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Eigenstates of the 1=0, T =1, Charge-Indeyendent Pairing Harniltonian.
I. Seniority-Zero States*
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(Received 15 December 1965)

Exact equations for the seniority-zero states of 2N nucleons in an arbitrary external potential well and
interacting through a J=O, T=1, charge-independent pairing interaction are derived. Exact solutions of
these equations are exhibited for the ground states and some excited states of these systems. These states
are characterized by having wave functions that are totally symmetric functions of the isospins of the pairs
of particles and have total isospin T=0,2, ~, N for N even and T= 1,3, ~, N for N odd. The ground states
are included in the sets of states with T=0 or 1 and the states of the pairing Hamiltonian with a single type
of nucleon belong to the charge multiplet with T=N; The calculation of the energies and wave functions
of these states is reduced to the solution of N coupled, nonlinear, algebraic equations in N unknowns. An
exp]icit expression is given for the occupation probabilities of the levels of the single-particle well in these
states.

I. INTRODUCTION

l
'HE pairing model' is a model of the nucleus that

includes some of the correlations between nucleons
that would arise from a short-range residual nucleon-
nucleon force. In this model, the residual interaction is
approximated by a pairing force between identical
nucleons. One objection to this model is that it does not
include any neutron-proton interactions. ' That is, neu-
trons may interact with neutrons and protons may inter-
act with protons but neutrons may not interact with
protons in the model. A natural way to remove this
objection and introduce neutron-proton interactions
into the pairing model is to consider its charge-inde-
pendent generalization. In this charge-independent pair-
ing model, neutrons and protons are on an equal footing
and any two nucleons that are coupled to angular
momentum J=O and isospin T=1 interact through a
pairing force. While this model may not be a realistic
model of the nucleus, due to its neglect of any T=O
forces between nucleons, it does represent an interesting
many-body problem that is more realistic than the
pairing model and yet can still, as we shall show, be
treated exactly. In addition to this, the techniques that
we will develop in this paper to treat the relatively
simple J=O, T=1, charge-independent pairing Hamil-
tonian can, with only slight modifications, be applied
to the far more complicated I,= O, T=0, 1 charge-spin-
independent pairing Hamiltonian. ' ' Thus, the simpler
charge-independent pairing Hamiltonian provides a
useful illustration of these techniques.

There have been two approaches to the problem of
calculating the eigenstates of the charge-independent
pairing Hamiltonian. In the first approach, the methods
of group theory have been used to show that the states
of this Hamiltonian for a configuration j" may be
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classified by using the Ave-dimensional rotation group. ' '
A Ave-dimensional quasispin formalism may then be
used to treat the eigenstates of this Hamiltonian when
the interaction spans several single-particle levels. '
However, this approach does not give analytical ex-
pressions for the eigenstates and one still has to diago-
nalize the Hamiltonian matrix numerically. The second
approach to the eigenstates of this Hamiltonian has
been through generalizations of the BCS-Bogo1iubov,
Valatin formalism that include neutron-proton correla-
tions. ~ "However, the accuracy of these formalisms is
generally difficult to assess. ""

With this paper, we initiate a third approach to these
eigenstates. Our methods are closely related to those
which have been successfully used on the pairing
model. ""We will first derive a Schrodinger equation
for the seniority-zero states of the Hamiltonian. We
will then exhibit analytical expressions for certain exact
solutions of this equation. The states that we solve the
Schrodinger equation exactly for are those states whose
wave functions are totally symmetric in the isospins of
the pairs of particles. For 2.V particles, these states have
total isospin T=O, 2, , N, for g even and T=1,
3, , S, for S odd. For each value of T, the solution
of our equations yields a whole class of states whose
wave functions are totally symmetric in the isospins of
the pairs of particles and whose total isospin is the given
value of T. The number of states in each class depends
upon the single-particle spectrum. The lowest state with
T=O or 1 is the ground state and the states of the pair-

B. H. Flowers and S. Szpikowski, Proc. Phys. Soc. (London)
84, 193 (1964).' J. C. Parikh, Nucl. Phys. 63, 214 (1965).' K. T. Hecht, Phys. Rev. 139, B794 (1965).

7 M. Baranger, Phys. Rev. 122, 992 (1961).' B. Bredmond and J. G. Valatin, Nucl. Phys. 41, 640 (1963).' M. Ichimura, Progr. Theoret. Phys. (Kyoto) 31, 575 (1964)."B.H. Flowers and M. Vujicic, Nucl. Phys. 49, 586 (1963)."A. Qoswami, Nucl. Phys. 60, 228 (1964).' R. W. Richardson, Phys. Letters 14, 325 (1965)."R.W. Richardson, Phys. Rev. 141, 949 (1966).
'4R. W. Richardson and N. Sherman, Nucl. Phys. 52, 221

(1964)."R.W. Richardson, J. Math. Phys. 6, 1034 (1965).

SN



EIGENSTATES OF PAIRING HAM ILTONIAN

ing Hamiltonian with only one type of nucleon belong
to the charge multiplet with T=E. The calculation of
the wave functions and energies of these states is re-
duced to the solution of E-coupled algebraic equations
and the calculation of an eigenvector of a tridiagonal
matrix for which the eigenvalue is known explicitly. Ke
call the E unknowns the pair energies and the equations
that they satisfy are simple generalizations of the pre-
viously published" "equations for the exact eigenstates
of the pairing Hamiltonian with one type of nucleon
present. In fact, the equations that we derive here only
differ from these equations by the replacement of a
numerical factor 2 by

~= $N(N 3)+T(—T+1)j/N(N —1) .

Note that for T=lV, ~= 2 and we obtain the equations
for the states of a single type of nucleon. Once the
equations for the pair-energies have been solved, we
will show that the occupation probabilities of the levels
of the single-particle well may be obtained by the
solution of an E)&X system of linear algebraic equa-
tions. We only treat the seniority-zero states which are
totally symmetric in the isospins of the pairs in this
paper. Subsequent papers will deal with seniority-one
and seniority-two states and states of diGerent isospin
symmetry.

In Sec. II, we define our notation and discuss the
Hamiltonian together with the seniority operators and
the total isospin operator which connnute with the
Hamiltonian. Section III is devoted to the derivation
of a Schrodinger equation for the seniority-zero states
of this Hamiltonian. In order to gain some familiarity
with this equation, we discuss the special case of four
nucleons in some detail in Sec. IV. In Sec. V, the
Schrodinger equation is solved for the states with total
isospin symmetry for arbitrary LV, Finally, in Sec. VI,
we derive a simple expression for the occupation proba-
bilities of the single-particle levels of the external
potential well.

II. THE CHARGE-INDEPENDENT PAIRING
HAMILTONIAN

After defining the charge-independent pairing Hamil-
tonian, we will discuss the seniority operators which
commute with it and indicate their interpretation. Iso-
spin operators, which are useful in writing down the
commutation rules of the various operators that appear
in the Hamiltonian, are then defined. And, the section
closes with a listing of those commutation rules that
will be needed in the sections to follow.

In order to write down the charge-independent pair-
ing Hamiltonian, we first assume that the nucleons are
contained in a potential well. Throughout this work,
this potential well will remain arbitrary. To emphasize
this arbitrariness, we choose the uncorrnnitted symbol

f to label the levels of this well apart from their assumed
time reversal and charge degeneracy. That is, a complete

set of single-particle quantum numbers is denoted by
(f,o,q), where 0 =~ indicates states that are conjugate
with respect to time reversal and q= p or e for proton
or neutron. For example, for the spherical shell model,
f=(e,l,j, ~m~), O. =m/~m~, and q=p or e T.he Hamil-
tonian for a system of noninteracting nucleons in this
potential well is then, in second quantized form,

E=Qy 2'sly, (2.1)

where the energy of level f of the potential well has
been denoted by e~ and where

with
Nr ——Ng„+Ng„,

Nr a
= k (~f+et~f+e+ ~f at~f c)—~—

(2.2)

(2.3)

and where ay, t and a~, are nucleon creation and
annihilation operators satisfying the usual Fermi anti-
commutation rules

L+f~m~f'~'e' j+ off'b«'bee' ~ (2.4)

Throughout this work, we will choose the phases of our
single-particle states so as to eliminate the ubiquitous
phase factor (—)' that appears in many pairing-model
calculations. ' ' Thus, the states (f, &, q) are the time-
reversed images of the states (f, W, q).

The charge-independent pairing Hamiltonian is ob-
tained by adding to E the interaction operator —gV,
where

Z 4~'4 ~,
g P + ffl

(2.5)

(2.6)

"f="fn+"f~ ~ (2.8)

The operators b~tt are given by the Hermitian conju-
gates of (2.6). Note that b~, t creates a pair of nucleons
in the level f of the potential well with total isospin
T= 1 and s component of the isospin To t. (We use &-—
to denote t= +1.) Also note that we have not carried
out the usual angular-momentum coupling to J=O in
our pair operators (2.6). We reserve this coupling until
last and it is accomplished by sums over f such as those
that appear in (2.5). Finally, it should be pointed out
that the sums on f in (2.5) are over a finite range of
values of f and that the specification of this range is
part of the definition of V. In what follows, all sums on

f will be restricted to this range since those particles
that occupy levels outside this range are notinteracting
and therefore not interesting. Thus, the charge-inde-
pendent pairing Hamiltonian is given by

(2 7)

where E is given by (2.1) and V by (2.5) and all sums
on f are over a specified finite set of values.

The set of seniority operators dered by
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where
~fe= ~f+e +f+a ~f—a ~f'—a (2.9)

conunute with the Hamiltonian (2.7) and therefore
represent constants of the motion. The eigenvalues of

pf are 0, &j., and ~2. The interpretation of these eigen-
values is given in Table I in terms of the allowable

TABLE I.The allowable occupations of the level f as determined
by the value of I f. Each bracket contains an allowable set of values
of o-q that must be occupied to be consistent with the given value
of vf. The symbol (—) represents the level f being unoccupied.

Vj

2
1
0

—1
—2

Allowable occupations

(+p, +a)
(+p), (+a), (+p, +~, —~), (+p, —p, +I)
(—) (+p p), (+I—, —I), (+p, —a),

( p+I)(—+p p, +I, ——~)
(—p), (—I), ( p, y~, ——I), (+p, —p, —I)
(—p, —a)

occupations of the fourfold degenerate (two values of
o. and two values of q) level labeled f.The total seniority
of a state is defined by

v=Zfl vfl (2 1o)

2 f+= rtf+vt~f+ p+ rtf r&f »— —

Tf—=~f+ ~f+~~af—~ ~f—~ (2.11)

and

Tfo=rf —Ã

The total isotopic-spin operator is

T=Zf Tf (2.12)

As a result of the charge independence and charge con-
servation of the Hamiltonian, I' and Tp commute with
it and therefore represent constants of the motion.

The states that we shall treat in this paper have ~=0
and therefore vf =0 for all f The all.owable occupations
of the single-particle levels can be read on the corre-
sponding line in Table I.

We define the isotopic-spin operator for the level f,
Tf as the operator whose coinponents are

In the next section, we will need certain commutators
of the E's, b's, and T's. These may be calculated from
the definitions (2.2), (2.6}, and (2.11} and the anti-
commutation relations (2.4). Those commutators that
are necessary for the calculation of the seniority-zero
states are listed in Table II.

This completes the specification of the Hamiltonian
and the operators which make it up. Ke now turn to
the calculations of the seniority-zero eigenstates of this
Hamiltonian.

III. EQUATION FOR THE SENIORITY-ZERO
EIGEN STATES

For the seniority-zero states of the charge-independ-
ent pairing Hamiltonian, the allowable occupations of
the single-particle levels may be read oG the s f——0 line
of Table I. In addition to these restrictions, there is a
restriction due to the fact that all pairs are eventually
coupled to J=O and therefore T=i. Thus, only the
T= j. component of the two possible occupations with
one neutron and one proton is needed. A complete set
of 2E-particle seniority-zero states is therefore given by

(3 1)

where I0) is the vacuum state of our specified set of
single-particle levels. We may now expand an arbitrary
2S-particle seniority-zero state in the set of states
(3.1), i.e.,

4'(fit t far@)bf, p, t b.~&„t
I 0), (3.2)

fI&I- ~ fN&y

where the wave function f(fttt f~trf) must be a
totally symmetric function of the variables f;t,, i.e., it
must be syinrnetric under the interchanges f;t;+~ f;t, .
In this section we will develop an equation for the wave
function ip(fttt frrtrf) which, when satisfied, will make
the state IP& an eigenstate of the Hamiltonian (2.7).

The wave function lb(fttt .f~trf) is to be determined
so that the state lib) satisfies the Schrodinger equation

(3.3)

We therefore consider the eGect of H on the state
(3.2), i.e.,

TABLE II. The commutators )A,Bj.All operators are implicitly H
I f&=

labeled by the quantum numbers f. All commutators of operators fI tI ~ .f~ tÃ
labeled with diferent values of f vanish.

&(fit t f~trv)& II f'f.~p'I o&

&+
&0
b
N„
N

T+
T0
T

b+t

1—2N„—(1/v2) T+
0

5+(
b+t
0
0

b+t
V2bpt

bp"t

—(1/v2) T
1—N—(1/~2T+
pbpt
bpt

1$ f
v2b+t

0
vZb )

0—(1/v2) 2"

1—2N„
0

b t
b t

%2bp—b
0

fI4 "fate
&(f t f t )(Z(II b"")L&A; tj

i=1 %+I

+'&'(lI bf. ")fL-&,bf;~ 3Pf;~tj}lo&, (3.4)
i,j=l I&j,j

where here and elsewhere the prime on the sum on i and

j excludes the values i= j. This last expression results
from some commutator algebra and the fact that the
triple commutator of II with three bt's vanishes. %e are
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++
+0
+
0+
00
0—
—+—0

TAr)LE III. The matrix C(t)t) , t)''t)').

++ +0 +—0+ 00 0— —+ —0

and

[H,bf-'3=2 fbf-"—g &f L
—(1/~)bf '2'f-

+bf t(1 21—Vf„)j.
These expressions simplify greatly when they are
applied to the vacuum as in (3.4). We then have

[H)bf)t J l
0)= (2efbftt g—pf bf )t)

l 0). (3.6)

The double commutator of H with two b~'s can be
evaluated using (3.5) and Table II. We write these
double commutators as

thus led to the consideration of the single and double
commutators of B with one and two b~'s.

The commutators of H with the b~'s can be evaluated
using (2.7) for H and the commutators listed in Table
II. The results are

I[»bf) '3bf ) ')
=g f)f2 Q C(tr4;tl't2')g bf;, tbf2);t. (3.7)

The matrix C(tlt2, tl't2'), which is defined by (3.7), is
given in Table III. We note in passing that C has the
synonetries

[H)bf+t) =2efbf+t gQ p [—bppt(1 2N fy)—
(1/~~—)bf o'2'f+ j,

[H,bfetf=2efbfet —
g pf [—(1/v2)bf. ~tTf

+bf o'(1 &f)—(1/—~~)bf '7'f+j-
C(t14) tl t2 )=C(4tl) tl 4 ) =C(t14) 4 tl ) =C(tltl) 4 tl )
and

C(tlt2) tl t2 )=C(tl t2 ) tlt2) .
If we substitute (3.6) and (3.7) into (3.4) and relabel

(3.5) some of the summation indices, we obtain

fltl 'fNtN
[(2ef,+ +2ef)r)p(fltr fNt g) gQ Q p—(frtl f; lt; 1)ft;)f +it +1. fgtN)

g N

+ P' P C-(t;t;", t t )4(f,t," f,t; „f,t,f;„t;„"f,,t;,f;t,",f;„I;„"f t )jIIb,„„lo&. (3.g)
2 i q-1 t t

This leads to the equation

N

(2ef1+ ' ' '+2e fN
—&)it (fltl &tz) gp p 4 (—fltl ~ ft; fztg)

g
+ Q' Q C(t-;t;; t t )ft(f t l1 f;t)' f;t f~ttf)=0 (3.9)

for the wave function P. The reader who is familiar
with the work on the exact eigenstates of the pairing
Hamiltonian with one type of nucleon given in Refs. 14
and 15 will recognize that Eq. (3.9) is the same equation
as is given there when t1= f2= . = tN= ~. It should be
pointed out that (3.9) is more than just the Schrodinger
eigenvalue problem. It is the Schrodinger eigenvalue
problem plus a de6nition of certain unphysical compo-
nents of f which violate the Pauli principle. This
deinition is introduced when we ignore the fact that
the state

II bf2)2" I0&
@=1

may be zero for some values of fltl ~ fNtz.

Equation (3.9) is an equation for all the seniority-zero
states of 2S nucleons which are interacting through
charge-independent pairing forces. In the next section,
we will discuss the solutions of (3.9) for iV=2 in some
detail. This material is meant as an introduction to
Sec. V, where we exhibit some solutions of (3.9) for
arbitrary X.

IV. SEMORITY-ZERO STATES OF
FOUR NUCLEON'S

We will now solve Eq. (3.9) for the seniority-zero,
T=O, 1 and 2 states of four nucleons. We treat this
simplest nontrivial example of Eq. (3.9) in some detail
as an introduction to the structure of this equation.
We will only treat the To= 0 states since the states with
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other values of To can be obtained by applying the
isospin raising or lowering operators T+ or T to these
To= 0 states.

Equation (3.9), for 1V= 2, is

(20fi+20f.—E)f(f~t~)fptp)

—g p (p(f4, fptp)+f(fg4) ftp) 7+-,'g p C(t,t, ; t~'t, ')
~~f g~l

&&L&(f~t~')f~tp')+&(fp«'~ fptp')7=o.

Since we are considering those states with Tp ti+ tp
————0,

there are only three allowable values of (tztp), i.e.,
t~tp

——+—,—+, or 00. Using the values of the matrix C
given in Table III, we obtain from (4.1) the three
coupled equations

(20g+200 —E)P(1+) 2—)
—

g Zf L&(f+, 2—)+&(1+,f—)7
+-;gt lt(10, 10)+P(20,20)7=o,

(2pi+200 E)P—(1 &2+—)
graf L~—(f , 2+)+~—(1 , f+)7-

+-,'g Litt (10,10)+ f(20,20)7 =0,

(2py+ 2&0 E)P(M,20) gQ—f Lf(f0,20)+P(10,fo) 7
+-,'gL~(1+, 1-)+~(1-,1+)+~(10,10)
+f(2+, 2—)+g (2+, 2+)+P(20,20)7=0, (4.2)

where we have denoted f& and f2 by 1 and 2. Let us
introduce the functions

1/g=Pf 1/(20f —E;), i=1, 2 (4.6)

EQWE$7 ~

This last requirement is necessary for a nonzero anti-
symmetric state. It is readily verified that these states
have total isospin T=1.

The charge-symmetric states are the most interesting
states and the calculation of these states introduces the
methods that we will use to calculate the isospin-
symmetric states of 2A nucleons in the next section.
These states are characterized by $0WO, p&WO, and
P&=0, where $0 and iit& are to be determined by Eqs.
(4.4a) and (4.4b). Let us look for solutions of (4.4a)
and (4.4b) of the form

leap(12) =npf(12) ) $0(12)=nptP(12) (4.8)

where np, ap, and the symmetric function P are to be
determined. Compatability of Eqs. (4.4a), (4.4b), and
(4.8) leads to the eigenvalue problem

(1—p')np+np= 0, 2np tcnp= 0—
for ap and np. The remaining equation for P is

(4.9)

fi is an antisymmetric solution of Eq. (4.4c). It is
easily verified that the unnormalized solutions are

E=E~+Ep

|t&(fif0) =&(20f,—K)-'(20f, —Ep)-', (4 5)

where 3 is an antisymmetrizer operating on 1 and 2,
and E& and E2 satisfy

and

f (12)=f(10,20),

fg(12) = |t(1+, 2—)—f(1—,2+) )

(20g+200 —E)p(12)—g Qf ($(f2)+f(1f)7
+l~gLW(11)+f(22)7=o (4 1o)

A(12) =4'(1+ 2 )+0(1 2+). (4 3)

We can obtain equations for these new functions by
taking linear combinations of Eqs. (4.2). These equa-
tions are

(201+200—E)40(12)—g zf LA(f2)+A(1f)7
+pgLtpp(11)+g'0(11)+itt'p(22)+pp(22)7= 0

(20g+200 —E)i' 0(12)—g Zf Lpp(f2)+f0(if)7
+gl 40(11)+00(22)7=o, (4 4b)

(4.4a)

(20g+ 200—E)fg(12)—g Qf pfi(f2)+i/i(1f)7=0. (4.4c)

The solution of these equations splits into two cases.
In the erst case $0=$0——0 and QiWO and in the second
case igp/0, i/0/0, and ifq=o. This separation is just the
separation into those states that are charge-antisym-
metric and charge-symmetric, respectively. Since the
wave function must be symmetric in the variables f;t;,
charge antisymmetry (symmetry) implies antisymmetry
(syrrunetry) with respect to the variables f&f&.

The charge antisymmetric states are the simplest
solutions of Eqs. (4.4). For these states, pp=ipp ——0 and

and
K=2) QO=Q2) T=2)

(4.11)

where we have indicated the corresponding value of the
total isospin of the state T. Equation (4.10) may be
solved using the same techniques that were used to treat
pairing forces between identical nucleons" "and which
we reproduce in Appendix I. The results are

E=Ei+Ep
p(f,f,)=S(20f, E,) '(26fp —E,) —', (4.12)

where 5 is a symmetrizer operating on 1 and 2, and
where E& and E2 satisfy

1lg+ l(E.-E.)=Z. 1/(2 f-E.)
1/g+a/(Ei —Ep) =Qf 1/(20f —E,) (4.13)

I

We therefore have two eigenvalue problems to solve. One
for the eigenvector 0, and its associated eigenvalue K and
one for the function P and its associated eigenvalue E.
Note that the coupling between these two problems is
only through the presence of ii in the equation for p.

The solutions of (4.9) are

K= 1 ) Go= 2&2) T=O
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and
(4.14)

one number which we choose to be

Thus, the T=O and 2 states may be calculated by
solving (4.13) using the values of ~ given in (4.11).

In calculating the above eigenstates, we have 6rst
calculated the eigenstate of H and then verified that
it is a state with good isospin. For the states that we are
calculating, this procedure is simpler than the more
natural approach of constructing states of a given iso-
spin and then diagonalizing the Hamiltonian within the
subspace of these states. In the next section, we will
construct the states of 2S nucleons whose wave func-
tions are totally symmetric in the variables tl
Our results will be a natural generalization of Eqs.
(4.8)-(4.14).

V. ISOSPIN-SYMMETRIC SENIORITY-ZERO
STATES OF 2N NUCLEONS

We will now generalize the results of Sec. IV and
obtain expressions for the isospin symmetric seniority-
zero eigenstates of 2X nucleons. For simplicity, we will

first treat the cases with S even and then we will

indicate the necessary modi6cation for those cases with
S odd. As in Sec. IV, we will lose no generality by
treating only those states for which Tp=0.

The wave functions of the isospin-symmetric states
are totally symmetric functions of the variables tl .tN.

However, since each of these variables must take on one
of the three possible values 0 or ~, the wave function
can only depend on e~, the number of the ti that equal

~, and ep, the number of the ti that equal zero. How-

ever, these numbers are restricted by the facts that the
total number of variables is E, i.e.,

I++@ +iio=N

and the total z component of the isospin is Tp, i.e.,

's+ s Tp p

Therefore, having specified E and Tp, the isospin de-

pendence of the wave function is determined by only

I++a =+It;I. (5.1)

Following the example of Sec. IV, we look for solutions
of Eq. (3.9) which are of the form

N N

P(fiti fgt~)=8(P t;,0)n(g lt;I)it'(fi f~), (5.2)

where 5 is a Kronecker delta which insures that
N

&0=2 t;=o

where m =0, 2, , N (recall that N has been assumed
even). In order to do this summation, we need the
combinatorial result

N

S(P lt;I,m)S(g t;,7',)
tI "tN i=l i=1

=N!/t(N —m)!(-,'m+-', r,)!(-,'m ——,'T'.)!7. (S.4)

~e now multiply Eq. (3.9) by 8(P It; l,m)8(g t&,0) and
sum on ti . t~. Usin.g the assumed form of f, (5.2), the
first two terms of (3.9) have a common factor of

s(plt;I, m)s(p t;,0)n(plt, l)
tI ~ ~ ~ tN

n(m), (5.5)
(N —m)!t (-',m)!7'

where we have used (5.3). For the last term of (3.9),
we need, for example, for i = 1 and j=2

and n and f are to be determined from Eq. (3.9). Note
that!t must be a totally symmetric function of its
arguments.

We may project the equations for the isospin sym-
metric states out of Eqs. (3.9) by summing these equa-
tions on tl tN subject to the conditions

N N

p t,=o, plt;l=m,

s(pit;I, m)s(g t;,o) p c(titm, ti't )~(2Z It'I+ lti'I+ its'I —ltil —Ital)

(N —2)!
{-,'m'n(m —2)+LN(N —1)+(2N —1)m—2m'7n(m)+2(N —m)(N —m —1)a(m+2) ), (5.6)

(N —m)!I
(-', m)!7'

where we have used Table III for the matrix C to perform the sums on ti, t2, ti', and ti' and (5.4) to perform the
sums on ta ~ tN. Collecting these results, we have from (3.9)

(N —2)! N

(N(N —1)~(m)l (2~t,+ +2~fN +)$(fl 'far) gp'2 f(fi f—; iff~i f&)7
(N —m)!I

(-i2m)!7'
i=1 f

+-', g $', m'n(m 2-)+$N(N— 1)+(2N —1)m 2m—'7n(m—)+2(N m) (N—m——1)n(m+2) 7
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—g & &&(f~" f' ~ff+-~ f~")

for the function f from Eq. (5.7). Equation (5.9) can
be solved by the methods of Ref. 14which are reproduced
in Appendix I. The result is that the energy is given by

N

(5.10)

and the wave function f is given by

f(f" f )=~II(2;—E') ' (5.11)

where S is a symmetrizer and the pair energies E;
satisfy the coupled system of equations

1/g+x Z ' 1/(E E') =Ex 1/(2p/ ——E'),
i = 1 ~ N, (5.12)

subject to the conditions

E;QE;, all iQ j. (5.13)

For simplicity, all of the above has been derived
under the assumption that N is even. The only modifi-
cation needed to include the case of E odd is to change
the upper bound of m from X to X—1.Thus, for N odd,
m=0 2 - ~ N —1.) ) 7

Thus far, we have reduced the problem to calculating
the isospin-symmetric states to the diagonalization of a
tridiagonal matrix (5.5) and the solution of the system
of coupled nonlinear algebraic equations (5.12).We can,
however, proceed somewhat further and derive an
explicit expression for the eigenvalue a. This expression
proceeds from the observation that the eigenvalue
problem (5.8) must be related to the problem of calcu-
lating isospin eigenstates. We should therefore be able
to give an explicit expression for ~ in terms of T, the
total isospin of the state. This may be done by a direct
calculation of the isospin-s~nmetric eigenstates of T'
We do this in Appendix II, where we also verify that our
states are isospin eigenstates. However, an expression
for z is most easily derived by comparing the strong

for m=0, 2, , N. The compatability of Eqs. (5.7)
leads to the eigenvalue problem

xpmPa(m —2)+ t N(N —1)+(2N —1)m —2m2]n(m)

+2(N m—)(N —m —1)n(m+2) =N(N —1)en(nt) (5.8)

for a(m) and its corresponding eigenvalue which, for
convenience, we have denoted by N(N —1)a. When (5.8)
is satisfied, we obtain the equation

(2pfx+ "+2pr~ E)4—(f~ fN)

coupling limit of Eqs. (5.12) with the known results
for a single j shell. ' ' In the strong-coupling limit, the
energies of the isospin-symmetric states must go over
to the energies of the states of a single j shell since it is
these states that survive the strong coupling limit. The
energies of the seniority-zero states of 2N nucleons in a
single j shell of pair degeneracy Q, i.e., Q=gr&, are
given by' 5

E/g =—NQ+ ,'N(N —-3)+,'T(T+-1) . (5.14)

We obtained the strong coupling limit of Eq. (5.12) by
setting ay=0, i.e.,

1/g+. Z 1/(E;—E;)=Q/( —E;), i=1 "N. (5.15)

Multiplying (5.15) by E; and summing on i, we get

E/g =—cVQ+xN(N —1)/2. (5.16)

Comparing (5.14) and (5.16) we then obtain

~= PV(N —3)+T(T+1)]/N(N —1), (5.17)

which exhibits the explicit dependence of ~ on X and T.
It is readily verified (see Appendix II) that (5.1/) is the
eigenvalue of (5.8) for states of natural isospin, i.e., even
Ã and T or odd N and T.

The effect of the conditions (5.13) on the solution of
Eqs. (5.12) can be investigated using the methods of
Ref. 15. The results of this investigation are that when
E of the pair energies are equal and violate the condi-
tions (5.13), then the following conditions must be
satisffed: (1)The value of the E equal pair energies must
be equal to one of the values of 2&~ which appears on
the right-hand side of (5.12). We will call this value 2 pp.

(2) The pair degeneracy Qp of the level whose energy is
pp must satisfy 2Qp ——a(E —1). (3) When the Grst two
conditions are satisfied, the interaction strength must
still satisfy a Eth degree algebraic equation. Condition
(1) insures that the poles on the left-hand side of Eq.
(5.12) are located at the same places as those on the
right-hand side, and condition (2) insures that the
residues at these poles are the same. Condition (3) is
essentially the vanishing of a determinant which then
allows for nonzero solutions of Eqs. (5.12). Thus, the
conditions (5.13) are automatically satisfied except
possibly for some isolated values of g. It should be noted
that condition (2) is quite restrictive since, for most
values of I~:, there is no value of E such that X is less
than or equal to N and ~(E—1) is an even integer. For
these values of ~, the conditions (5.13) are satisffed for
all values of g and all single-particle spectra.

To summarize, we have the To= 0, isospin-symmetric
states of 2X nucleons given by

4'(f~4 'fN~~)ffx&tt 'ffz&xt~0)~ (32)
fltl' ' 'fNtN

where

+(&~~~" f~/~)=~(~~'0)~(~I~'l)f(fi" fN). (5.2)
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2 m'n(m —2)+ I N(N —1)+(2N —1)m —2m'50. (m)

+2(N—m)(N —m—1)n(m+2) =N(N —1)~n(m), (s.g)

where

VI. OCCUPATION PROBABILITIES

In Ref. 15, algebraic methods were developed for
calculating the expectation values of operators in the
eigenstates of the pairing Hamiltonian with identical
nucleons. We will not develop similar methods for the
states of the charge-invariant pairing Hamiltonian here.
However, we will give a short derivation of an expression
for the occupation probabilities of the single-particle
levels.

Since our states have TO=0 and are isospin-sym-
metric, we have

~= tN(N —3)+r(r+1)5/N(N —1). (5.17)

The isospin-independent part of the wave function P is
given (up to a normalization constant) by

4(f~" f.)=~ II(2~~;—E') ',
i=1

(5.11)

where S is a symmetrizer and the pair energies E; satisfy

1/g+~ zi 1/(Ei E&) zf 1/(2~r E&) i

i= 1 N (5.12) (kl Nf. l
&&=8 I N~-I&&= lQ I Nfl&&.

We also note that we can write symbolically

Nr —', (BII/Be—r)—.

(6.1)

subject to the conditions

(5.13)EWE;, for iW j
which are always satisded except possibly on a discrete We therefore have
set of values of g. The energies of these states are just
the sum of the pair energies (4INrlk&=49 I»/B~fl4&

= l(B/B~~) 9 I &I%&N

E=Q E,. (s.10)

The isospin-dependent part of the wave function n(m) energies then come from the possible ways that these
satisfies proton and neutron pairs may be placed in the levels

of the potential.

The total isospin T takes on all even (odd) values less
than or equal to N for N even (odd).

The specidcation of which state one is solving for
when one solves Eqs. (5.12) may be done by giving the
g=0 limits of the pair-energies. This method has proven
to be practical'~ in the numerical solution of (5.12) for
sr=2 and it should be practical for other values of a.
However, one must be care ful to specify these limits in
such a way that they are consistent with the character
of the isospin state. For example, consider the lowest
states of a given isospin of 8 nucleons in a one-dimen-
sional harmonic well for which e„=n, m=1 ~ 0 and
0„=1.This potential is similar to that of the Nilsson
model. The g= 0 limits of the pair-energies for the lowest
states of a given isospin are given in Table IV. These

= k Z(BE'/B&f) (6.2)

where, since If& is an eigenstate of H, we can take the
derivative outside the brackets and we have used (5.10)
for the energy. We can now differentiate Eqs. (5.12)
with respect to ~~ and obtain a linear set of equations
for BE;/Bey Solving .these equations, substituting the
results into (6.2), and rearranging the terms, we obtain

(6.3)

where the a; satisfy the linear system of equations

N

LC;—z Q'(E; E~) '5a,+~ Q'—(E; E;) 2a;=1, —

TAmz IV. The g=o limits of the pair energies E; for the
lowest states of a given isospin for 4 pairs in a system with with
c =m, 0=1 0

i= 1, ,N, (6.4)

C'= Zr 1/(2~i E')'—(6.s)

Once Eqs. (5.12) are solved for the pair-energies, then
Eqs. (6.4) can be solved for a,;. The occupation proba-
bilities (6.1) and (6.3) can then be easily calculated.

limits may be deduced by looking at what occupations are.
consistent with the Pauli principle for the state To= T.
This state has ~~(N+T) proton pairs and 2(N T)—
neutron pairs. The allowable g=0 limits of the pair
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APPENDIX I: SOLUTION OF EQ. (5.9)

For the sake of completeness, we sketch here the
solution of Eq. (5.9) as given in Ref. 14. For 1''=2,
Eq. (5.9) reduces to Eq. (4.10) and therefore its solution
is included in this Appendix.

If we substitute (5.11) into the three terms of (5.9),
then we obtain

(2~fi+ ' ' '+2~far E)&—(f~ f~)

where we have used a partial-fraction expansion (under
the assumption that E;WE,) of the erst factor in (I.3).
Substituting these expressions into (5.9), we get

5 Q L1—g Q 1/(2ef E;—)+~g Q' 1/(E;—E,)$

&&II(2 .—E) '=o
k&i

which then leads to Eqs. (5.12).

=5'Z II(2 .—E.) ', (11)
i=1 kQi

Z Z|t(f~ "f' ~ff'+~"-&)
i=1 f

and
i=1 f

=5'Z'(2 f;—E') '(2 f;—Ef) ' II (2 f.—E ) '
k&i, j

]I e ~ .gN

b(E «, 0)~(ZI«, l)b„t. "b,„t~o), (II.1)

where 8 is a Kronecker delta, n is to be determined, and
we have suppressed the variables f~ f~. Since To=0,
we have

APPENDIX II: ISOSPIN EIGENSTATES

In this Appendix we will show that out states are
eigenstates of T' and give an alternative derivation of
the value of a.

We consider a state
~
T) which is an isospin-symmetric

eigenstate of T' and To with eigenvalues T(T+1) and
zero respectively. We have shown in Sec. V that this
state must have the form

II(2~f.—E~) ',
ij g. g kWi

(I.3)
and then

T'~ T)= T+T
~
T)

T'~T)= P b(Pt;, 0) (P~t, ~)T„T IIb,„t(0)
&I' ' '&N

&(2 t;,0) (Z l«, l)(Z(II b,t)]T LT,b,tj]+ P ( II b„t)LT„b„.tjLT,b,,~j) ~0). (II.2)
SI ~ ~ ~ SN i=1 k&1 i,j=l kQi, j

In order to write the commutators in (II.2), let us de6ne C+ by

LT~,b(t$=42 Pp C~(t, t')b;t,

then, using Table Il, we have

C+(t,«') = ~(«,O) ~(t', +)+b(t, —)b(t', 0) C (t, t') = b(t, +)b(t', 0)+b(«,0)b(t', —).
Substituting (II.3) and (II.4) into (II.2) and relabelling some of the summation indices, we have

(II.3)

(II.4)

T
~

T)=2 P b(P t;,0){P(S(t;,0)+ S(t;, +))n(El«~I)+ &' L(S(t;, +)S(«,,0)+ b(«, ,0)S(tf, —))u(P (t, [)

+b(t' +)~«f —)~(& It~( —2)+S(t;,0)b(tf 0)~(& It'I+2) j]II b~. Io). (II 5)

The sums on i and j may be performed using

Q;b(t;,0)=1V—e Q;8(t;, +)=e/2,
where

m=g(t;f.
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With these results, the isospin eigenvalue problem is

—,
' m'n(m —2)+L2X+(2Ã—1)m —2m'5n(m)+2(X —m)(N —m —1)n(m+2) = T(T+1)n(m) . (II.6)

If we now add iV(Ã —3)n(m) to both sides of (II.6), then we obtain Eq. (5.8) with ~ given by (5.17). Thus we
have proven that the states (5.2) are isospin eigenstates and we have given an alternative derivation of
the value of lc (5.17).
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The eGective interaction in nuclear matter is de6ned as the long-range part of the two-body potential,
which, in the Born approximation, gives the single-particle potential energy for the average momen-
tum in the Fermi sea. For the Brueckner-Gammel-Thaler potential the effective interaction has been calcu-
lated, Grst for the free-particle propagator and then for the nuclear spectrum. The result shows that in the
erst case the separation distance go is constant over a wide range of densities and does not lead to saturation.
The nuclear separation distance k(kr) changes quite rapidly with the Fermi momentum ko; for low densities
it is very close to (0, while for higher densities it becomes very much larger. At the density corresponding to
ko=1.5 F ', the long-range potential starts at k=1.16 F, and the rate of change of g with kr is (dP/dko)
=0.8 F2. The minimum of the total energy per particle occurs at k+=1.35 F ~ and is about —9 Mev'.
For hz=1.5 F ' the contributions of diferent partial waves are also calculated by a variational technique,
and the results have been compared with previous calculations.

1. INTRODUCTIOÃ

'NUCLEON-nucleon scattering at high energies sug-
gests that nuclear forces become strongly repul-

sive at small distances. If these forces bind a system of
many nucleons together, then at least for low densities,
the interaction on the average must be attractive, and
the effect of the repulsive part cancels only part of the
effect of the attractive potential. Therefore it is possible
to 6nd an effective interaction which depends on the
density and represents the remaining part of the
attractive force.

Moszkowski and Scott' originally introduced the idea
of separating the interaction in the two-body I, matrix
in such a way that the short-range part contributes
nothing to the phase shift in each partial wave. Then
the effective interaction, to the first order, is the Born
approximation of the long-range part. Here we introduce
an average separation distance for all of the states in
the Fermi sea by the requirement that the expectation
value of the short-range part of the many-body Hamil-
tonian should vanish. The long-range part which is the
effective Hamiltonian will depend on the Fermi momen-
tum (or density) of the system of nucleons. Thus the
eGect of the short-range part of the interaction may be
replaced by a separation distance $(ke) and other
physical quantities of interest, like the rearrangement

' S. A. Moszkowski and B. L. Scott, Ann. Phys. (N. Y.) 11, 65
(1960), hereafter referred to as MS.

energy and the compressibility, can be expressed in
terms of the long-range interaction f(k~) and its
derivatives with respect to k~.' From the de6nition
of $(ks) it is clear that its functional form depends on
the shape and the strength of the short-range interaction
and for diff erent potentials it takes different forms. Here
it is assumed that the two-nucleon interaction is given
by the Brueckner-Gammel-Thaler (BGT) potential. '
This potential is preferred over the semiphenomeno-
logical potentials of Breit4 and Hamada and Johnson'
for two reasons: (a) The BGT potential has a simple
analytic form and (b) there are at least three other in-
dependent calculations of the binding energy of nuclear
matter with this potential. It is therefore possible to
compare our calculations with the results of other
calculations.

Since the exact solution of the reaction matrix is
quite complicated we calculate the separation distance
by iteration. In Sec. 2 we find the integral equation for
the reaction matrix and the condition that the solution
of this equation must satisfy in order that the energy
shift due to the perturbation be zero. In Sec. 3 we solve
the reaction matrix by neglecting the exclusion principle
and using the free-particle propagator e". We And that

' M. Razavy and S. J. Stack, Can. J. Phys. 45, 605 (1965).
~ K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023

(1958).
K.E.Lassila, M. H. Hull, Jr., H. M, Rupple, F.A. McDonald,

and G. Breit, Phys. Rev. 126, 881 (1962).' T. Hamada and I. D. Johnson, Nucl. Phys. 34, 383 (1962).


