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With these results, the isospin eigenvalue problem is

—,
' m'n(m —2)+L2X+(2Ã—1)m —2m'5n(m)+2(X —m)(N —m —1)n(m+2) = T(T+1)n(m) . (II.6)

If we now add iV(Ã —3)n(m) to both sides of (II.6), then we obtain Eq. (5.8) with ~ given by (5.17). Thus we
have proven that the states (5.2) are isospin eigenstates and we have given an alternative derivation of
the value of lc (5.17).
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The eGective interaction in nuclear matter is de6ned as the long-range part of the two-body potential,
which, in the Born approximation, gives the single-particle potential energy for the average momen-
tum in the Fermi sea. For the Brueckner-Gammel-Thaler potential the effective interaction has been calcu-
lated, Grst for the free-particle propagator and then for the nuclear spectrum. The result shows that in the
erst case the separation distance go is constant over a wide range of densities and does not lead to saturation.
The nuclear separation distance k(kr) changes quite rapidly with the Fermi momentum ko; for low densities
it is very close to (0, while for higher densities it becomes very much larger. At the density corresponding to
ko=1.5 F ', the long-range potential starts at k=1.16 F, and the rate of change of g with kr is (dP/dko)
=0.8 F2. The minimum of the total energy per particle occurs at k+=1.35 F ~ and is about —9 Mev'.
For hz=1.5 F ' the contributions of diferent partial waves are also calculated by a variational technique,
and the results have been compared with previous calculations.

1. INTRODUCTIOÃ

'NUCLEON-nucleon scattering at high energies sug-
gests that nuclear forces become strongly repul-

sive at small distances. If these forces bind a system of
many nucleons together, then at least for low densities,
the interaction on the average must be attractive, and
the effect of the repulsive part cancels only part of the
effect of the attractive potential. Therefore it is possible
to 6nd an effective interaction which depends on the
density and represents the remaining part of the
attractive force.

Moszkowski and Scott' originally introduced the idea
of separating the interaction in the two-body I, matrix
in such a way that the short-range part contributes
nothing to the phase shift in each partial wave. Then
the effective interaction, to the first order, is the Born
approximation of the long-range part. Here we introduce
an average separation distance for all of the states in
the Fermi sea by the requirement that the expectation
value of the short-range part of the many-body Hamil-
tonian should vanish. The long-range part which is the
effective Hamiltonian will depend on the Fermi momen-
tum (or density) of the system of nucleons. Thus the
eGect of the short-range part of the interaction may be
replaced by a separation distance $(ke) and other
physical quantities of interest, like the rearrangement

' S. A. Moszkowski and B. L. Scott, Ann. Phys. (N. Y.) 11, 65
(1960), hereafter referred to as MS.

energy and the compressibility, can be expressed in
terms of the long-range interaction f(k~) and its
derivatives with respect to k~.' From the de6nition
of $(ks) it is clear that its functional form depends on
the shape and the strength of the short-range interaction
and for diff erent potentials it takes different forms. Here
it is assumed that the two-nucleon interaction is given
by the Brueckner-Gammel-Thaler (BGT) potential. '
This potential is preferred over the semiphenomeno-
logical potentials of Breit4 and Hamada and Johnson'
for two reasons: (a) The BGT potential has a simple
analytic form and (b) there are at least three other in-
dependent calculations of the binding energy of nuclear
matter with this potential. It is therefore possible to
compare our calculations with the results of other
calculations.

Since the exact solution of the reaction matrix is
quite complicated we calculate the separation distance
by iteration. In Sec. 2 we find the integral equation for
the reaction matrix and the condition that the solution
of this equation must satisfy in order that the energy
shift due to the perturbation be zero. In Sec. 3 we solve
the reaction matrix by neglecting the exclusion principle
and using the free-particle propagator e". We And that

' M. Razavy and S. J. Stack, Can. J. Phys. 45, 605 (1965).
~ K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023

(1958).
K.E.Lassila, M. H. Hull, Jr., H. M, Rupple, F.A. McDonald,

and G. Breit, Phys. Rev. 126, 881 (1962).' T. Hamada and I. D. Johnson, Nucl. Phys. 34, 383 (1962).
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2. THE EFFECTIVE INTERACTION

We consider a many-particle system interacting
through two-body forces w(r;;), and we divide the
Hamiltonian of this system, H, into two parts Ho
and H'

(2.1)

(2.2)

where T; is the kinetic-energy operator for the particle
in the state i,e is the step function, and g is a parameter
which depends on the density of the system and will be
determined later. If 40 and 0 0 denote the ground-state
eigenfunctions of Ho and H, respectively, and Eo and
E the corresponding eigenvalues, then

z=z,+(c,iaido, ) (2.3)

where we have used the normalization (C'p ~% p) = 1.The
energy shift AE=(cp(H'(+p) is a function of the
parameter $.

For small values of $ when H' contains only the
repulsive part of the potential, AE is positive, but
when g= ~ assuming the existence of a bound state for
the system, d,E must be negative. Thus if AE is a con-
tinuous function of t, it is possible to choose ] so that

AE($) =0. (2.4)

Equation (2.4) determines $ as a function of the density,
the range, and the strength of the interaction. To
reduce the many-body equations (2.1)—(2.3) to equa-
tions involving two nucleons we Grst consider only
two-body excitations and write the Hamiltonian for
the two interacting nucleons as

k,=2',+r;+~(r;;)S(r;;—P). (2.5)

If we sum ho over all possible values of i and j we And
2Pp as given by (2.1).The effect of the rest of nucleons
on the pair ij is represented in (2.5) by the presence of
the cutoff $. Let y(mn) be the set of the eigenfunctions
of hp with eigenvalues e(m)+e(n). We expand the two-
nucleon wave function in nuclear matter P(mn) in

' K. A. Brueckner and K. S. Masterson, Phys. Rev. 128, 2267
(1962).

the separation point $p is the boundary point of the solu-
tion of a set of differential equations. A more accurate
value of g with the nuclear spectrum is found in Sec. 4,
and from this value of $, the binding energy per particle
is obtained. In the last section the complete reaction
matrix is solved by variational method and the average
potential energy per particle is found and compared
with the value obtained by Brueckner and Masterson. '

p(mn, r)s(r) f(mn, r)d'r =0, (2 7)

This relation is consistent with (2.4) but $ now depends
on the momenta k„and k of the two nucleons. If
k=-', (k„—k„) is the relative momentum of this pair, we
put the average of the matrix element given by (2.7)
over the Fermi sea equal to zero, i.e., we find a f(kr)
which satis6es the equation

"r 24k'p 2k kp
q+

p kr' & 3k i 2k''I

Xpp(k r)v(r)f(k r)dzr=0. (2.8)

It is also possible to evaluate $ for the average momen-
tuni in the Fermi sea from Eq. (2.7).If $ does not change
very rapidly with kp both methods will yield nearly
the same result. Apart from the problem of self-
consistent calculation of the particle energies e(a) and
e(b), which has been discussed extensively in several
papers, ~' $ can be determined in the following way.
We assume some value for $ for a given density, from
(2.5) we find hp and this in turn deterinines q (mn), e(m),
and e(n). Then solving Eq. (2.6) we find the exact two-
body wave function P(mn), and using q (mn) and P(mn)
in (2.7) or (2.8) $ can be calculated. This result should
agree with the value of $ used at the start of the
calculation.

3. FIRST-ORDER CALCULATION

The short-range reaction matrix 6' defined by

(ij ~G'~ mn) =(y(zj)
~
w(r)e($ —r) ~P(mn)) (3.1)

7 H. A. Bethe, B.H. Brandow, and A. G. Petschek, Phys. Rev.
129, 225 (1963), hereafter referred to as BBP.

G. E. Brown, G. T. Shappert, and C. %. Kong, Nucl. Phys.
56, 191 (1964).

terms of pp(mn) to find the integral equation

P(mn) = q (nzn)+
kzz, kb&kJl

p (mn)(p (ab)
I
s(r') e(t—r')14(ab))

(2.6)
e(m)+ e(n) —e(a) —e(b)

The energy denominator in (2.6) may be modified so
that the effect of higher order correlations is included in
the determina, tion of P(mn). Then e(a)+e(b) will no
longer be the eigenvalues of ho and have little physical
significance. These particle energies Le(a) and e(b)j are
sensitive to the form of the potential at short distances,
and they should be calculated self-consistently from
the reaction matrix. Once their forms as functions of
the momenta of the particles k, and kg are known,
then f(mn) can be determined from (2.6). To find the
separation distance g we put the diagonal elements of
the reaction matrix equal to zero, i.e.,

g(m~)
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satis6es the integral equation

Gp ~p+pp(Q/sN)Gs (3.2)
0.6

which is obtained by substituting (2.6) in (3.1). The
operator Q excludes the states inside the Fermi sea,
and eN is the energy denominator in (2.6) with the
modified particle energies e(u) and e(b) An. accurate
value of the separation distance $ satisfies Eq. (2.8) or

(-,'(k —k„)
~

G'~ —,'(k„—k„))dk dk„=0, (3.3)

where the integration is over the Fermi sea. An ap-
proximate value for the separation distance may be
found from the phase shifts and the long-range part of
the potential (r) 1F), if we make the following changes
in Eq. (3.2): (a) Substitute the hole and particle energies
in (2.6) and (3.2) by the kinetic energies, i.e., use a free
particle propagator e~. (b) Put Q=1 for all of the
states m and n (c) U. se plane waves for the wave
function pp(mN):

p(me) =expLi(k r„+k„.r„)7.
With these substitutions the diagonal elements of
the reaction matrix G'~ can be written in terms of
phase shifts. Denoting the relative momentum by
k=-', (k —k„) we have

(k~G'~~k)= —(pr/2k) Q (2T+1)(2J+1)

X3(r ~(k tp)=0 (3.4)

e r(F)
I

FIG. 1. The 'S0 phase function for the BGT potential.

the coupled triplet states 'S~—'D~ we have used the
factorization method" to And the separation point.
In the 'S~ state the separation distance increases
slowly with kp. This variation is shown in Table I,

TABLE I. First-order values of the separation distance gp,
for the 'S1 state for the average momentum in the Fermi sea
k= (+0.3)kp.

4 (F ') 1.1 1.2 1.3 1.4 1.5 1.6 1.7
1'p (F) 0.97 0.98 0.99 1.01 1.02 1.05 1.09

where Bi (k, $p) is the phase shift due to the short-
range part of the potential, T is the isospin, and J the
total angular momentum of the two nucleons. The
quantity 8&r ~(k, tp) is the boundary value (at r= Pp) of
the solution of the first-order differential equation'

dbms ~( kr) /rd= —kr'air ~(r)

Xt cosbir ~(k, r) j&(kr) —m&(kr)sin8ir ~7s (3.5)

with the boundary condition at in6nity

b,r &(k, )= S,r &(k) (3.6)
(k~t(r)&(» —

Pp) ~k)=-,'7r P (2J+1)(2&+1)

where fp(k) = $p(kr) with k= (+0.3)ks is given for
different values of kg. Thus neglecting the eRect of the
higher partial waves, the average value of $p is about
1F. In the next section it will be shown that this
value is very close to the exact P when the density is
low (ks(1.5 F ').

The diagonal elements of the long-range part of the
potential (to the first order) are the matrix elements of
the potential u(»)8(r —&p) with the plane waves

and the subsidiary condition (3.4).
We have integrated Eq. (3.5) for the states 'Sp, 'Pi,

'Po, 'P~, 'P2, 'D2, and 'D2 with the BGT' potential for
the average momentum k= (+0.3)kr for different kr's
(kg=1.1-1.7 F '). The phase function b~r ~(k,r) as a
function of r is plotted in Figs. 1 and 2. For a better
accuracy we have integrated Eq. (3.5) from the core to
infinity. The common separation distance $p obtained
in this way is practically constant when kp is between
1.1 and 1.7 F ', and is equal to 1.07 F. In this calcula-
tion we have neglected the coupling between the 'P~ and
'P~ states. The 'D~ and 'Da waves have not been in-
cluded and their eRects are assumed to be small. For

X jP(kr)v&r ~(»)r'dr. (3.7)
ko

The average of the matrix element (3.7) over the Fermi
sea is the eRective interaction to the first order. To
compare the result of our calculation with that of
Moszkowski and Scott (MS)' we have calculated the
single-particle potential energy U by multiplying the
inatrix element (3.7) for the average momentum by the
the density p= 2k+'/37rs to give

U= (2k p P/3pr') (k
~
v(r) 8(r—$p) ~

k), (3.&)

' F. Calogero, Nuovo Cimento 27, 261 (1963). + M. Razavy, Phys. Rev. 130, 1091 (1963).
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TABLE II. The contributions of different partial waves to the average energy per particle (in units of MeV).

ISp $1 'P1 'PP 'P1 'P2 3D 3D Total MS

1.1
1.2
1.3
1.4
1.5
1.6
1.7

—9.68—11.50—13.80—15.30—17.10—18.80—20.30

—5,81—6.98—8.18—9.56—10.26—11.94—10.81

2.35
3.17
4.14
5.28
6.47
7.80
9.29

—3.37—4.36—5.47—6.66—7.93—9.20—10.50

5.08
6.75
8.70

10.90
13.46
16.20
19.36

—3.99—5.46—7.24—9.35—11.80—14.60—17.70

—1.03—1.67—2.56—3.77—5.35—7.34—9.80

0.29
0.37
0.60
0.84
1.12
1.47
1.86

—1.50
2.32—3.41—4.80—6.50—8.60—11.08

—0.43—0.64—0.90—1.19—1.50—1.84—2.17

—17.87—22.35—26,84—32.69—38.33—45.39—53.04

—17.2—21.4—26.2—31.5—37.3—43.7—50.7

where k=(/ 03) kr. The results are given for each
partial wave separately in Table II. The total con-
tribution to the single-particle potential energy in our
computation (—38.3 MeV) is almost identical to those
of Azziz and Signell" (—38 MeV) and MS' (—37.3
MeV). However, our calculation gives different results
in each partial wave, and this is especially noticeable
for '50 and 'P2 waves. In our work there is no sign of
saturation in the range of densities corresponding to the
Fermi momenta kg=1.1—1.7 F '; a result identical to
that of MS.

potential and compute the single-particle energy in
the first Born approximation. However, we use the
result of the work of Rajaraman" and assume that
the potential energy in the intermediate states is
give by

1)&(contribution from even-/ states only) .

If U(kt, ) denotes the potential energy of a particle of
momentum kq (kt,)k p), and $,(k) is the common separa-
tion distance for even states only Lk=-', (kb —k~)],
then

4. SECOND-ORDER CALCULATION

To And the exact separation distance it is necessary
to obtain the correct energy denominator e~ for
the G' matrix. This quantity e~ consists of two
parts; the hole energies e(m)+e(m) and the particle
energies e(a)+e(b). The hole energies are related to the
long-range part of the potential that has been found in
Sec. 3, and only particle energies remains to be cal-
culated. As we mentioned earlier, these particle energies
should be obtained self-consistently, and the result is
very sensitive to the interaction at very short distances.
Here, instead of calculating these intermediate energies
accurately, we extend the method of separating the

2
U(k, ) =—P (2t+1)

~2 even I,

dk„ j P(kr)v(r)r'dr .

(4 1)

For mathematical simplicity, we fit U(k&) by a quad-
ratic function of kg,

i' 1 qk~'
U(k, ) =

i i 2
(4.2)

where m* is the e6ective-mass parameter and 6 is a
constant. For the potential energy of holes U(k )
(k (k~) we assume that U(k ) has the following form:

1 q i a+bk„'~
U(k.) = —1 ~-;k 2+&—g — ~. (4.3)

re* ) &1yck ')

Here m* and 6 have the same numerical values as in
(4.2) and a, b, and c are constants. The energy denomi-
nator e~ in Eq. (3.2) may be expressed in terms of these
constants, namely

e"(k)k')8) =e(m)+e(e) —e(a) —e(b) =
m*

5 r(F)
I

FrG. 2. The 3Pp and 'P2 phase functions for the 3GT potential.

"N. Azziz and P. Signell, Nucl. Phys. 59, 444 (1964).

a+ (b+ca) (-,'E'+k')+ cb(-,'E' —k') '
, (4.4)

1+2c(-,'P'yk')+c'(-, 'P' —k') '

where k and k' are the relative momenta in the initial
and in the intermediate states and P is the momentum
of the center of mass. The eGect of P in e~ is quite
small, and we put P=0 to simplify Eq. (4.4). The short-
range potential e(r)8($—r) has large Fourier components

"R. Rajaraman, Phys. Rev. 129, 265 (1963). See also H. A.
Bethe, ibid 138, 8804 i1965l. .
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for k&kp, and will scatter the nucleons outside the
Fermi sea, so that we may put Q= 1 in Eq. (3.2) with-
out changing the diagonal elements of G' appreciably.
The result can be corrected in a simple way. ' Approxi-
mating q (22222) by a plane wave, it is not difFicult to show
that the wave function satisfies the following partial
differential equation'.

[v'—p'(k)][p(r) —exp(ik r)]
=222*v(r)0(e r—)y(r), (4.5)

where
y'(k) =222*(a+bk')/(1+ ck') —k'.

From Eqs. (4.5), (4.9), and (4.10) the separation dis-
tance $ can be determined. In our numerical work we
have first calculated the particle energies from the
integral

Sk p'
U(k) = P (2l+1)

3g~ even l

jt2(kr)n&(r)rsdr (4.11)

and then fftted U(k) with a quadratic function of k.
The results for two values of k, namely k=1.5k+ and
k=2k' together with the separation distances for even
states $,(k) are given in Table III. From (4.2) we have

The partial-wave expansion reduces (4.5) to a set of
total differential equations:

d' (l(3+1)
+p

~
[u,(r)—rj,(kr)j

dr' E r' ) k =1.5ky

g. (F) U (MeV)
k=2kJ

$. (F) U (MeV)=222*v(r)8($—r)ui(r), (4.6) 4 (F ')

1.3
1.4
1.5
1.6

—18.3—21.7—25.5—29.2

—20.5—25.0—30.1—35.5

1.06
1.08
1.10
1.12

1.03
1.03
1.04
1.04

with boundary conditions

d(u& rj t)/dr—
ui(c) =0 and Il ~jf l —r=$

TABLE III. The separation distance and the potential energy
in the intermediate states. The symbols used are de6ned in
Eq. (4.1).

-d[rh, i'&(iver)]/dr-

rh�t'"

(iver)

where $ should be determined from the condition

22r Q (2T+1)(2J+1) r j&(kr)air ~(r)u&(r)dr=0.

calculated m* and 6 and using the results obtained in
the preceding section we have found U(k ) from (4.3)
and e~ from (4.4). The constants of Eq. (4.3) are given
in Table IV. Finally, using the factorization method"

TABLE IV. The effective mass and other constants of the
energy denominator eN PEqs. (4.2) and (4.3)j.

o (FM)(4 8) kz (F ') P2 (F ') c (F')

1.55
1.55
1.55
1.55

—0.009—0.011—0.014—0.017

1.3
1.4
1.5
1.6

2.49
3.25
4.00
4.84

0.88
1.07
1.17
1.42

0.982
0.956
0.946
0.936

The exact solution of the differential equation (4.6)
subject to the conditions (4.7) and (4.8) is difFicult,
because $ is unknown. However, we can solve the
problem approximately by taking (2 instead of ( to be
one of the boundaries of Eq. (4.6), and take ui(r)
=rji(kr) in the interval $2 to t. The result of our cal-
culation shows that at least for low densities f is close
to ge, so that this is a valid approximation. Equation
(4.8) in this case takes the form

$p

Q (2J+1)(2T+1) rj&(kr)v&r ~(r)u&(r)dr

+ rsj i2(kr)n&r ~(r)dr =0. (4.9)

The first integral in (4.9) may be written in terms of the
distortion of the wave function Xi(r)=r ji(kr) —u&(r):

(p +2+k2 Po

r j&(kr)sir ~(r)u&(r)dr= rj&(kr)X, (r)dr
no*

(4.10)+ rji(kr)—Xi(r)—Xi(r)—[rjt(kr)$
dr dr —r=)p

we have integrated (4.6), and from (4.9) and (4.10)
have found the new separation distance. With the new

( we have calculated (k~v(r)0(r $) ~k) and U fro—m
Eqs. (3.7) and (3.8). In Table V and Fig. 3 the separa-
tion distances $ for different values of kg are given. In
the same table we have given the corrections to the
6.rst-order contribution of each partial wave to the
average single-particle potential energy. In this cal-
culation the 'S~ state is again separated from the rest of
the partial waves. Hence we have given two separation
distances ((2S2) and $('Ss—'D2), but it seems that at
least for the range of the k~'s that we have considered
they are very close and there is no need for further com-
putation to obtain a single value of $ for a given
density. The corrected separation distance changes the
contributions of different partial waves to the eQ'ective

interaction. These changes are very significant in the
'E~ and 'D2 states but they have opposite signs and
partly cancel each other. The self-consistency for the
effective interaction can be verified by using the cor-
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TABLE V. The separation distance p (kz) and the correction to the single-particie potential energy (in units oi Mev).

&z (F—') g ('50—'D2) g ('S&) 'Sp 'S1 1P 3+p 3P 1D 3D2 Total

1.3
1.4
1.5
1.6

1.05
1.10
1.17
1.28

1.05
1.10
1.14
1.23

1.15
2.19
3.20
4.69

0.76
1.43
1.90
3.50

0.21
0.36
0.49
0.77

0.64 2.11
1.08 3.77
1.87 6.37
4.61 20.95

1.22
1.96
2.81
4.26

—5.21
—7.35
—9.59

—11.8

—1.1
—1.67
—2.02
—2.83

—0.43
1.78
4.86

24.1

Q(k, k')dk'
An'= ((k[s/k') ['

(2~)' e"(k,k')
(4.12)

rected P to find U(k ), e~, and/(r) and to determine P

again, which should be the same as before. As (s and $
are not very different in our calculation and as we have
not used a self-consistent particle energy U(k'), we
will not try to establish this self-consistency.

Once the corrected value of P has been found we can
use ordinary perturbation method to calculate hole
energies. The unperturbed Hamiltonian in this case
is the kinetic energy and the long-range part of the
potential e'=s(r)0(r —$)is the perturbation. Using the
Raleigh-Schrodinger expansion, the second-order cor-
rection to the contribution of the long-range potential
is ~&~

angular variables of k' ' ':
Q=0 if k"+-,'P'(kps,
Q=1 if k' ——,'P)kp,
Q=(k'P) '(k"+-'P' kp') —otherwise,

(4.15)

5. VARIATIONAL METHOD

and we also use the average of P'in (4.14), i.e.

P'=(12/5)kg'(1 —k/kg)L1+k'/3k»(2ks+k)$ (4.16)

The results of the numerical integration of (4.12) and
Kq. (4.14) are given in Table VI. Finally in

Table VII the total energy per particle as a function
of the Fermi momentum is given. Figure 4 shows the
total energy per particle as a function of kp'.

or in terms of the partial waves

(k~ae'~k)= P (2r+1)(2J+1)

This correction changes g to (g+~U, ) where

In calculating the binding energy we have made
several approximations at diferent stages of the com-

(k', P) putations, but we believe that, except for the crude

k"dk' estimate of the particle energies, the other approxima-

p k' —k" tions are justified. As an alternative way of 6nding the
binding energy we have applied Schwinger's variational
method to determine the reaction matrix. The agree-

2&(k")s(r)J&(kr)" « . (4 13) ment between the results of these two methods is very
good and indicates the validity of the approximations
made in Sec. 4. In the following calculation the hard

aU =(2k,s/3~')(k~ an'~ k) (4.14) MeV

with k=(+0.3)kz. To simplify the above integrals we
substitute Q(k', P) by its average value over the

g(F) 10

1.28

1.20

I

1.8

k =1.3

TOTAL ENERGY

F-s)

1.12

1.04

1.3
I

1.4
I

1.5
I

k (F )

I

-40
(P.E.)

FIG. 3. Variation of the 6rst-order separation distance (o and the
nuclear separation distance p with the Fermi momentum, Fn. 4. The total energy per particle is shown as a function of k v'.
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Tsjszz VI. Second-order contributions of the long-range interaction to the single-particle potential energy (in units oi MeV).

kr (F ')

1.3
1.4
1.5
1.6

1SO

—0.8—0.6—0.5—0.3

'Sl

p4—0.3—0.2—0.1

lp

—0.1—0.1—01—0.1

3Pp

—0.1—0.1—0.1—0.0

—0.3—0.3—0.2—0.1

—0.3—0.3—0.2—O.i

lD

—0.1—0.1,—0.1—0.1

—P.1—0.2—0.2—0.2

Total

2Q2—2.0—1.6—1.0

TABLE VII. The total energy per particle (MeV).

4 (P')
1.3
1.4
1.5
1.6

—13.4
1307—14.3—14.4

—7.8—8.4—8.6—8.6

1P1

4.2
5.5
6.8
8.5

—4.9—5.6—6.1—4.6

3P1

10.5
14.4
19.6
36.0

3P

—6.3
707—9.2—10.5

lD

—7.8
1102—15.0—19.2

0.6
0.8
1.1
1.5

—4.6—6.6—8.8—11.6

'D3

—0.9
102—1.5—1.8

BE/A
—8.4—8.4

7.1
9.4

f&(r) = ji(kr) —j&(kc)Gi(c,r)/Gi(c, c) . (5 6)

Now we consider two quadratic functionals of lt i,

(5 7)

2 "Q(k,k',P)
r (r)PP(kr)r'dr —— ' k"dk'

p e(k,k',P)

j&(k'r')p(r')fi(r')r'sdr' . (5.fo

The extremum of JI l(i)=PLfi7/QLpij is obtained
.

(k )+ G(,) (,)~(,) „d, (52) when lti satisfies the integral equation (5.4) and we
have extremum of

core is separated from the rest of the potential and the and
core contribution is calculated from the result given
by Bethe et a/. "Thus

I/=4 (k )(l(*'+y')+(*/8)(1—y'/ ')j (2 )
+(1+y)L1—s jp(2x) j+(1+y ')

XLrxs+rxji(2x)]}, (5.1) PCAj= I(fil~ll i)I',

where x=(+0.3)kic and y=y(k)c. awhile the form of

QB'ij=(l('ilail&&

(~il "(r)K(r)r )r(r ) lit'i&

U is identical with that obtained by the reference
spectrum, y'(k) in (5.1) has a different dependence on k
from the p'(k) given by BBP. The reason that the
hard-core contribution has the same form is that in
both cases the energy denominator e(k, k', P) is assumed
to be a quadratic function of k', and the exclusion fi(k'r)p(r)lt i(r)rsdr

operator Q is set equal to unity. C

Now we choose $= ~, then p(me) will be a plane
wave and the perturbation will consist of the complete X
(outer) potential. The two-nucleon wave function in
nuclear matter it (mrs) satisfies the integral equation

where the Green's function G&(r,r') is given by JL~ij=(filsl~i& (5.9)

Q(k'P) The quantity (f&Isla&& is the reaction matrix for the
Gl(r, r') =— ji(k'r') ji(k'r)k "dk' (5.3) outer potential and consists of two parts,

p e(k, k', P)
(fil slit i&=(jilel@&—

I ji(kc)/Gi(c c)3
At r=c, P(kr) is equal to zero. Imposing this condition X (G (, ) I ( ) I f ( )) . (5.10)
on (5.2) we find the following equation:

4 l(kr) =fi(r)+ «(r,r')e(r')A(r')r"«', (5 4)

where Ki(r, r') and f&(r) are related to G&(r, r') and j&(kr)
by

Ki(r, r') =Gi(r, r') [1/Gi(c, c) jGi(r, c—)Gi(c,r') (5.5)

The first term (j&l slpi& in Eq. (5.10) is the familiar
form of the reaction matrix for the 1th partial wave,
but the second term represents the eBect of distortion
of the wave function caused by the hard core. If we
assume that the energy denominator e(k, k', P) is a
quadratic function of k' and put P=0 and Q= 1, then
we can write

13 Equation (5.34) of Ref. 7. e(k k' P) = —(1/m*)
I
7'(k)+k") (5.11)
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MeV

modified Born approximation (MBA) of BBP, since
then from (5.13) and (5.14) we have

-56.29l

—56.3l

(fiIultf i)=
hi&'&(iver)-'

j&(kr) —j&(kc)
hi &'& (inc)

&&v(r)r'dr =MBA. (5.15)

0.2
I

0.4
I

0.6
I

X

0.8
I

The results of the calculation are given in Table VIII
for different partial waves for kp ——1.5J '. For com-
parison the values computed from (5.15) and the results
of the calculation of Brueckner and Masterson are also
given. Figure 5 shows the variation of JLg] as a func-
tion of x for the 'Sp wave.

Fio. 5. The quantity Jl &pl is plotted as a function of the vari-
ational parameter x for the 'Sp wave. The reaction matrix corre-
sponds to the minimum of JL&cj.

and substituting in (5.3) we find

G(r, r') =
—2m* " j&(k'r) j&(k'r')

k"dk'
k~s+~2

=m*p ji(iver)h &'&(iver'), r(r',
(5.12)

=nz*y j&(ivr')hit'&(iver), r) r'.

From Zqs. (5.10) and (5.12) it follows that

&f& Isla) =
h&&'&(iver)-

j&(kr) —jt(kc)
hi "&(inc)

X i&(r)P&(r)r'dr, (5.13)

TAsz,z VIII. The results of the variational calculation of the
reaction matrix (2U in units of MeV).

which is identical with Kq. (9.11) of BBP for the
contribution of the outer potential.

In the numerical computation, we have tried to find
the minimum of JI fi] using (5.7), (5.8), and (5.9). The
energy denominator in the Green's function e(k, k', P)
is given by (4.4) and Q by (4.15). The trial function
gi(r) is chosen to be

lf i(r) = ji(kr) —Lhi(ixr)/hi(ixc) 7ji(kc), (5.14)

where x is a parameter. This trial function is the exact
solution of the integral equation (5.2) if the Green's
function is assumed to be given by (5.12), with y=x.
For x=y the quantity (fiIt&I/i) is related to the

O. CONCLUSION

We have constructed an effective interaction for
nuclear matter, which is a function of the density of the
system, and in the first Born approximation gives an
accurate value of the potential energy of a nucleon in
the Fermi sea. That the contributions of higher terms
in the plane-wave expansion of the long-range wave
function p(k, r) are very small can be seen by comparing
the values given in Tables II and VI. The small dif-
ference between the wave function y and the plane
wave is a result of the exclusion principle. "The small-
ness of the second and higher order Born approxima-
tions suggests that at least for low densities the single-
particle potential energy, which, in the coordinate space
is nonlocal, can be replaced by a long-range local
potential which is a function of the density. Then
an expansion of the reaction matrix in powers of this
potential converges and saturation results from the
strong variation of the effective Hamiltonian with the
density of nuclear matter. With this method the bind-
ing energy per particle for the BGT potential is found
to be about 9 MeV, which is lower than the value of 15
MeV calculated by Moszkowski and Scott and by
Brueckner and Gammel, but it is closer to the value
of 7.5 MeV obtained recently by Coon and Dabrowski. "
The equilibrium density corresponds to k+ ——1.34 F—'
in our calculation as compared to kg=1.5 F ' of
MS and of Brueckner and Gammel. Finally, from the
result of the preceding section it is evident that for the
potentials with hard core, Schwinger's variational
method for the calculation of the reaction matrix is
accurate, even for the S-wave contribution. The energy
denominator for the first iteration of the variational
method may be calculated by Born approximation of
the long-range part or directly from the phase shifts.

State Core Variational Total ACKNOWLEDGMENTS

leap

1El
3I'p
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0.4
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