. Eq.
(2.24)) to Eqs. (3.11)—(3.13) shows that the amplitude
for a transition

I j)i)~ I
j'p'& will be known provided we

have determined the reduced matrix elements of the
operators

Z C~'"']' & C& "']'-

To do this we imagine a scattering process in which all

the nuclear operators T' are assumed to connect only
to the one state

I jj).Although such a scattering has no
physical realization except in the classical limit of very
large j, it is useful to consider since we can write two
different expressions for this amplitude which, when

equated, allow us to evaluate the reduced matrix ele-

ments in question.
Let us consider first that part of the amplitude which

contains monopole (rank-zero) factors only. Terms
which contribute here will contain nuclear matrix ele-

Similar expressions obtain for the terms linear and
bilinear in quadrupole strength [see Eq. (3.15), below).

Now it is obvious from the preceding equations that
the amplitude for the process we are considering is
formally identical to what would be computed classically
except that the matrix element p)'(Q) = (jjI T'0(Q)

I jj)
now plays the role of the classical p)(Q). Hence we see
that a second expression for this amplitude is the classi-
cal amplitude (3.2) with the functions )o)(r) replaced by
p)'(r), the radial densities for the nucleus in the state

I jj&. Using the notation of Eq. (3.5) and indicating
(as in Appendix 8) with a superscript the order in
quadrupole strength, we write

fo= fo"'+fo"'

f —f (i)+f (0)
(3.14)

Then to each order in quadrupole strength we equate
the two expressions for this amplitude:

ments in products of the form

&jj I
T o(Qi) I jj&&jjl T'0(Qs)

I jj& "&BlT'o(Q-) I jj&.

However, this expression is also equal to"

(jjI T'o(Qi)T'o(Q ). T'o(Q-)
I jj)

The operator product appearing here, when generalized
to include all terms of the Born series, was represented by

Z) C~ (")]'0I'0,0*

so as one expression for the monopole part of the
amplitude we have

fo (I0().,(,)=., (,))=UjlZ C~(")]'ol jj&I'0,0*

(fo +f2 ) I [pi( )=pi ( )) (jjl E~ C&o")]'0
I jj&~s 0*(~o)+(jjI Z~ [&r '"']'0

I jj&~so (flT),

fs"'
I ( (.)=., (.)) =E)«jjI C(-"o(")]'0

I jj&&jjI [Do"']'o
I B)I' s, o*(f~o)I'so*(IIo)

+Z~&jj I

[cr")]'0
I jj&&jjI CDr'"]'0

I jj»s.o*(fir) I' s, o (II&)

+P,&jjl Ã„(»] ol jj)&jjllD„(»] 0I jj&I, 0*(n,)I', 0 (n,).

(3.15)

Finally, application of the Kigner-Eckart theorem to all

of the above matrix elements allows us to evaluate the
reduced matrix elements

g),&jII C~ '"']'ll j& Z)«jll C&o'"')'ll j&, etc.

For purposes of calculation we regard the left-hand

sides of these equations as having been computed by
Eqs. (3.6) and (3.7) for a particular choice of po~'(t')

and ps&(r)'
"Here, however, in the term containing both Qq and Qz, we

have kept only the symmetric combination. The reason for this
is that our method of evaluating the reduced matrix elements of
these operators, to be described shortly, is applicable oniy to
terms having a classical analog, and the antisymmetric combina-
tion does not have this property. It will be seen, however, that when
low-lying rotational states are summed over, these terms make no
contribution anyhow. For further discussion of this point, see
Sec. IV.

Transition matrix elements of the tyPe &@II[+&o )]'II j&
may be evaluated for rotational states J belonging to
the ground-state band according to Eqs. (2.34) and
(2.35), since these equations are valid for any rank-two
operator. For virtual transitions the analogous rela-
tion is

&jlIC'll J&&JIID'll j&=g(~ j)&jllC'll j&(jllD'll j&, (316)
'4 This assumes that the states

~ jp) form a complete set. If
other quantum numbers p are required to label a state, the
closure relation must be written

I= ~ lvi) )(AN I.
'Y7 8

If this is the case, we make the assumption that all transitions,
both final state and virtual, in which the quantum numbers y
change can be neglected. Then the label y can be suppressed, and
the above assertion is valid. For states which are described in
terms of the collective model, this assumption means that we
neglect transitions outside of a rotational band.
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where

g(~,j)=(—)' 'I j'P, j) I' (3.1/)

po'(r) =po

=0, r&R,
p2'(r) = q2/i(r —R)/r2

(3.18)

requires only the use of Eqs. (3.15) together with the
calculation of fo"', fo"i, etc. which is presented in
Appendix B. We note that although, as before, q2 is
related to the quadrupole moment Qo through (2.12),
Qo now means the "measured quadrupole moment" for
the nucleus in the state

I jj). It is related to the "in-
trinsic quadrupole moment" Qo('"t& by

and C' and D2 are any irreducible tensor operators of
rank two.

As noted earlier, the form of S given in Eqs. (3.12)
and (3.13) was derived on the assumption that the
electrons obey the Schrodinger equation. In the case of
classical potential scattering, Schiff' has shown that the
extension to a Dirac electron involves only multiplica-
tion by the factor (24/7og4) Lcf. Eq. (3.1)j.However, it is
obvious from the above discussion that any matrix ele-
ment of 8 is linearly related (by a 3-j symbol) to a
classical amplitude, so we conclude that the rule giving
the Dirac amplitude is the same, i.e., multiply the
Schrodinger amplitude by (u~og4).

Specific application to the model Lcf. (2.11)$

Z. Cross SectiorI,

The calculation of the SchiB-Tiemann cross section
proceeds in a way analogous to that for the Born ap-
proximation which was based upon Eq. (2.28). Now
however the Born amplitude (2.21) has been replaced
by the amplitude (3.11), so therefore we must compute

g/& I f(k/ 1(;)
I
');=Tr(p'StS), (3.21)

with S being deffned by Eqs. (3.12) and (3.13). In
order to define St we use the following definition of the
adjoint of a tensor operator:

(3.22)
where

8&IC~'O'oDI&=D&12'oBI)*.
The calculation of the trace (3.21) may be performed
using the same techniques discussed in Sec. II. Again
the density-matrix representation (2.29) is assumed.
I.ow-lying rotational levels are summed over within the
framework of the Bohr-Mottelson model. As before,
these sums may all be expressed in terms of the quantity
Z„(j,k) Lcf. Eq. (2.37)). Although it is possible in the
final result to distinguish between virtual- and final-
state transitions, we shall not do this. Rather we assume
that whichever states are available virtually are also
available Anally, and vice versa. The inclusion of elec-
tron spins, which we saw in Sec. III 31 to involve the
factor

I
24rroN;

I
', is again handled according to Eq. (2.5).

The full expression for do/dQ is given in Eq. (4.1).

where
Q ~.Q (int) (3.19)

IV. RESULTS AND DISCUSSION

A. Summary of Results

(2j)(2j-1) We may summarize the results for both the Born
~,=(2j+1) I

— — (3 20) and the Schiff-Tiemann approximations in the follow-
—j 0 jf (2j+3)(2j+2) ing way:

do 4E'cos'(-,'0) — ( j
Fo+ ~2 5I . . I L~2(~q)FQ+I'2(»)F~j

dQ Q' i—jowl)
-/2 2 k (j 2 j'

+P&2
I

& (j,k)~2(~q)FQQoooo Ejoj
-/2 2 ki t' j 2

+ 2 2-42 I Z-(jk)X-F2, (i Q)P2 (~r) cosm4Fqr~
2=0, 2, 4 m=o (m m 0) i—j 0 ji

- 2 2 ki / j 2 ji'+Z 2~2 & (j»)& ~2 (PQ)F2, (PF)»nm@FQTO (4.1)
2=i, o =o m —m 0) E jo j& ——

For the Born approximation
Fz=0,

Fq —6y(42req2) ji(p——)j2(p)/p, FqrE Fqrp=o, ——

Fqq —(4~e(/2)'$j 2(P)j'. —
(4.2)
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For the Schiff-Tiemann approximation

Fp (9y——'/P4) {cos'n—(2 cosn/P)(sino, +10' cosn sinP(-,'Q))),

Fo = —[6y(4~eqp)/P']{ sin~ cosn+ (4 cos'n —1)/P+ (2y/P) sinn cosa sin(-,' Q)

X [p(1—4 sin'( —'0') cos2(2 0~))—9 sin2( —'0~)])

FT =[6y—(4~eqp)/pp](4y/5p) sinn cosn sin( —,
' 0') cosp(2 0)[1+2sin'(2 0~)],

Fo@=(4vreq2/P) {sin n+6 sinn cosn/P+(4y/5P) sin(p Q)

X[(1—2 cos'n) (1—4 sin'(-'0~) cos'(-'0~)) —20 sin'n sin'(2 0~)]),

F@Tz ——(4~eqp/p) 2(8p/5p) (1—2 cos2n) sin(2 Q~) cosp(2i 0') [1+2 sin p(2i 0')],
1—sin(-'0~)

F@ro= —(4weq, /P)'(4y/5P) cosa sinn 2 sin(-,'0') cos'( —,'0~) [1+2sin2(-,'0~)]+
1+sin(-',0)

(4.3)

The symbol AI, is dined by axis is the azimuth difference p@—p&, may be defined
in terms of invariants by

pj k jq
=(2k+1)Z. p.(—)-"I (4.4)

E—p 0 p)
The constants lV are

cosC'= —~o~r/[(1 —~o') (1—~r')]"'
sinC = TXQ ri/[(1 —pq')(1 —pr')]"'.

It may be verified that

(4.9)

&7 =1,
= —1/3,
= 1/12,

m=0
m=1
m=2.

(4 5)
cos'4+sin'4 = 1,

provided it is recognized that

p (j,k) is for n=0 (inclusion of ground state only)

~ (j,k)=(—)"

Q T=O.

2 2 kWe note finally that
0 0

is zero unless k is

and for n=2 (inclusion of ground state plus first two
excited states)

even, and that
2 2 kq

!Z2(j,k) ~
0 0 0)

/2 2 kq ~ j k jq
&2(j») =

I

Eo 0 0)k-j 0 j)
j 2 j2

(2j+1)!kqoj)
Other quantities are

0" = angle of scattering;

Q =momentum transfer =2E sin(-,' 0');

P=2y sin(2iO~)[1+p sin'(20')];

to be
Trp= 1

Ap= 1/(2 j+1)'~'.

B. Syecial Cases

1. The Randomly Orieeted ENclels

(4.10)

so that in the case that we include transitions to states
J=j+1 and J= j+2, only Ap Ap and A4 will enter
the above sums. The parameter Ao is always present
and is required by the unitarity condition

p=Q&;
~=p+0;
p =Ze' (e'= 1/13'I);

Q =k;—k~, T=k;+kr,
8'= unit vector along symmetry axis of

distribution;

po=ri. Q, pT =n. T.

P.= 1/(2j+1),

A, =4 p/(2j+1)»p.
and

charge (4.11)

It is then possible to perform the sums over m appearing
in Eq. (4.1) with the aid of the spherical-harmonic
addition theorem. It is convenient to use a coordinateI'he angle C, which in the fraxne having A' as a polar

It is of interest to examine our result for the special
(4..8) case of a randomly oriented nucleus. When all substates

are equally populated, we have
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system in which 8 is along the polar axis. In this case Z. The Schig Tiemann Approximation
in the Limit of y((1

~ (2 2 kq
P'-~, -( q)~,-( )

=o Em m—o)

For m=2 we And that

cosmc,

—i sinnzC,

4~(2 2 ky
i
I,,„*(nq)I", .*(n,)

m=2 5 km —m 0)
The cross section (4.1) as computed for the Schiff-

Tiemann approximation using Eqs. (4.3) reduces to the
result for the erst Born approximation LEqs. (4.2)]
when & becomes very much less than one. Since the
Schiff-Tiemann cross section has been computed keep-
ing only the first two terms in the expansions in 1/P,
the corn.parison with the Born cross section must be

(4.12) made on the same basis. It is then a simple matter
to show that for y negligible compared to unity Eqs.
(4.3) reduce to (4.2).

(do)

kdn), ,d.

4+2 cos2(1 Q~)

X &o+ P'qq &qrz], (4 13)

where )); is given by Eq. (3.20). Since both Pqq and
Ii@~~ are proportional to the square of the observed
quadrupole moment Lcf. Eqs. (4.2), (4.3), (2.12)], we
can express the result in terms of the intrinsic moment
by factoring out rtP Lcf. Eq. (3.19)]:

F ~ .2P (in')

(4 14)

Then Eq. (4.13) becomes

(d&l

~d+) random

4+2 cos2(i Q~)

e

X {P+1[P iint) iIr (ink)]) (4 15)

Hence we find that for randomly oriented nuclei the
cross section, summed over the three rotational states
of the ground-state band and expressed in terms of the
intrinsic quadrupole moment, is independent of the
nuclear spin. The same result was obtained by Schiff for
the Born approximation by observing a sum rule which
is equivalent (they are the same except for different
normalizations) to the first of two sum rules we gave
in Eq. (2.36).Although our result for the inclusion of the
three rotational levels (n=2) required the use of the
second sum rule, for the case of k=o the two rules are
easily shown to be equivalent. Therefore we may re-
gard the second sum rule as the extension of the sum
rule noticed by Schiff for unoriented (k=O) nuclei to
the case in which nuclear alignments (kWO) are present.
These results are a direct consequence of having as-
sumed the Bohr-Mottelson model to describe the col-
lective motion of the nucleus. They would not be ex-
pected to follow using a model which, for example,
treated individual particle motions.

makes it a simple rnatter to verify that the classical
limit is indeed obtained.

C. Discussion

l. A Comparison of Three Approximation Schemes

Ke can compare the types of terms of the complete
Born series which are treated in the (i) first Born
approximation; (ii) distorted-wave approxiniation; (iii)
Schiff-Tiemann approximation. The complete Born
series for the amplitude contains the following types
of terms:

Order Terms

y, (q.,e)

v', v(q2~), (q2~)'

R v'(q«), v(q«)', (q«)'
etc.

3. The Classical I.im@

The classical result (3.8) can be recovered from the
expression (4.1) if we consider a nucleus in the state

~ jj) (i. e., we set P„=5„,,) and take the limit forj very
large. Optimal quantum-mechanical alignment in the
state

~ jj) becomes perfect alignment in the classical
limit (j~~). Reference to the tabulation of

~ f(Jj)
~

(cf. Table I) will show that in the limit of j~~ transi-
tions to states of J/ j become negligible compared to
those for j~ j. Nevertheless it is more convenient to
consider formally the summation over all three levels
by setting P„=+2, then this effect is taken care of
automatically. One simple limit is required:

(j k jq 1
lim

~
~=, (any k).--&-~ 0 j) (2j) t

'

The limit of +2(j,k) for j~~ is then obtained from
Eq. (4.7). Use of Eq. (4.12), together with the relations

2 2 kq'
&~(2k+1)

0 0 0)

2 2 k (2 2 k)
Q,(2k+1) -m 0&000)
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The Grst Born approximation for the cross section con-
tains terms y, y(qse), and (qse)'. In the distorted-wave
approximation the monopole scattering is computed
exactly while the quadrupole amplitude is treated to
first order. The zero-order wave functions used for these
calculations are the exact solutions to the Dirac equation
for the spherical part of the potential. This approach
does not take account of quadrupole distortions in the
wave fronts which are treated in an approximate manner
by Schiff through the phase function 1.&(x). However,
both of these methods pick up terms y~(qse) (E& 1) in
the cross section. When y is of the order of —,

' (as it is for
holmium), the corrections to the Born approximation
are seen to be of the same order as the original term.
For the terms bilinea, r in (q2e) the Schiff approximation
is able to include virtual as well as real quadrupole
transitions, whereas the distorted-wave approximation
describes only the latter (insofar as present application
has not gone beyond first order in the amplitude).
Both treatments bring in terms y~(qse)'(Ã)0) in the
cross section, so that again, relative to the first Born
approximation (IV=0), the corrections are of the same
order as the original Born contribution.

Application of the Born approximation to this
problem was first made by Fubini and Ferroni and by
Bernardini et al." Similar considerations have been
made by %eigert and Rose and by Burleson. "Schi6'
has discussed the case of unaligned nuclei. The distorted-
wave approximation was made by Downs et aL" for a
randomly oriented nucleus and by Wright and Onley"
for an aligned nucleus, in both instances assuming a
nonzero surface thickness.

Z . The 37ecessity of Secortd Order T-erms

An important result of the work here is the fact that
it was necessary to treat second-order quadrupole terms
in both the amplitude and the cross section. Assuming
a uniformly charged ellipsoid of revolution (which was
shown above to be equivalent in polar coordinates to a
uniformly charged sphere plus a surface-delta-function
quadrupole density) and making asymptotic expansions
in QR for the amplitude, we found that some of the
second-order quadrupole terms could be comparable
to 6rst-order and monopole terms. This was discussed
in detail in Sec. III. A question of interest is whether or
not this behavior is general. Would it persist if, for
example, we eliminated the sharp cutoff inherent in a
uniformly charged nucleus and instead considered a
nuclues with a fuzzy edge? We offer the following
arguments to the effect that it would. Recall that we

'5$, Fubini and S. Ferroni, Nuovo Cimento 1, 263 (1955);
M. Bernardini, P. Brovetto, and S. Ferroni, ibid. 5, 1292 (1957).

'6 L. J. Weigert and M. E. Rose, Nucl. Phys. 51, 529 (1964).
P. Burleson {unpublished); M. R. Yearian (private communi-
cation).

' B. W. Downs, D. G. Ravenhall, and D. R. Yennie, Phys.
Rev. 106, 1285 (1957).

's L. E. Wright and D. S. Onley, Nucl. Phys. 64, 231 (1965l.

found the asymptotic behavior of the integrals for fs
to be as 1/P', while that for fs was as 1/P (see Appendix
B). Since in the extreme asymptotic limit the Born
approximation is expected to provide a reasonable
description of scattering, the amplitude will go as the
Fourier transform of the charge density. Elimination of
the sharp cutoff in p, (x) will result in the attenuation
of high frequencies, so that in this case the amplitude
must fall off even faster than 1/P'. Now the integrals
for fs all had the factor ps(r) appearing linearly in
the integrand, and for

the remaining angular integrations gave rise to a 1/P
asymptotic behavior. If we smear out this radial
quadrupole distribution but still restrict it to rather
narrow limits in the vicinity of r =E., we can approxi-
mate the radial integral by the mean-value theorem so
that the remaining angular integrations will be per-
formed over a surface very near r=E.. Therefore we
would again expect a 1/P asymptotic dependence, which
in turn implies a quadrupole enhancement and the
consequent need for second-order terms. This argument
is not rigorous since there may be phase interferences in
the radial integral which prohibit application of the
mean-value theorem.

3. 2 Remark Cortcerrting Virtual Quadrupole Excitatiorts

It is necessary to make some qualifying remarks
about the second-order term in the Schiff amplitude.
It will be recalled that in the derivation of its operator
properties terms were present which were both sym-
metric and antisymmetric with respect to interchange
of 0@ and Qz, but that only the symmetric combination
was chosen (cf. Ref. 13). Suppose we had kept. the
antisymmetric part also; in that case the integrand for
5~'& would have had the additional term Lcf. Eq. (3.13))

Our method of evaluating the reduced matrix elements
of these operators is to consider the scattering process
whereby the nuclear operators T' connect only to the
one state

~ jj).Obviously the contribution of the above
term vanishes identically, so it is not possible to
evaluate its reduced matrix elements by this technique.
Only terms having a classical analog can be treated by
our prescription. Of course the antisymmetric term
may exist. If it were kept, it would make an additional
contribution to FQro Lsee Eq. (4.3)) and would enter
the cross section Lsee Eq. 4.1), but only for odd"
values of k. However, we see that if the three rotational
levels are summed over (Z„=Zs) only even values of
k enter the cross section since Z2 vanishes for k odd.

'9 The symmetric term, which was retained, is wholly contained
in Ii gpss and enters only for even values of k.
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completely polarized in the
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Hence we conclude that for the odd-k contributions to
do/dQ we have neglected possible virtual quadrupole
excitations, but that when all three rotational levels
are summed over, odd values of k are not present, so
that in this case the point becomes moot.

4. The Presertce of Evert and Odd Values of h

It was noted by Weigert and Rose" that for elastic
scattering only even" values of k enter the Born ap-
proximation to the cross section. Our result (4.1)
verifies this conclusion. We see however that this rule is
not valid for the Schiff-Tiemann approximation. On the
other hand, if the three rotational levels are sullnned

over, both approximations involve only even values of k.

5. Ti me-Reversa/ Invari ance

It was pointed out by Schi6' that his approximation
displayed time-reversal invariance. We can readily
verify that our expression (4.1) for do/dQ has this
property. We note that under time reversal kr —+ —k;,
k, ~ —kr, 6 (the direction of the magnetic field) —+ —6,
and p„~p „. It then follows that Q and 0 remain
invariant, but T is taken into (—T). The transformation
of the other parameters may be deduced directly from
Eqs. (4.4) and (4.9). It is then a simple matter to show
that do/dQ is left invariant under this transformation.

6. Numerical Calculati orts for Holmium

We have inade numerical evaluations for do/dQ for
the scattering of 200-MeV electrons from an aligned

"Weigert and Rose (Ref. 16) speak of A l, for k-even as describ-
ing alignm. ents, and for k-odd, polarizations. This nomenclature is
not universal, however.

hohnium (Z= 67, 3 = 165, ground-state spin= s) target
assuming a radius of 6.58 F, as computed. from the
a~~»aw,

R=rpA'~'

with r, =1.2 F. Plots of do/dQ versus scattering angle
0' are shown in Fig. 1. Here it was assumed that the
nucleus was completely polarized in the state p, =j
(i.e. , p„=3„,,). In Fig. 2 are displayed some graphs of
R versus 0' where

[O aligned &random)/&random ~

In this case we assumed the alignments could be
described by a Maxwell-Boltzmann distribution (see
Table II) characterized by fi——0.688 and f&

——0.639,
where f& is defined by

f = (u")/i "=Tr(—p(~*)')/2"

It is expected to provide a realistic experimental
description under optimal conditions. "The measured
quadrupole moment was assigned a value of +2 (in
units of eX10 s4 cm', e)0). The intrinsic moment is
greater by a factor of rl,

'
I see Eq. (3.19)$; for holmium

(j= -,'), rt;
'= 15/'l. In a—ll cases we have included the

sums over the three low-lying rotational levels.
Because our forms for p(x) imply a sharp edge in the

nuclear density, some extra high-frequency components

Tmxx II. Maxwell-Boltzmann distribution assumed for the
graphs of Fig. 2. f& ——0.688, f,=0639.

—7/2 —3/2 —3/2 —1/2 1/2 3/2 3/2 7/2

p„0.006 0.011 0.020 0.038 0.071 0.134 0.251 0.469

"R. Safrata (private communication).
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FIG. 2. R versus 0 (in deg) for a holmium nucleus aligned ac-
cording to the Maxwell-Boltzmann distribution shown in Table II,
assuming an (observed) quadrupole moment of +2e&10 '4 cm',
with the magnetic 6eld (a) normal to the scattering plane, (b) in
the scattering plane bnt normal to the incident beam, and (c)
along the incident beam.

APPENDIX A: CALCULATION OF THE
INTEGRALS FOR L(x)

The phase function L(x) is defined to be

L(x)=— [V(x—k;s)+ U(x+krs)] ds, (Al)

to its completion. His numerous suggestions and patient
questioning have provided many insights of both a
physical and mathematical nature.

Thanks are also due Professor L. I. Schi8 for his
enduring support and several suggestions. Conversa-
tions with Professor J. D. Walecka and Dr. T. GriGy
proved very valuable, as did those with Professor M.
R. Yearian and Br. R. Safrata concerning the relation-
ship of this work to experimental expectations.

are thereby introduced. These are reRected in the
curves which we obtain. They would presumably be
eliminated if the effects of a surface thickness were
included.

It should be remarked that the cross-section curves
are not expected to be reliable in the vicinity of local
minima. This is because at these points the terms
retained in the asymptotic expansions tend to cancel,
their sum thereby becoming comparable to the higher
order terms which were dropped. A further restriction
is a condition of applicability of the SchiR approxima-
tion, namely that

where k; and k~ are unit vectors in the direction of the
momenta of the initial and final electrons, and V(x)
is given in terms of the charge distribution p(x) by

U(x) = —e
p(x') d'x'

fx—x'[

where
V(x) = Up(x)+ Vs(x), (A2)

We employ harmonic expansions for both p(x) [cf.
Eq. (2.7)] and the inverse distance. Assuming the
model (2.11) we find that

For the parameters given above this becomes

O»2S'.

As mentioned earlier, neglect of magnetic-moment scat-
tering is justified everywhere except in the backward
direction.

B. Conclusion

We have shown that the Schi6-Tiemann approxirna-
tion can be applied to describe scattering from a
deformed nucleus. In order to treat nuclear alignments
and spin-state transitions it was necessary to extend the
formalism to the case of a nucleus having spin. This
was done through second order in the quadrupole part
of the interaction, since we found that second-order
terms could be important. All of the integrals were
evaluated analytically (as well as asymptotically), and
it was to this end the nucleus was described by a
uniformly charged ellipsoid of revolution. Finally, we
have seen that alignment eBects are significant for a
greatly deformed nucleus such as holmium.

(A3)

4~q~e r2

Vs(x) = — —Ps(cosg), r &R
5 E3

4xq2e E.'—Ps(cos9), r)R.
5 r'

(A4)

L(x) =L,(x)+Ls(x),

were Li(x) is the contribution from Vs(x).

(AS)

We compute

Calculation of Ls (x)

The angle 8 is measured with respect to the symmetry
axis. For L(x) we can write

ACKNOWLEDGMENTS
Ls(x) =— [Vo(y;)+ Vo(yf)3 ds (A6)

The author wishes to express his gratitude to Profes-
sor C. K. Iddings for first suggesting this problem and
for subsequently guiding the progress of the research

where
A,

y;(s) = x—k;s,

yf(s) =x+krs. (A7)
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PATHS OF The procedure is straightforward. %'e 6nd that

L2(X)= (22rqse/5)(S;R '[sS (3b 2—1)—S;(3ab,+i)
+.(3a2 y2)]

+R'[3a'I2 6a—b;Is+3b I4 I1]—)
+(22rqse/5)(b; ~ by, s;~ sy, f ~ 1/), (A12)

where
g=x S,

b;=k; 5, by ky S——
) (A13)

S=unit vector along symmetry axis,

I,=1/R'(1+u), I2 ——(2+u)/[3R4(1+u)']

I3=
3R3

2+u
1——

R (1+u)'

Fro. 3. Paths of integration for the integrals defining L(x).

where

f +(R2 y2yf 2)1/2

sy
——y/+(R2 y2+2)2)r/2

(AS)

At==x k;,
A,

g=x ky. (A9)

In the limit that s —+~ these integrals diverge loga-
rithmically. This problem is handled by replacing the
upper limit by s=5, where S))R. It will then be seen
that the number 5 appears as an over-all phase in the
scattering amplitude, so it is without physical sig-
nificance. " The expression for L&(x) may be written
in terms of invariants according to

7
Ls(x) = [(5R' y2)(s~+sy)+-'2(s 2+—sys)]

4R'
2S

+y ln +y ln . (A10)
R+s;+f R+sy+1/

The path of integration is illustrated in Fig. 3. Dis-
continuities at the surface of the sphere correspond to
s= s; and s= s~, where

y;(s;) =R,
yy(sy) =R,

and y =
~ y ~

. Explicitly,

1 -(1+s;/R)' (s;/R)'
I4-

3R' (1+u)' 1+u

(1/R)[R2 y2+t 2]1/2

The remaining parameters were previously defined in
Eqs. (AS) and (A9).

s (symmetry axis)

APPENDIX 3' INTEGRALS FOR THE
SCATTERING AMPLITUDE

%e give here a brief discussion" of the integrals
(3.6). Introduction of the expansion (A5) allows us to
write the amplitude f(ky, k;) as in (3.5) and (3.14).
The assertions concerning the asymptotic properties
of f& [see discussion following Eq. (3.7)] will be evident

Calculation of L2(x)

L2(x) is defined by

L2(x) =— [V2(y;)+ V2(yy)] ds. (A11)

"This prescription for the handling of the divergence was given
by Tiemann (Ref. 3), who also calculated Lo for a uniformly
charged sphere. Our results below do not entirely agree with those
given in that paper, but we do arrive at the same expression for
the cross section, Eq. (18) of Ref. 3.

FIG. 4. Coordinate system used to perform the integrations for
the scattering amplitude. The scattering is in the g-s plane, with
k;—hy= Q. The scattering angle is Q.

A more detailed treatment of these intgrals may be found in
the. appendices of Ref. 5.
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after a few of these integrals have been evaluated. All
calculations will be carried to the orders indicated in
Sec. IIIA. In all cases it is found that for purposes of
obtaining asymptotic forms it is best to work in the
coordinate system illustrated in Fig. 4. We still assume,
of course, the model of Eqs. (2.11).

Integrals for fo

In the coordinate system of Fig. 4 we may express
fo&') according to the equations

f,"&=(2mep/Q )f, d'se '&'P(E)

series by successive integrations by parts'4:

dse 'o'F(s)

—1
I

e
—iozF(n)(s)]z=B (B3)

m=o (jQ)"+i

It can be shown" that F(s) possesses the analyticity at
s=~E required in order that this series make sense.
It is also immediately obvious froin Eq. (B2) that the
leading term (n=0) vanishes, so the first nontrivial
term (m= 1) goes as 1/P'. The integrals for f0&') possess
the same properties; here however F(s) is defined by

dxdye'~«')

F(z) = 2 BLp
dxdy 1+— e'~«*)

Q Bs
(r(B)

(B2)
( 2 8LO) 2 BLED

F2(x)
I
1+— I+— . (B4)

Q Bs) Q 8s

The integral on s may be developed into an asymptotic We find that fall symbols are defined in Eq. (4.8)]

6m' 1
f0&') = e'~«o 0 ~)ei& —coso.+—Lsinn+10y sin'(-', O~) cosn iy s—inn(7 —10 sin'(-'Q~))]

Q2P2

f00)—
4m'(4m egg)

&iz,o (O,P,B)&i''

5Q2P2

&([sjnn[sjn(iQ) (1—4 sjn2(i Q) «s~(i 0+))P2(&io)+2 sjn(2i O~) cos2(—0+)I 1+2 sjn (—Q)]P2(&ir) J

—~ cos~K1+»n(ko)L1 —4»n'(2Q') cos'(ko)]+I 1+»n(ko)]-')P2(& o)

+(2 sin(i20') cos2(~~ 0~)Ll+2 sin2(2Q~)]+ L1—sin(2Q)]C 1+sin(2 Q~)] ')P2(&iz) J}. (B6)

Integrals for f2

Because these integrals all have a factor 8(r—E),
we work here in spherical polar coordinates and absorb
the radial integral immediately. Then we find that
f2&') can be defined by

is analytic at 8=0 and 8=m.. However this is found not
always to be the case. In these instances an asymptotic
series may be developed by an application" of Brom-
wich's theorem, "which states that if F(x) has limited
total Quctuation when x&0, and if y is such that vy —+ ~
when v —&~, then

f~ ' ——(2meg2/Q') P P2, (cos8,)(—) X I, (B7)

where
&

I' x& 'F(x) sinpx dx~ F(0+)I'(&i)

I (P)= sin 8d8 e 'e"'~F (8)P2, (cos8), (BS) &&sin(&in/2), (—1(&i(1). (B11)

and

& (8)= F(8 ~) «»~(p —p.) dv,

2 BLp-
F(8,q)= e'~0&*) 1+—RP»- .=z

(B9)

(Blo)

If 0&p& j., the sine function may be replaced by cosine
throughout. Bromwich's theorem gives directly only
the leading term in the asymptotic series, but the
higher terms may be obtained by differentiation.
Assuming

F(x)=F(0)+xF'(0),

LiV is defined by Eq. (4.5).] The integrals for I (P)
can be developed asymptotically by successive integra-
tions by parts, as in Eq. (B3),whenever 5: (8)P2, (cos8)

~ This technique is due to Tiemann, Ref. 3.
2' We are indebted to C. K.. Iddings for suggesting this solution.
~' G. N. Watson, A Treatise orl, the Theory of Bessel Functions

(The Macmillan Company, New York, 1944), 2nd edition, p. 230.
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we need know only that

(sin px)
~&Ex

—& (or/2P) '&s

kcospx)

(89)j, but here F(8,&o) is given by (to order 1/P)

F(0,p) = [e' o&*liLs(x)]„=z. (813)

The results are

(812) fs& l = )2m(4oreqs)/gsp je&Lo&o,o.&&e&&ps(&o)

( cospx ) X Lsinn+ p '(3 cosn —Sy sine sin'(-', 0')).- I X.
I

~

-(2P)-( /2P) . —syP-' cosn(5 —8 sin'(-,'0))j, (814)

It is found that whenever application of Bromwich's
theorem is successful, integration by parts fails, and
vice versa. However, the integral for fs&s& contains
both types of behavior, so each type must be isolated.
The equations defining fs&sl are as above D.e., (87)-

fs& & = $4ol(4rreqs) /15PQ'je&i'&o, o.z)e'&P (p )
x[Ps(po)[sin(rs0) (1—4 sin, (r0) cos (—e))e'~
+ i sino. (1+$1+sin(-,'0)j ')]
+Ps(liz) [2 sin(-', 0') cos'(-,'0~) $1+2 sin'(-'0')$e'

+s sinn($1 —sin(sr 0')jL1+sin(s 0)j ')]}. (815)
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Cross sections have been measured for the reactions Ar4o(s, s. P) Cl" and Ar~(s, s Pa)Cl" in the energy
range 500-1100 MeV. The excitation function of the former reaction has peaks at about 600 and 900 MeT
pion kinetic energy, corresponding to known resonances in the m -p scattering cross section. This implies that
a quasifree pion-proton collision occurs as the initial step of this simple reaction. The (s. , s pe) excitation
function, in contrast, is essentially independent of energy in this energy range, indicating a mechanism or
combination of mechanisms suQiciently complex to average out the structure in the m=p and m=n cross
sections. The effect of the proton momentum distribution on the ~=p resonances is calculated, and by com-
parison with the (s. , s p) cross section a momentum distribution is deduced which is in agreement with the
results of (p,2p) quasifree scattering experiments. Cross sections for the reactions Ar4o(s. , s. 2io) S",Ar4 (p,
2P) Cl", and Ar" (p, 2pl) CP' at a single energy were also measured.

I. DTTRODUCTIO5'

HE use of energetic x mesons as bombarding par-
ticles in the study of nuclear reactions has several

advantages. The presence of three charge states of the
meson permits the study of charge-exchange reactions
in which either one or two units of charge are trans-
ferred. There is a clear distinction between the incident
particle and the particles in the target nucleus, so that
there is no ambiguity as to whether the incident particle
is absorbed or re-emitted. Finally, the pion-nucleon total
cross sections exhibit pronounced resonances, in con-
trast to the relatively smooth nucleon-nucleon cross
sections. This last feature is the basis of the present
experiments.

The Serber model' of high-energy nuclear reactions
assumes that the initial step of a reaction is an inter-
action of the projectile with a single nucleon in the
nucleus. The extent to which the type of initial inter-

t Work supported by the U. S. Atomic Energy Commission.' R. Serber, Phys. Rev. 72, 1114 (1947).

action aBects the probability of forming a particular
product can be studied by bombarding the same nucleus
with different projectiles, especially when there are large
differences in the projectile-nucleon cross sections. An
alternative experiment is to use a projectile which has
widely diGerent cross sections with protons and neu-
trons, in order to learn what eGect the initial interaction
has.

The class of reactions (x,xÃ), where x is a bombarding
particle and E is a nucleon, is one in which the initial
interaction can be important. The clean knockout
mechanism, ' in which x collides with E and both
particles leave the nucleus, which then has insufhcient
excitation energy to evaporate additional particles,
would be sensitive to the x-S scattering cross section.
Qn the other hand, a mechansim in which particle x
scattered inelastically from the nucleus and the nucleus
de-excited by evaporating nucleon E would not be,

~ J. R. Grover and A. A. Caretto, Jr., Ann. Rev. Nucl. Sci, 14,
51 (1964).


