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Inelastic Scattering Based on a Microscopic Description of Nuclei*
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The inelastic scattering of nucleons and light nuclides from nuclei is formulated in terms of a general
central two-body interaction between the scattered particle and the nucleons of the nucleus, whose motions
are described by detailed shell-model wave functions. Form factors based on this microscopic description are
obtained as closed expressions. The theory is applied to proton scattering from the even nickel isotopes. The
constructive coherence in the transition to the collective 2+ state leads to a form factor having the general
shape of that used in the macroscopic description of collective motion. Unenhanced transitions, in contrast,
are characterized by a variety not present in the macroscopic description. Nucleon scattering as here cal-
culated is sensitive to the details constituting this variety, and therefore provides a means of subjecting
microscopic descriptions of nuclei to detailed tests.

1. INTRODUCTION

HE importance of inelastic scattering as a means
of investigating nuclear structure was recognized

long ago, and the theory for single-nucleon transitions
between shell-model states has been developed. ' ' How-
ever, the important experimental discovery by Cohen
and Rubin' that the same states that are strongly
coupled to the ground state by the electromagnetic field
are also strongly excited by inelastic scattering has
focused the attention of both experimentalists and
theorists on collective states. Until recently the only
way of handling such states was through recourse to the
Bohr-Mottelson macroscopic description of collective
motion. In this picture, the incident particle interacts
with the nucleus in its surface region, exciting the
vibrations or rotations as the case may be through a
one-body deformed optical potential. ' The spherical
part is fixed by elastic scattering. Each multipole of the
deformed part is specified by one (deformation) parame-
ter, Pq, of which there is experimental evidence for
quadrupole and octupole parts. These two parameters
can be determined from the cross sections to the collec-
tive 2~+ and 3~ states. Cross sections to all other states
based on these multipoles is now fixed. The information
about nuclear levels that can be gained from such a
treatment is meager. It includes the deformation
parameter and in some odd nuclei, the parities and spins
of those levels connected with the "one-phonon" states
of the core. In even nuclei the collective 2+ and 3
states are often already known, but one can usually
identify in addition the spins of several higher states
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by alpha scattering, especially if observations at
several bombarding energies are made. The present
state of this approach has been reviewed recently by
Harvey. ' To deal successfully with the so-called two-
phonon states it has always been found necessary so far
as we know, to introduce greater arbitrariness into the
coupling strengths than the model allows. Buck, ' in
treating the 41+ state of Ni58, had to enhance the direct
coupling by a factor j..5. Dickens et al.~ in treating the
11-MeV proton scattering on Ni"" were obliged to
take different quadrupole deformation parameters p for
each of the 21+, 02+, 22+ levels instead of a common
value. Even with its shortcomings however, the
macroscopic model has been fruitful, and since detailed
structure calculations in the transition and deformed
regions will not be forthcoming for some time, it will

continue to be useful.
Fortunately there has been some progress during the

last few years in describing even fairly complex nuclei
in the vibrational regions, in terms of the underlying
nucleon correlations, starting from a Hamiltonian for
a system of fermions interacting in some average field. '
Much of this activity centers around trying to reproduce
the energy level systematics and electromagnetic transi-
tion rates in spherical nuclei, some of whose states ex-
hibit collective properties. The energy-level systematics
is of course the easiest part of such a program because
the Hamiltonian is stationary at the eigenstates. Elec-
tromagnetic transitions, inelastic scattering and several-

nucleon transfer probabilities each depend upon certain
correlations among the nucleons. As a result transition
rates can vary from strongly enhanced to strongly
hindered when compared to the rate calculated for an
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uncorrelated state. These wide variations put a struc-
ture calculation to quite a severe test, much more so
than the energy level systematics. Moreover, since the
kinematics are at the control of the experimenter, in
principle, reactions provide a more versati1e tool
than electromagnetic transitions in studying nuclear
structure.

Kisslinger was the first to give a microscopic descrip-
tion of inelastic scattering from collective states in
spherical nuclei. He emphasized, especially for the
"two-phonon" states, that the particular shell-model
orbits involved could influence very much the differen-
tial cross section, especially for nucleons.

In this paper we formulate the calculation of in-
elastic scattering based on a microscopic description of
nuclear states in a form that is convenient for dis-
cussion and calculation. " The virtue of such an ap-
proach is that both the collective states about which
the microscopic model is concerned, and the weaker
noncollective and single-particle states are treated on
the same footing in terms of their detailed structure.
One can hope to say something through this approach
about the success or failures of the existing microscopic
calculations of nuclear structure, and perhaps indicate
the directions in which improvements lie. Such a descrip-
tion certainly allows a richer variety of phenomenon
than the rather restrictive phonon picture with its
strict selection rules.

There are however ambiguities involved in this
approach most important of which concerns the inter-
action between scattered particle and the nucleons of
the nucleus. At high enough energies the impulse ap-
proximation may be valid and the free two-body t

matrix can be used. "Then if the nuclear structure cal-
culation includes the explicit participation of all the
nucleons that are really involved in the collective
motion, there should be no arbitrariness in the choice of
the interaction. If however it has been found that an
effective charge must be introduced to account for the
observed electromagnetic transitions rates, then this
approach will underestimate the cross section. Since
in practice, aside from the very light elements, nuclear-
structure calculations are performed in a truncated
space involving the last one or two major shells, the
ambiguity concerning the effective interaction will be
present even at high energies. In this paper we are
interested in lower energies commonly available on
Van de Graaff and cyclotron accelerators, so that it

~ L. S. Kisslinger, Phys. Rev. 129, 1316 (1963). See also E. A.
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certainly is present for us. Ke discuss it again in Sec.
3.2.

After the formulation of the problem found in Sec. 2
we apply the theory to proton scattering on the even
nickel isotopes in Sec. 3. We have already reported
some of our results for alpha scattering in the nickel
region. "

2. FORM FACTORS FROM A MICROSCOPIC
MODEL OF THE NUCLEUS

2.1 Background

To describe inelastic scattering from a nucleus, we
need to know the matrix elements of the interaction of
the scattered particle with the nucleus. For the form
of the interaction between nucleons we adopt the
potential

V(r;,r;) = (Vo+ V~+,"o';)g(r;,r,) . (1)
(Here Vo and V& may depend in turn on z;.~;.) The
interaction of a scattered particle of mass number a and
the nucleus A is therefore

(2)

We shall neglect exchange sects which generally will
be small as discussed later. (They are implicitly
neglected in the macroscopic description). Therefore,
the interaction, Eq. (2), is a sum of one-body operators
on the nuclear coordinates, r;. Hence, only components
of the initial and Anal wave function that differ at most
in the coordinates of one nucleon can be connected by
the scattered particle. Consequently any excitation of
the nucleus by the scattered particle consists at most of
a superposition of elementary (single-particle) transi-
tions. In the next section we recapitulate in a form
suitable for our purposes, scattering by an odd nucleus
in which the odd particle is excited. In terms of these
results we will be able to express in a straight-forward
way the inelastic scattering between any two nuclear
states however complicated their structure, so long as
their wave functions are known.

When dealing with a composite scattered particle we
will suppress its structure and use a pseudo-interaction
between its center of mass and the nucleons of the
nucleus. Such a pseudopotential can, of course, be
related to the interaction between nucleons, if we
assume that the scattered particle exists only in its
ground state. This is done in the appendix. Here we
state the result. Using a Gaussian shape for the potential
between nucleons

g(r~, r') = exp( Pl r~ r'I'),— — (3)
and for the wave functions of the light nuclides, then
the pseudopotential for the interaction between light
nuclides and the nucleons of the nucleus is

V(a,A)= P (V,'+V,'S.e,) exp( —P'IR —r;I'), (4)
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where S is the spin operator of the nuclide a, and R is
its center-of-mass coordinate. The constants Uo', U~',
and P' are related to the corresponding quantities in
the nucleon-nucleon potential, the range being longer
for the pseudopotential.

It is convenient to expand the potential Eq. (1) or (4)
in multipoles (Slater expansion). To treat both spin-
dependent and independent terms on the same footing
we define the one-body operators: Xs(k) is unity and
Xi(k) is the spin vector operator of the kth particle
appearing in the potential. Define then the tensors

where the square bracket denotes vector coupling. "
Also let the Legendre transform of the space part of the
potential be:

2L+1
vL, r,r' =--- g(r, r')Pr, (cosro) d cosa|.

We have then the expansion

v(,&)= Z (—) "'v 3 (,&) I (~) (7)
LSJ

where
4~

3&s&(r,&)= 2 sr(~, r')Si&&(r') (g)
2L+1 a=i

To describe the scattering, one needs to know the
matrix elements between the nuclear states of the
interaction V and hence of g~. The reduced matrix
elements of ~~ are often called form factors in this
context. They are, so to speak, the way in which the
nucleus appears to the scattering particle. They appear
in the coupling terms between the various open in-
elastic channels when the Schroedinger equation is
written as a set of coupled equations. All of the nuclear
information enters the description of the scattering
through these quanitities, and we shall discuss them in
great detail.

However, before doing so, we write down expressions
for the diGerential cross-section. Ke shall calculate
cross sections in the distorted-wave approximation
which is the solution of the scattering problem to first
order in V. It will be valid as long as the state we are
interested in is not strongly coupled to other excited
states when compared to its coupling to the ground
state. This will almost always be true of the first 2+
level in the vibrational regions. For the transition from
the nuclear state uiJi to nsJs (where rr denotes all
quantum numbers additional to the total spin and its
Z projection) we find for the cross section for particles
of spin s~

do'—(QiJi~ QsJs) =
dQ (2si+1)(2Ji+1) «& 25+1

XVss(s, IIx sIIs,)'~»„(9)
is Our notation means pYi Xagqir= X» Car ..., i—r~s~yr~ "&-8" ~

where
ks m~ )s
ki 2irh')

I
Ji—JsI &J&Ji+Js& I= I+&. (14)

Second, since the nuclear force conserves parity then

Z$7l 2 7

where x is the parity of a nuclear state. We have used a
central interaction" so that 5 can have only the values
0 and 1.

For scattering from an even nucleus we write sepa-
rately the cross-section for natural parity states, J,
n. =(—)~ and for unnatural parity states. The latter

» +le use Racah's original de6nition of reduced matrix elements,
cf. A. R. Edmonds, Angular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, 1957), p. 75. There are
several currently used de6nitions.

If a tensor part is included in the interaction then we could
also have I.=J&2.

Z
—L

~ISJ P t-~*(ks,r)
(2L+1)'"

XF»z ' '(r)YI~(P)if&+&(ki, r)dr (1. 1)

Here P&+& are distorted waves describing the motion
of the scattered particle under the inQuence of the
optical potential which is assumed not to include a
spin-orbit term. This neglect is not serious, except
possibly at large angles, if we confine ourselves to
calculating only cross sections, but not polarizations.
The sum on I and 5 is incoherent as long as this term
is absent. Otherwise there are cross terms. Also

lf sy= 0
= (»i+ 1)'"(4s+(2S+1)"'~xi)

if si ———,
' (12)

= (2si+1)'Is(8ss+v2&si) if sr= 1,
which would hold for alpha particles, nucleons (or t
and He') and deuterons, respectively.

In the above, P(r) denotes the form factor" or
integral over the nuclear coordinates of 3, Eq. (8):

~»~""(~)—= (+- ~ (&)II3»~(~,A) II+-1~,(&)) (13)

For convenience, we shall refer to the form factor with
5=0 as scalar since it is the matrix element of a scalar
in spin space, and to the three form factors with 5= 1
(hence L=J or J+1) as vector form factors. The latter
arise of course from the spin-dependent part of the
potential, Eq. (4).

The quantities L, 5, and J are, respectively, the
orbital, intrinsic, and total angular momentum trans-
ferred between the nucleus and scattered particle.
Their possible values are limited by several obvious
selection rules. First J must connect the spins of the
two nuclear states
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can be reached directly only through the spin-dependent
part of the interaction. For spinless particles

(16)

For spin —,
' particles

where j=—2j+1 and the order of coupling s and / is,
1+s=j. There are obvious selection rules which restrict
the multipolarity when the single-particle transition is
known, or in the case of an even nucleus for which the
rules of Eq. (14), (15) are more stringent, eliminate
contributions from those elementary transitions which
are not compatible with Eq. (14) and (15). They are

(0~ J( ) ) / 0 OJ'OJ+/ 1 OJ1J)
dQ

(17)
/, +1.+/0 even——,

I/, —/Ol &1.&/, +/0
jl. j I

&J—&i.+i 0

while for spin 1 particles

da.
(0~~( ) ) / 0 OJ'OJ+0/1 0J1J

dQ
(19)

do—(o ~ ~(—)'+') = 2l'1'(~~-1, 1,~+~~+1,1,~) (2o)
dQ

In these equations, Vo and V~ are to be interpreted as
the pseudo-potential depths discussed in connection
with Eq. (4) whenever the scattered particle is composite.

I"Lsz' (r) = (4' (r') II3L—sz(r, r') II&(r') &

=4~& 0'(r)(j.llNLs~ll j» (21)

Here R q~ is a radial integral

2.2. Single-Particle Transitions

Here we consider inelastic scattering from an odd
nucleus with closed shells plus one valence nucleon.
The valence nucleon is excited by the interaction. I.et
its state be described by g, with radial part u, (r),
where a stands for all quantum numbers e, l, j, ex-

cept the projection m, . The form factor for a single-
particle transition is analogous to the general form
factor, Eq. (13)

There are other special selection rules which can be
derived from those stated and the properties of the
3-j and 9-j sylnbols in Eq. (23). For example, the
transition involving only the recoupling of a group of
equivalent particles, (j")0 ~ (j")J, receives no contribu-
tion from the spin-dependent part of the force (i.e.,
+Jlz= 0).

When the potential has a Gaussian shape, and
harmonic-oscillator wave functions are used for the
bound states, as is usual in nuclear-structure calcula-
tions, the radial integral of Eq. (22) can be obtained as
a polynomial in r' times an exponential factor as was
shown in earlier work. ' The result takes the form

m Pr ) 2m+L

R.OL(r)=e &" Q G L(a,b)
m=o QpP

(25)

where 1=mo0/I2 is the oscillator parameter, p '~2 is
the force range of Eq. (3), and y=1p/(1+p). Also the
range on the sum is quite small; m=-2'(E, +1VO—I,)
where X= 2(22—1)+/ is the oscillator quantum number.
The coeKcients 6 are rather complicated and are given
in the Appendix.

The shape of a single-particle form factor is given by
R,&L(r) and does not depend on 5 and J as shown by
Eq. (21) (although its magnitude does). Qualitatively,
the shape can be surmised easily since in the limit of a
zero-range force it is just proportional to the product of
the radial functions of the bound particle in its initial
and 6nal state

R.0L(r) =
21.+1

N, (r')oL(r, r')uO(r')r'2dr' (22)

lo l Q L

X'~ ~ g')
j6 j5

and
AiOJ='" j. L j0 )

(j.lli ~0~II j»= (—)'+'"
42r —,

' 0 ——',)
(23)

7".lJ,/OI.N' '» //.-I. /&q-
(j.lie»~ll j»= (—)'

22r (0 0 0)

R.OL(r) ~u.(r)NO(r)/42r. (26)

Form factors for several single-particle transitions of
multipolarity L=2 or rather their shape as given by
Eq. (22), are shown in Fig. 1 for three force ranges, in-
cluding 1.85 F which is the range used in the nuclear
structure calculations. A Gnite-range potential without
core is seen to wash out considerably the oner details.

It is perhaps worth commenting on an objection often
raised in connection with the use of harmonic oscillator
functions. It concerns their asymptotic behavior; they
vanish more rapidly at large distance than is expected.
We grant this fact, but its effect on our results is rather
small, especially for collective states because their form
factors are so large at their peak near the surface that
it dominates the distant tail that is small in any case.
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2.3. Transitions between States in Even
Spherical Nuclei

Consider now transitions between any nuclear states
nr«t and us«s (where n denotes all quantum numbers
additional to «M needed to specify the state). We want
the form factor

+»J""&')=8' ~ (A)llelsJ(r A)llv' 1J1(&)& (27')

By virtue of the fact that the interaction between
scattered particle and nucleus is a one-body operator
on the nuclear coordinates, this form factor can be
written as some linear combination of the elementary
form factors considered in the last section. The par-
ticular linear combination depends of course on the
detailed structure of the two nuclear states. Nuclei for
which detailed structure calculations have been done,
lie in the single-closed-shell regions. The following
development is designed to make use of these wave
functions. Such nuclei have been treated by the BCS
theory with the addition of an interaction between
quasiparticles. The wave functions have the form

I
rr«M&=-', P ri.s ~A peart(ab) IO), (28)

arb

where the ri's are configuration amplitudes, IO) denotes
the ground state, which is here the vacuum for quasi-
particles of which a pair creation operator is

Ar~t(a, b) = ( )&' &&+~A—peart—(b,a)= [n.tnbt]g~, —(29)

with n~ a quasiparticle creation operator. Define also
the scattering operator

»z~t(~b)=( )' "+ ll/—z ~(b,~)
= —Ln Jns7, , (30)

V)

p

Cl

D

Q
a

(I f I f)

/
/-

/ o

/ ~

/
r

~ /

(If —2

~ ~

r {F)
ip

where
O'amrs &a—ma ' (31)

The transformation connecting particles Pt and quasi-
particles, et is

P~ '=f«~.~~ '+V~~' .

Pro. i. Shapes of quadrupole single-particle form factors for
several transition are shown for three values of the force range.
The oscillator parameter g =mes/b has the value 0.25 F ' for the
nickel isotopes.

In addition they satisfy the normalization condition
Here U, t/', are the coefficients of the Bogoliubov-
Valatin transformation found by solving the BCS
equations for the nucleus in question. The Con
Shortley phases are used with a consequence that

(34)U'+ V'= 1.

V,U (—)')0.

don
Any one-body tensor operator Tz on the nuclear

particles can be written in terms of the quasiparticles
(33) as

2' sr
&~IIT~llb&{ V.'(2J +1)"'b.s~~s

s (2«+1)"'
+2Ef«-f/s ( )'+ VsV-7P"—~~'—(&»)+( )~+'&~ ~(&,b)7—

—sLf«.Vs+(—)'+ f/sV. 7L~~~'(~ b)+(—)~+'~~-~(~ b)7), (35)
where 0. is dehned by"

&~ll2', lib&=(—) '- ~ (b+ll2', Il~&.

The form factor for transitions from the ground state to an excited state are now easily obtained as

~».( ) = & «li3».(,~) il0&= —:2 .."Lf/.v +(-)"'f«v.y-."( ) (36)

"See Eq. (23) for the phase in our case.
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where Ill, gg ' is the form factor for the single-particle,
transition b —+ a which was discussed in the preceding
section. Using Eqs. (21), (25) we obtain finally

m Pr ) 2m+ J
&s,BJ(~)=~ '"' 2 d-

m=0 p
(37)

where the coeKcients d are given by

d„=d„(nL—SJ)=Q A.pG ~(a;b),

The range on m is quite small since

m= -', max(lV, +)Vg L), —
where E is the oscillator quantum number.

The form factors connecting two excited states also
has the simple structure of Eq. (37) but with coefficients
d dered in a different way. The explicit closed form
for the form factors is exceedingly useful from a numeri-
cal point of view when cross sections are calculated in
distorted wave approximation or in the solution of the
coupled equations. It means that each form factor can
be summarized by a half dozen constants or so as com-
pared with a large table as a function of r.

The scalar form factor (5=0), which comes from the
spin-independent part of the interaction, alone is
present in the scattering of spinless projectiles. The
vector form factors (5=1) arising from the spin-
dependent part of the interaction are associated with
spin Qip transitions of scattered particles having spin.
In the second case the Uv factor of Eq. (36) is different
for the scalar form factor than for the vector so that
one or the other may dominate for some nuclear levels.
This can tell us which part of the force played the most
important role in defining the properties of the nuclear
state in question. In fact the structure calculation" "
for the nickel isotopes indicates that the spin-independ-
ent part seems to be most important for the lowest level
of each spin while the spin-dependent part often plays
the most important role in one of the higher levels.

2.4. Transitions in Gdd. Nuclei

We considered earlier the case of a pure single-
nucleon transition. This is an idealization hardly
realized in nature because of the internucleon inter-
actions. It would be best realized when the core is
doubly closed. In most cases the Fermi surface is
diffuse and this can have important effects on those
properties deriving from the odd nucleon. Such effects

"R.Arvieu and M. Veneroni, Compt. Rend. 250, 992 (1960);
250, 2155 (1960);252, 670 (1960);R. Arvieu, Ann. Phys. (Paris)
8, 407 (1963).' R. Arvieu, E. Salusti, and M. Veneroni, Phys. Letters 8, 334
(1964)'.

a.,—(nLSL) = 2~5—V.V &+ ( )'P—sg~v j
x v.b'(j.llS~»ll j». (39)

can be most conveniently treated in the framework of
the BCS theory and its extensions. According to this
theory the odd nuclei are described by wave functions
containing an odd number of quasiparticles. The lower
levels could even be single quasiparticle states. For
transitions between such states we easily obtain from
Eq. (35)

+LSJ '(r) —= (0ll ~&ISJ&bt
l l0)

= (U.v, ( )~—& v—.v,7~„;&(.). (40)

That is, the form factor for a quasiparticle transition
is, to within the factor shown, given by the correspond-
ing particle form factor. The factor does not exceed
unity in absolute value and so, as could be anticipated
on intuitive grounds, the properties deriving from the
odd nucleon tend to be suppressed by the residual inter-
action (exclusion principle). Note also that except in
the limit in which the quasiparticle is a particle (U'=—1)
the multiplicative factor in Eq. (40) is larger for spin-
Qip transitions (5=1) than for ordinary transitions.
LNote that our form factors are defined for unit poten-
tial depth, and that ultimately the relative strengths of
Vp and Vi have to be considered in Eqs. (17)—(20$.

3. PRGTGN SCATTERING GN
NICKEL ISGTGPES

3.1. Structure of the Nickel Isotoyes

%e recall briefly the method used to calculate the
nuclear wave functions" which for these nuclei was
performed by Arvieu, Salusti, and Veneroni. '~ The
doubly closed shells at 28 nucleons were regarded as
inert, contributing only to the central field in which the
outer neutrons move. A finite-range interaction was
considered to act between the outer neutrons

V= —26e &""'P'sE+-,'P Toj (MeV) (41)

(where I' is a projection operator for the singlet-even or
triplet-odd state). Its effects were taken into account
in two steps. First the Bogoliubov-Valatin transforma-
tion was calculated to extract the pairing effects of this
interaction. In the second step, the residual interaction
between the resultant quasiparticles was taken into
account by diagonalizing the interaction in the trun-
cated space of two-quasiparticle conlgurations cor-
responding to the major unfilled neutron shell. In fact
at the second step the more complicated equations of
the random-phase approximation (RPA) were also
solved, but their solutions did not differ significantly
from the two-quasiparticle diagonalization. In other
words the BCS vacuum is a very good representation
of the ground state. However by solving the RPA,
including the so-called exchange terms, one is able to
isolate the spurious 0+ state introduced by the non-
conservation of particle number. This separation turns
out to be crucial for the 0+ states, since the spurious
state is completely coherent for scattering.
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It is worth noting the difference between this treat-
ment and that of several other authors including
Kisslinger. " The latter authors use the quasiboson
approximation to obtain a vibrational spectrum. The
quasiboson operator corresponds to the collective 2~

state. Application of the operator twice to the vacuum
leads to the two-phoeoe triplet. These states are there-
fore a linear combination of 4 quasiparticle configura-
tions. The description of the 2~ collective state is
similar in both approaches. The differences are in the
other states. In the work of Arvieu et a/. , which we use
for the nickel isotopes, all excited states are combina-
tions of two-quasiparticle configurations. Therefore
our Os, 2s, 4r states have nothing to do with two-photon
states, as far as their microscopic description is con-
cerned. On the contrary the 02 and 4& are each more
analogous to a one-phonon state of multipolarity equal
to its spin.

The two-quasiparticle description has been quite suc-
cessful as far as the tin and lead isotopes are concerned, "
For the nickel isotopes it is not so good evidently be-
cause the nucleons within the closed shells participate to
a non-negligible extent. Unlike the tin isotopes, Ni"
and Ni6' have a vibration-like spectrum which is an
indication of the participation of the core particles.
However, the energies of the 02, 22, and 4~ states are
approximately correct which suggests at any rate that
these levels have large two-quasiparticle admixtures.
If the ground state quasiparticle correlations are really
small, as suggested, "the four-quasiparticle admixtures
would not contribute in the ground-state —excited-state
transition. Their presence would only suppress the
cross section because of the normalization.

In spite of the possible dehciencies of the nuclear
structure calculation in nickel isotopes we shall illustrate
the theory of Sec. 2 by application to these isotopes
because of the experimental activity in this region.

3.2. The Direct Interaction

%e need to know the interaction between the scat-
tered proton and the extra-core neutrons of the nickel
isotopes. Unfortunately it is not clear what this inter-
action is. If one had a complete theory of the nucleus
and the reaction mechanism, and if in addition one
knew that the meson cloud surrounding each nucleon
was not distorted by the proximity of others, then the
vacuum interaction would be used (if it were known).
But this is not the case in practice. Nuclear structure
calculations are performed in a highly truncated pseudo-
Hartree-Pock space. It is believed that many of the
important correlations caused by the mutual inter-
actions of the nucleons are nonetheless reproduced. But
it is recognized that the residual interaction appropriate

"See Ref. 9. Also M. Baranger, Phys. Rev. 120, 957 (1960);
S. Yoshida, Nucl. Phys. 38, 380 (1962).

"R. Arvieu, E. Baranger, M. Baranger, V. Gillet and M.
Veneroni, Phys. Letters 4, 119 (1963}j R. Arvieu and 1VC. Veneroni,
Phys. Letters 8, 407 (1963).

Vp= —23 MeV Vr= 2.6 Mev (for p-rs) . (45)

For completeness we add that for nucleon scattering
from like nucleons, the constants are

Vp= Vpp+ Vpr= 4(SE+3TO), —
Vr= Vrp+Vrr= ar(TO SE), — —(46)

'p W. W. True and K. W. Ford LPhys. Rev. 109, 1675 (1958)g
used the singlet part.

in such a model may be different from the vacuum
force. It can in fact be more complicated than the
vacuum interaction, depending for example on the local
density of nucleons. Moreover, one must anticipate
that the residual interaction will be different in diferent
parts of the periodic table, just because the truncation
involves different shells.

Perhaps we can guess one modification introduced by
the truncation. It is known that electromagnetic transi-
tion rates of some states in the nickel isotopes are
enhanced over single-particle rates. In the nuclear
model calculation outlined in Sec. 3.1, only eeltroes
participate in the excitations. The core therefore does
play an important role in the correlations and motions
of the extra-core neutrons. This participation of the
core, for electromagnetic transitions, can be accounted
for approximately by endowing all nucleons with an
additional effective charge. Ke anticipate therefore
that the direct interaction in our calculations should be
stronger than the vacuum interaction to simulate the
participation of the core nucleons in the excitation.

As a first orientation however, we shall use a force
suggested by the two-body problem as a guide in our
calculation, and then see by how much it must be
augmented to reproduce the experimentally observed
cross sections. It is known for example that the singlet
to triplet strength in the even states is about 0.6 and
that the force is weak and possibly repulsive in odd
states. I.et us assume therefore that there is no inter-
action in odd states and in even states that

V(r) = —52e ~'I'"l'[PTER+0.6PsE] (MeV) . (42)

This potential approximately reproduces the low-energy
neutron-proton data. "For the reaction calculation it is
more convenient to use a different parametrization,
namely

V(r) ( Vpp+ Ver&1 'ps+(Vlp+ V11&l' 'p2)or'rr2}g(r) . (43)

For the present case of protons scattered from bound
neutrons, the two constants Vp and Vr of Eq. (1) are
given by

Vp= Vpp —Vpr= s(3TE+3TO+SE+—SO),
(44)

Vr ——Vrp —Vrr= g'(TE+ TO—SE—SO),

(where TE stands for the triplet-even strength, etc.).
Corresponding, therefore, to the potential, Eq. (42), we
have
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I I I I I I I I I The corresponding exchange integrals do not neces-
sarily carry the same sign as the direct, and moreover
the sign is a function of bombarding energy. So we are
guaranteed by the constructive interference of the direct
part that the exchange part will not be constructive.

The second approximation concerns the use of the
distorted-wave method. We have no a priori way of
expecting this approximation to be valid except for
the collective states. The weaker states quite possibly
can be fed by double excitation through a collective
state in competition with their direct excitation from
the ground. The only reliable way of handling such a
situation involves solving the coupled equations and a
program for this is in preparation. In view of this the
cross sections reported here for the noncollective levels
are not quantitatively reliable. However, we believe
we can draw valid qualitative conclusions which are
discussed in the next section.

I 2 5 4 5 6 7 8 9 IO

r (F)

Fxo. 2. The quadrupole single-particle form factors that con-
tribute to the 2+ states of Ni" are shown with the magnitudes and
signs appropriate to the collective state showing how they all con-
tribute constructively to the collective form factor shown by the
heavy line labeled 2&+.

3.4. Form Factors and Cross Sections

We have computed the form factors and cross sections
for many levels of all the stable even nickel isotopes.
The results for Xi60 and Ni62 are reported here as being
typical of what was encountered. As previously noted,
two form factors in general are needed to describe the
scattering of nucleons from natural parity states of an
even nucleus. These are the scalar and vector form

which, corresponding to Eq. (42), have the values

Vo= —7.8 MeV, V&
——7.8 MeV (for e-e or p-p) . (47)

We remark parenthetically that if the potential,
Eq. (42), can indeed be used as a guide, then proton and
neutron scattering will often excite the same level quite
differently. For example, to the extent that the neutrons
are responsible for the correlations present in the low
states of the nickel isotopes proton scattering will

hardly involve spin-Qip transitions, while neutron
scattering will fcf. Eqs. (45) and (47)7.

3.3. Concerning the Ayyroximations Used in the
Calculations of Cross Sections

IOO

L
O
O
O

l0

l 000
I t T I

~ ~
~ ~

We have made two principal approximations that
deserve comment. We neglect possible exchange scat-
tering. (This is done implicitly in the macroscopic treat-
ment. ) The usual justiYication advanced for this involves
an overlap argument which indicates that the exchange
integral should be smaller than the direct when bound
and scattering functions are involved together. '
Presumably this approximation becomes better at
energies su%ciently high that the wavelength of the
scattered particle, in the region of overlap with the
nucleus, is small compared to the nuclear radius.

Quite independent of the overlap argument, the
exchange contribution to excitation of collective states
must be small. The reason is that the direct integrals
all interfere constructively Dn Eq. (36)7 for such states.

O
Lt

0 I 2345'6789 lO

(F)

Fxo. 3.The form factor of the collective 2+ state of Ni" computed
from the microscopic model is compared with the derivative form
factor of the macroscopic model. They are normalized to give the
same integrated cross section. The second derivative form factor
of the latter model is also shown. Form factors are here plotted
on a logarithmic scale and changes in sign are shown by (—). We
include the factor r~ (from the volume element) in our 6gures as
should be done to show the weighting given the distorted waves.
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factors PJOJ and FJJJ [cf. Eq. (17)j. The vector form
factor gives rise to spin-Qip transitions. Although both
have the same shape for a single-particle transition this
is not true for a configuration mixed state. Consequently
for the states of Ni we show both. We remark in passing
that there is no precise counterpart of the vector form
factor in the macroscopic model although if the spin-
orbit term of the optical potential were assumed also to
be deformed, a spin-Rip mechanism would thus be
introduced.

We have already emphasized that the form factor of
any state, however complicated, must be a superposition
of elementary form factors. Those that contribute to the
6rst 2+ state of Ni" are shown in Fig. 2 multiplied by
the phases and magnitudes dictated by Eq. (36) for
the scalar form factor. Each contributes constructively
to the nuclear form factor yielding the large single-
peaked function shown. This is roughly analogous to,
but broader than, the form factor of the macroscopic
model which is compared in Fig. 3. (In the latter case,
it is proportional to the first derivative of the optical
potential). On the other hand the vector form factor
of this collective state is smaller by a factor of about 5.
These observations correspond to the fact that for the
low-lying collective states of a nucleus the spin-
independent part of the force is most important in
building up the correlations. The vertex in the diagram
corresponding to scattering of nuclear particles by a free
particle may be different in details but is qualitatively
similar to that entering the structure calculation.

For the higher lying states the vector form factor
becomes relatively more important (cf. Fig. 5) and in
some cases (not shown) significantly larger than the
scalar part. This suggests the interesting speculation
whether there might exist at higher excitation a new

type of collective state whose correlations are built up
by the spin-dependent part of the residual interaction.
The importance of the vector part in scattering is in our
example very minor because the spin part of the direct
interaction is weak for protons scattered on neutrons
Lcf. Eq. (45) and last paragraph of that section]. If
there were such a state, it seems that neutron scattering
with measurement of the polarization or subsequent &
radiation with suitable geometry would be markedly
different from the low-lying collective state. Similar
states, if they exist, in nuclei whose excited state cor-
relations depend considerably on the protons could be
detected in the same fashion by proton scattering.

It is characteristic that the form factor of the collec-
tive 2+ state in all the nickel (and tin) isotopes possesses
one broad maximum. near the nuclear surface as above.
This is in contrast with the form factors of the higher
2+ states which exhibit great variety as shown in Figs. 5
and 6 (where we have plotted the logarithm because of
the wide range of magnitudes). The other 2+ form
factors are of course made up from the same elementary
excitations as the collective state discussed above, but
with different proportions and phases. It is to be ex-

o

3/Z S/Z
—2 p

1

0 I

! ! ! ! I I I

'

2 5 4 5 6 7 8 9 10

r {F)

Fzo. 4. The monopole single-particle form factors that contribute
to the 0+ states of Ni" are shown with magnitudes and signs
appropriate to the erst excited 0+ state labeled 02. Here they
interfere destructively to give the small form factor for the nuclear
state shown by the heavy line labeled Q2+.

pected therefore that the noncollective form factors
will be characterized by variety rather than uniformity,
in contrast with the predictions of the macroscopic
model for the two phonon states. Probably this ac-
counts for the arbitrary juggling of coupling constants
typically required to obtain agreement with experi-
ment when higher excited states are analyzed in terms
of the macroscopic model.

As an example of a noncollective transition we show
in Fig. 4 the contributing elementary form factors for
the 02+ state of Ni" (6rst excited 0+). In this case the
interference is destructive yielding the small form
factor shown. For such an incoherent transition, the
detailed shape of the form factor is of course very
sensitive to the configuration mixing amplitudes. For
this reason it is less certain than in the case of coherent
transitions. The vector form factor vanishes identically
for 0+ states in an even nucleus.

The form factors for several 0+, 2+, and 4+ states
of Ni" and Ni" are shown in Figs. 5—10 together with
the corresponding proton cross-sections at 11 and 40
MeV. The cross sections were computed in the distorted-
wave approximation" and the optical model parame-

"For a recent review of the distorted wave method see W.
Tobocman, Theory of Direct 1VNclear Reactions (Oxford University
Press, London, 1961), G. R. Satchler, Nucl. Phys. 55, 1 (1964).
The method was 6rst derived as a first-order solution to the
coupled equations for scattering by N. F. Mott and H. S. W.
Massey, The Theory of Atomic ColLisions, 1st ed. (Clarendon
Press, Qxford, 1933); in 2nd ed. , see p. 144,
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FxG. 5. The form factors for three 2+
states in Ni" together with the cor-
responding cross sections for 11 and
40-MeV protons. Scalar form factors
are shown by solid lines and vector
form factors by dashed lines. Changes
in sign are indicated by (—) since the
absolute values of form factors are
plotted.
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ters, taken from the literature, ~ ' are shown in
Table I.

It is interesting to note that the characters of the two
higher noncollective 2+ states are interchanged in these

TABLE I. Optical-model parameters for protons+nickel used
in the cross-section calculation. The parametrization is detailed
in Ref. 22.

E+ V TV O'I) ro ro' ~ a' r,
(MeV) (MeV) (MeV) (MeV) (F) (F) (F) (F) (F)

11 50.84 0 10.21 1.25 1.25 0.65 0.47 1.25
40 44.7 0 9.9 1.184 1.056 0.707 0.653 1.2

two nuclei, according to the structure calculation, as
revealed through their form factors. Itisimportant to
notice that these differences are indeed reflected in the
calculated proton cross-sections, especially at the higher
energy. This is of course in contrast with alpha cross-
sections which are insensitive to details inside the
nucleus as our earlier investigation indicated. "

We have acknowledged earlier that the distorted
wave approximation may not be valid for all of the
weakly excited states. However, the differences in
nuclear structure which lead to the different form. factors
connecting the excited states to the ground state will

also lead to different couplings to intermediate states,
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FIG. 6. The form factors for
three 2+ states in Ni" together
with the corresponding cross sec-
tions for 11 and 40 Me7 protons.
Scalar form factors are shown by
solid lines and vector form factors
by dashed hnes. Changes in sign
are indicated by (—) since the
absolute values of form factors are
plotted. Compare the 22 and 23
form factors with those of Ni",
Fig. 5.
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~ M. P. Fricke and G. R. Satchler, Phys. Rev. 139,8567 (1965).



INELASTIC SCATTERING FROM NUCLEI

I i
I

IO-' IO I

I I
I

I
I I

NI6o

Ep =
I I MeV

FIG. 7. Form factors for three
0+ states in Ni" together with cor-
responding cross-sections for 11
and 40 MeV protons. The form
factors oscillate and changes in
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so that diGerences are likely to be further emphasized,
not diminished by inclusion of higher order effects.

Ke turn now to the interesting question of the
magnitude of the cross-sections. To achieve the agree-
ment with the 40-MeV data" shown in Fig. 5 we had to
use a value for Uo of 41 MeV compared to the value of
23 MeV corresponding to a simple force which its
the low-energy I-p data. In view of our earlier discussion
it is not surprising that we have had to use a more
attractive potential. This has also been the case in
earlier works ' ' '4 With regard to the work of Funsten
et a/. , we remark that it seems not to have been fully

appreciated that they have used a potential that is
about three or four times stronger than the "vacuum"
force. The enhancement of 1.8 that we have had to use
seems at least plausible in view of our earlier discussion
on this point. It will be interesting, when structure cal-
culations that take into account the core as well as
the cloud nucleons have been performed, to see by how
much this factor is reduced.

With respect to the 1T-MeV data, 7 we require a
potential Uo ——72 MeV or three times stronger than
our assumed "vacuum" force in contrast to the situa-
tion above. Quite likely the residual interaction should
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Fio. S.Form factors for three 0+
states in ¹i"together with cor-
responding cross sections for 11
and 40 MeV protons. The form
factors oscillate and changes in
sign are shown by (—).
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T. Stovall and N. M. Hintz, Phys. Rev. 135, 3330 (1964). We are indebted to Professor Hintz for providing tables of the data.
~ H. 0. Funsten, N. R. Robertson, and E. Rost, Phys. Rev. 134, 8117 (1964).
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be momentum as well as density-dependent. The second
dependence would act in such a way as to reduce this
discrepancy but we do not know about the first. How-
ever, part of the discrepancy may be due to the optical
model parameters. Their di6erences (especially the
geometry, see Table I) suggest that they do not evolve
one into the other as a function of energy and if this
so, a spurious energy dependence of the inelastic cross-
section would be introduced.

The data for the collective 2+ state have also been
analyzed using the macroscopic model. ~ 22 The agree-
ment as far as the angular distributions are concerned
are of the same quality as shown by the microscopic
description in Fig. 5 and 6, which rejects the similarity

of the form factors. The greatest difference between
the two descriptions of the nucleus are expected in the
higher excited states. These, we emphasize, are charac-
terized by variety of coupling form factors in the micro-
scopic description, as contrasted with the macroscopic
model where the couplings are all interrelated and the
same for one nucleus as for another, aside from their
over-all strength. That the variety exists in nature is at-
tested by the fact that the existant analyses on the
basis of the macroscopic model require that almost
every level have a diGerent quadrupole parameter P.

Although the microscopic description of the collec-
tive 2&+ states seems to be satisfactory, we cannot make
any such statement, at the moment, concerning the
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FxG. 10. Form factors for two 4+
states of Ni" and corresponding
cross-sections for 11 and 40 MeV
protons. Scalar and vector form
factors are shown by solid and
dashed lines, respectively.
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description of the weaker states, since their proper
analysis requires in general the solution of the coupled
equations for scattering. These have not yet been solved
with the microscopic form factors. Moreover, there are
very few data available on nucleon scattering from the
higher lying states of single-closed-shell nuclei.

4. SUMMARY

The scattering of light nuclides from nuclei has been
formulated in terms of the two-nucleon interaction
and the detailed shell-model wave functions of the
nucleus. The theory was applied in an earlier work
to alpha particle scattering" from the nickel isotopes,
some of whose levels are collective. In the present work
we have applied it to proton scattering. We have used
the nuclear structure calculations of Arvieu, Salusti
and Veneroni for these isotopes. " In their work, all
levels, including the collective ones, are treated in
terms of their underlying nucleon structure. The con-
structive coherence in the transition to the 2~+ state of
all the nickel (and tin) isotopes leads to a scalar form
factor having the general shape used in the macroscopic
description of collective motion. The vector form factor
is much smaller, reflecting the dominant role of the spin-
independent part of the nuclear force in inducing the
collective motion in the lowest collective states. We have
speculated on the existence of states at higher energy
for which enhanced transitions proceed through cor-
relations induced by the spin-dependent part.

In contrast to the qualitative agreement between the
form factors predicted by the microscopic and macro-
scopic descriptions of the collective motion in the 2~+

state, the microscopic model predicts a much greater
variety in shape and magnitude of the form factors for
the unenhanced transitions. The details constituting this
variety are reflected in the calculated cross-sections for
nucleon scattering but not for composite particle
scattering.

Concerning comparisons with experiment, we Gnd
that the microscopic description given by Arvieu et al. '
for the collective 2&+ states yields good agreement with
the differential cross sections for protort scattering. As
has been observed by us, and by Madson and Toboc-
man, " the calculated differential cross section for
alpha scattering is shifted by several degrees to smaller
angles compared to experiment. This suggests that the
slope, or the position of the form factor outside the
nucleus is somewhat in error. Presumably, a small error
here would not eGect the protori, scattering so much since
the interior contributes an important fraction of the
cross section. In any case there do not seem to be any
fundamental difhculties either with the description of
the nucleus or the scattering process. It would however
be interesting to have structure calculations in which
the inner nucleons play a part in the correlations so that
one aspect of the ambiguity connected with the e6ec-
tive direct interaction could be removed.

Now we surmnarize our impression of the uses of the
several types of projectiles employed in inelastic-
scattering experiments. The discussion of course divides
into two parts dealing with strongly and moderately
absorbed particles.

Composite particles like deuterons and alphas are
strongly absorbed. Therefore direct reactions involving
them take place predominantly in the nuclear surface.
For an ideal surface reaction involving only one I.
transfer it can be proven2 that the angular distribution
corresponding to the direct excitation from the ground
state does not deperid upon the mechanism by which
the transfer is effected. It is independent of the nuclear
structure or the nature of the direct interaction. In
practice the transfer may take place throughout the
surface region, but even then the angular distribution is
largely insensitive to the details mentioned. The
theorem does not apply to levels fed principally through
some other excited state (double excitation). We there-
fore divide levels into two types, those whose direct
coupling to the ground state dominates over the coupl-
ing through an intermediate level and those for which
the two couplings are competitive or for which the in-
direct route dominates.

Levels of type I are the enhanced collective states
like the 2~+ and 3y as well possibly as some weak levels.
Levels of type II include such higher excited 2+ states
for which the direct E2 transition to ground is weak
compared to the stopover transitions to the 2~+.

The consequences of these statements are the follow-
ing. For a level of type I, the angular distribution is a
simple meter of its spin and it can be deduced by ap-
plications of any convenient means of calculating a sur-
face transfer of angular momentum. The Blair-Drozdov
model and its more sophisticated variants would be
suitable for this purpose, or any distorted wave cal-
culation employing a surface-peaked form factor. We
re-emphasize that success in making spin assignments
for this type of level does not reRect on the merits of
the nuclear model.

For levels of type II which are fed through an inter-
mediate level as well as, or instead of, the direct transi-
tion, no general statement about the phase of the angu-
lar distribution can be made. The relative importance
of the two couplings is a nuclear property which may
change from level to level and from nucleus to nucleus.
The details of these couplings are of course interesting
nuclear properties.

Since one does not know in advance to which category
a level belongs (except for the strongly enhanced levels)
it will be necessary to determine this before reliable

spin and parity assignments can be made. Since the
direct and indirect routes to an excited state very
likely have probabilities that vary with energy in
diHerent manners, a study of the phase of the angular
distribution as a function of energy as compared with a
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known direct excitation such as the 2&+, may reveal to
which category it belongs. "

Turning now to the scattering of nucleons, the situa-
tion is quite diferent from that described above. Be-
cause they are not so strongly absorbed, the differential
cross section reQects details of the nuclear structure well
within the nuclear radius. Compare for example the
form factors and their corresponding diGerential cross-
sections of the 0+ states shown in Fig. 8. Just because
of this sensitivity they are not as useful in determining
spins and parities as alpha particles. But they do aGord
quite a good glimpse of the interior, which the alphas
do not. For this reason nucleon scattering should pro-
vide a valuable means of putting microscopic descrip-
tions of nuclear structure to very detailed tests.

APPENDIX B. EXPLICIT EXPRESSION
OF FORM FACTOR

The integral defining the form factors, Eq. (22), can
be evaluated as a closed expansion, ' having the struc-
ture shown in Eq. (25), when the potential shape is
Gaussian and harmonic oscillator functions are used
for the radial functions of the bound single-particle
state. We give here the relevant formulas which are
convenient for computer calculation or by hand. The
harmonic oscillator functions are

N„t(r)=vt„ tvs4t( 'v'tr)' e'tst r')J (1—n[t+s )vr')

2I'(n+t+ ', ) 'ts 1-

n=1,2, . (B2)
r(t+-;)r(n)

The function F above is the conQuent hypergeometric
function ' and I'(s+1)=sI'(s), I'(sr) = sr't'. The product
of two such radial functions appears in the integral
and we write it

n+n' —g

st„tet„p= K„tm„.t.v't'(v&r)'+'e —"" Q n„(vr') ' (B3)

25 D. J. Horen, J. R. Meriwether, B. G. Harvey, A. Bussiere de
Nercy, and J. Mahoney, Nucl. Phys. 72, 97 (1965).IP. M. Morse and H. Feshbach, 3Iethods of Theoretical
Physics (McGraw-Hill Book Company, Inc. , New York, 1955),
p. 552.

APPENDIX A. CONVENTIONS

A shell-model calculation involves a choice of phases
and conventions which are not standard and must be

specified if the wave functions are subsequently used to
calculate other properties. For the calculations re-
ported here the following conventions hold: (1) Condon-
Shortley phases for spherical harmonics. (2) Order of
spin-orbit coupling is 1+a=j. (3) Radial functions have
positive slope at origin. (4) Conventions above and the
way in which the quasiparticle and particles are con-
nected, Eq. (32), imply that the lowest energy solution
of the BCS method is such that UV( —)' is positive.

where
(n+t ,' —q —(n'+t'——,

'
q

-r kn —k —1) Ee'+k rp—t)
n„—=n (nt;n't')=( —)" ' P

~o (n+t ,'q —tn—'+t'——,'~

En 1i—kn' —1)
X (B4)

k!(pn —k —1)!

2m= 1Vo+1Vs L, and—2g= t,+to L. (B6)—

As mentioned earlier in connection with Eq. (25) cV is
the oscillator quantum number.

Finally, the coeScients 8 above are given by

J3(0,s,L)= L l(p+v) j"
(2L+3)!

B(p,s L)= fvl(P+v) j"
(L+1)!

(B7)
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pn&L+2

X'
22L+3

tn =L+2 (B8)
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APPENDIX C. EFFECTIVE POTENTIAL FOR
COMPOSITE SCATTERED PARTICLES

Our results are derived in terms of a direct inter-
action between the nucleons of the nucleus and the
center of mass of the scattered particle. The form of the
interaction is given by Eq. (4) which implies that for
scattered nucleons, the expectation value with respect
to i spin of the full interaction, Eq. (43), has been taken.
We want now to relate the parameter of Eq. (4) to
those of the nucleon-nucleon potential of Eq. (43),
when the scattered particle is a light nuclide. For this
purpose we use a very simple wave function for the

Then the coeKcients G in Eq. (25) are

G-'( b) =(-'V'w)m. msLv/(P+v))~»s

(p1vq
tp—m

ns o+r(a, b)B(k rn, k—,L)~
s =max(o, ro) 5 v )

for rn&m (B5)
and are zero for m&m where
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nuclide, with radial part

u=zexp( —ip p r; o), (C1)

are related to those of the nucleon-nucleon potential
Eq. (43) by

(a) Deuteron

The space part according to Eq. (C1) is

uio(2g'r') = (2rl'/n. )'I'e (C2)

and the spin and isospin parts are, respectively, triplet
and singlet. We want the expectation value, with respect
to the isospin part and the internal coordinate of the
deuteron, of the interaction between the deuteron and
some other nucleon whose coordinates are r;, o;
This expectation value is our pseudopotential which
is a function of spins and the distance between the
center of mass of the deuteron E, and the nucleon.
Denote this distance vector by $= R—r;. Then we have

V'(4S ~;)=(V„+V„~i~,)I+(])
+(VX+V ')~-(k), (C3)

where

where the sum is over the relative distances between
nucleons in the nuclide. This will at least give us a
rough guide in selecting the parameters of Eq. (4). where

Vo'=»'"Voo, Vi'=»"'Vio, O'=*P,
S=(~.+ „)y2, (C6)

8~2

gn'+P

(b) Alyha

A convenient coordinate system consists of the
centers of mass of the alpha and of the two neutrons and
two protons, which we denote by R, yi and y&, and the
distance between the last two, y= t'ai —

yo (the Jacobian
of the transformation from the nucleon coordinates to
these is unity). The function Eq. (C1) in terms of
these is

u=uio(4Ai )uio(4'9 p& )»o(g'9 p ) (Cs)

again the integrals involved in evaluating the pseudo-
potential are of the form Eq. (CS). We find

V'($) =4x'i'Vooo ~'&',

~'=*~, ~= ~'I( ~'+3~) ( )
I~(P) = uio'e &~ &+'I'~'dr (C4) In terms of the assumed vacuum interaction, Eq. (42)

this potential for nucleon-alpha interaction is
The integrals are equal to each other and can be
evaluated by use of

V'=34e &"I'"" (MeV ) (C10)

where for the alpha size parameter we used g=0.233,
consistent with electron scattering. That is, the alpha

ka) nucleon interaction has a range considerably larger than
the nucleon-nucleon interaction, but a well depth of

We find in this way that the parameters of Eq. (4) only about twice the Voo part of the latter interaction.


