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A method is given for the exact calculation, including sl anharmonic eBects, of the matrix elements of
the true Hamiltonian H of a crystalline solid between the eigenfunctions of any arbitrary harmonic Hamil-
tonian appropriate to the crystal structure. By the introduction of a variational scaling parameter u, a
set of harmonic eigenfunctions can be generated from the eigenfunctions of a single such harmonic Hamil-
tonian. The ground-state energy Wo of the crystal and the optimum value uo of u are then determined by a
variational calculation which minimizes the expectation value of B between the ground-state harmonic
eigenfunctions. The other diagonal matrix elements of JJ, calculated using the states determined by ao,
then give 6rst-order values for the energy of one-phonon and multiphonon states. In addition, the o6-
diagonal matrix elements can be obtained and used in a perturbation calculation to improve the energies. It is
shown that the value of Wo will always be lower than energy obtained from a closely related variational
calculation using a wave function constructed out of a product of Gaussian orbitals centered on the lattice
sites. The decrease in energy is about 12% of the original kinetic energy, and is divided approximately
equally between the kinetic- and potential-energy contributions, Numerical results are given for Wo and
for a few phonon energies of a model bcc crystal in which each atom interacts with its first two shells of
nearest neighbors through a realistic atomic potential. Possible applications of this theory to rare-gas
solids are discussed.

state energy of solid Ne and by Nosanow' (who rnulti-
plied the Gaussian by a Jastrow function) for the calcu-
lation of the ground-state energy of solid He'.

In Sec. IV of this paper it will be shown that a corre-
lated-Gaussian wave function, constructed according to
the recipe to be given in Sec. II, will always give a lower
energy than the noncorrelated Gaussian. This reduction
in energy can be written so as to exhibit a definite per-
centage decrease in kinetic energy and an indefinite, but
probably smaller, decrease in potential energy so that
the over-all improvement in energy is most noticeable in
systems of light atoms.

The details of the construction of the correlated-
Gaussian wave function and of a complete set of states
based upon it (phonon states) will be given in Sec. II. In
Sec. III general analytic techniques will be developed
for the calculation of matrix elements of the Hamil-
tonian of a system of interacting atoms and specific
formulas will be given for the matrix element between
certain low-lying states. A variational calculation of the
ground-state energy of a bcc crystal of atoms which
interact with nearest and second-nearest neighbors
through a Mie-Lennard-Jones 12-6 potential will be
computed in Sec. IV. This result will be compared with
that obtained using a noncorrelated-Gaussian wave
function. These energies will be computed for a variety
of particle masses. In addition, phonon energies will be
computed to erst order for a few k values.

I. INTRODUCTION

II. CRYSTALS IN THE HARMONIC
APPROXIMATION

Consider the Hamiltonian appropriate, in the har-
monic approximation, to a system of particles in a

' L. H. Nosanow, Phys. Rev. Letters 13, 270 {1964).
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'HE details of investigations concerning the use of
the ground-state eigenfunction of a linear coupled

harmonic-oscillator Hamiltonian —a specialized type
of correlated-Gaussian wave function' —as a trial wave
function in a one-dimensional, many-body calculation
have been presented in two previous papers. ' ' In these
papers, for computational convenience, emphasis was

given to the eigenfunction of the nearest-neighbor,
coupled-oscillator Hamiltonian although the formalism
was applicable to a wider variety of one-dimensional

trial wave functions.
The formalism will be extended to the construction of

a three-dimensional, correlated-Gaussian wave function
in this paper. It will be shown that the resulting trial
wave function can be readily integrated over all coordi-
nates but two, so that the expectation value of a Hamil-
tonian for a system of interacting atoms can be calcu-
lated without resorting to the harmonic approximation.

The wave function is particularly adaptable to the
treatment of simple crystalline solids. A closely related
trial wave function for such systems is a Heitler-
London —type wave function in the form of a product of
Gaussian orbitals centered on crystal lattice sites. This

type of wave function will be called a noncorrelated-
Gaussian in this paper. Such trial wave functions have
been used by Mullin4 for the calculation of the ground-

' The term correlated-Gaussian will be used exclusively to de-
note this restricted class of correlated-Gaussians in this paper. The
restriction is explained more fully in the text in the mathematical
developments of Sec. II.

' T. R. Koehler, Phys. Rev. 139, A1097 (1965).This paper will
be referred to as I, and any of its equations will be denoted by the
pre6x I.' T. R. Koehler, Phys. Rev. 141, 281 (1966).This paper will be
referred to as II, and any of its equations will be denoted by the
prefix II.

4 W. J. Mullin, Phys. Rev. 134, A1249 (1964).
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crystal lattice: Ifonenowsubstitutesq =(r;4—R )/X' y = —iX'V
and e)j'"=X'V( 9." into Eq. (1),

Hr=-,'pp+-', qC g (6)

where subscripts are used to denote a particular unit
cell, the hrst set of superscripts to denote a particular
atom in a unit cell, and the second set of superscripts to
denote Cartesian coordinates. It will be assumed that
there are E unit cells and v atoms per unit cell.

In order to avoid the proliferation of superscripts and
subscripts, a notation as follows will be used throughout
the paper: r will be used to denote the three-dimen-
sional vector whose components are (r *,r "r ').
similarly, V& "will represent a 3&(3 matrix. The symbol
r; will denote a 3v-dimensional supervector whose com-
ponents are the v vectors r&', and V;; will signify a
3v&(3v supermatrix. Then r will be a supervector whose
components are the E supervectors r;, and U will repre-
sent a 3vXX3vÃ matrix. Similarly, V, 7';, and V' will

be used to denote differentiation with respect to the
indicated components of r.

In Eq. (1), R&' is the equilibrium position of the atom
whose coordinate is r and whose mass is expressed non-
dimensionally by (X')'. The subscript on X is suppressed
because X,'= X . We shall also use R; in lattice sums to
denote the points in the space lattice formed by the unit
cells. This usage will always be clear from the context.

The problem of finding the eigenfunctions and eigen-
values of H~ is an old one, and many excellent references
exist in the literature. 6 ' Here, a derivation of the
lowest eigenfunction of H~ will be presented which
divers somewhat from the usual derivation, but which
leads more naturally into the new work which will be
given later in this paper.

Because of the symmetry requirements on H&, there
are certain relationships among the V; " t' as follows:

V;i= V(R;—R;)

because of the periodicity of the lattice,

V. .CKs ALP —V. KCs PA'
ij ' ji

because V is a real, Hermitian matrix,

because V is translationally invariant, and

..CK— ..KCV"ij = ji

(2)

(3)

(4)

' M. Born and K.. Huang, Dyrlamical Theory of Crysta/ I.attices
(Oxford University Press, New York, 1954).

G. Leibfried, EncyclopcCho of Phys~les (Springer Verlag, Berlin,
1955), Vol. VII, Part 1, p. 104.

8 J. de Launay, Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc., New York, 1956), Vol. U, p. 219,

~A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Solid
State Physics, edited by F. Seitz and D. Turnbull (Academic Press
Inc. , New York, 1963), Suppl. 3.

if the potential arises from a sum of two-body, central-
force atomic interactions.

results, where the commutation relation (g,P;"P)
=i8;jcK & holds. The components of C satisfy the rela-
tionships given by Eqs. (2)—(5) for V.

Guided by hindsight, we will try, for the ground-state
eigenfunction of Hj,

%e——A exp{—-,'qGq}, (7)

results, with Eo —, Tr(G). ——
Because Eq. (2) obtains, 'o C can be brought into serni-

diagonal form by the unitary transformation

P C'Tjkk' Uk DkI k'Ckk' y

where

Tik ~ik.Ri U'k) (12)

Dk ——pi C (Ei)e—'k'R], (13)

and is called the dynamical matrix.
In the above it is assumed that the crystal is a paral-

lelopiped with its edges parallel to the principal transla-
tion vectors e~, e2, and e3, and that there are 1.unit cells
along each direction. It is also assumed that Born—von
Karman boundary conditions apply so that the k
vectors are the E distinct wave vectors in the first
Brillouin zone of the reciprocal lattice; therefore,

e'k' ( & "i)=X8;; and p ~
e'(k " & 'R~ = 1VBkk . In addi-

tion, C (R;)=Co; has been used which, from Eq. (2), is
also equal to Ci, i+j The matrix Uk is an as yet un-
specified unitary matrix.

If one substitutes Eq. (4) into Eq. (13), a slightly dif-
ferent expression for the dynamical matrix is obtained:

Dk ——P j' C (R ) (e
—'k Ri —1), (14)

where the prime on a summation sign signi6es that the
j=0 term is omitted from the sum.

If each lattice site is a center of inversion symmetry,
Dk will be a real symmetric matrix; Dk will always be
Hermitian. Thus Uk may be chosen so as to diagonalize
Dk and

Uk-'Dk Uk ——a)k',

'0 F. Bloch, Z. Physik 52, 555 (1929).

where A is a normalization constant and G a symmetric
matrix. It is readily verified that

pp%'p ——Tr (G)% o
—gG'q%o.

Thus, if one chooses

O'= C,

Hz+0= &0+0
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where Mk is a diagonal matrix. Then

G=To)T ',
or

(16)

the Hamiltonian

H~' ,'a—'—pp—+,'a'qC—
g (24)

G. .cc, acp Q P c)c,aPp) )BCUt )CCC, P/)hack (R2—. R2) (16a)

The erst superscript on the cok can be thought of as
labeling the branch of the phonon spectrum to which
the mode belongs. It is clear that

Ep
k, c,a

(17)

It should be noted that the normal modes are given by

Q c,a —(~lq) c,a

cIcp ——exp( —22gtppg)

—= lo), (19)

and that the normalized state in which ek' phonons of
frequency cok', , and ek K» phonons of frequency
cok K» are excited is given by (22lKl22)= ', Ep'+--'a2 Q(22), ' ) p)), ' (25)

and that the results of Sec. II can be applied to find the
eigenfunctions and eigenvalues of II~ by simply multi-
plying all of the cok' by a'. The lowest eigenvalue of
Hi isEo=g@o.

Thus, in the calculation of, for example, the ground-
state energy of the crystal described by JI, one would,
6rst, choose a particular C, and, therefore, a particular
G; second, perform a variational calculation using 0'0'
as a trial wave function and u as the variational param-
eter; and, third, perform a perturbation-theory calcula-
tion to improve upon the first-order energy if desired.

As a preliminary to the calculation of the integrals
necessary to compute (22lH lm) where m and 22 are used
to denote two states, let us consider the kinetic (I l

K
l m)

and the potential (22l Vl2N) energy contributions sepa-
rately. As is well known, pp has nonzero matrix elements
between states in which the phonon occupation numbers
are all equal, in which case the matrix element is

l
22), ' 22), " /')

L(22 c, a f)
—1/2at c,a7)(. . .

y [(22,c, )2 f)
—)/2at, c,)2]

l 0)
where

cc ' =(2 c* ) '&'(CC ' Qc *

ag' i
The energy of the state given in Eq. (20) is

(20)

or
(22lKl2/2)= ——,

' app'))t(22), ' )„(I ),' )„7'/' (26)

elKlm)= —-'a~, L(e&' ) (e z' ) 7/' (27)

and between states in which all the phonon occupa-
tion numbers but two are equal, and these two satisfy
either (I),' a)„= (22), c a) +1, (n ),'a)„=(N ),"a) +1, Or

(n), c a) = (22),
' a) —1, (22 ),

' a) = (22 ),
' a) —1 in which

cases the matrix elements are

respectively.E(I c,a. . . I,c, )2)

+22~c cd)~ca+ +/pic Pppp lc IP(21)

&oil g v(q,'—q;)lo
i, c&j,K

3. Computation of (Ol Vl0)
In addition, p)), =pp ), and D), D&t will ob——tain. It
should be noted that states given by Eq. (20) are not
Hermite polynomials in the Qt), ' because (at),"")"lo)
= (p)~c agtqc a)"

l 0) here.

III. MATRIX ELEMENTS

A. Preliminary Discussion

We wish to use the wave function

S
V(qp' —q ")op'2 dq

2 jcccK
(28)

op' ——A exp{—2apgGg) (22)
Ã

V(r'" )lp( )"r"—R '")dl"'c (29)
j, c, K

as a trial wave function in a variational calculation of
the ground-state energy of a crystal whose Hamiltonian where the function
in the adiabatic approximation is

H=ppp+2 Z V(e' —qi"),
i, c+j,K

(23) (30)

where V is an atomic potential and the reduced variables has been used, and where q "=q;"—qp', (qi' ')+
have the same meaning as in Eq. (6). =q "+qp', r' '=r;" rp', and R "—=R;"—Rp'.

It is apparent that 0 o is the lowest eigenfunction of Integrals involving correlated-Gaussian wave func-
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tions have been discussed in the literature" ";however,
the simpler expression given in (II-9) will be used here
for the evaluation of Eq. (30), and a different approach
will be taken in the next subsection when we discuss
integrals involving the product of a general polynomial
and a correlated-Gaussian.

Equation (II-9) rewritten in notation suitable to this
paper is"

(~ 8Ncc/2

«p( —~'e~v) ~v.=I—
(a2

&&expI —a2g (M
—',g) 'q.$. (31)

Here, the vector q has been broken into subvectors q,
and q„, and the matrix M into submatrices simiL~rly.
The same notation as in II for components of inverse
matrices and inverses of component matrices has been
used. "The determinant of a matrix is written

I
M

I
.The

number of atoms whose coordinates are integrated over
1S gy.

In order to simplify the notation used later, q„will
always refer to all coordinates except q0' and qj", unless
otherwise stated. A subscript y on matrices or other
vectors will refer to the same set of coordinates; the
subscript x will occasionally be used to represent 0'

and j'.
It is clear from Eq. (16) that

(G
—1 )

—1 .cg — (6—1 )
—1 cc.6—1 .cg. (6—l. .gg)—1 (3{j)

Using Eqs. (35) and (36) and noting that

6—l. , cg-—'f, c0. ~—1 0. 'f—1,0gij i0 '((2)) 0
'

Oj

+pc 'f. cX.~—1 X.T—1 .Xg (37)

where P' represents the sum over all frequencies except
Mo ', cL= 1, 2, 3, one can obtain

(G
—1 )

—1 cc —(P
—l, .g—c, g—c)

—1

o)pP —+ 0
(38)

hnm (G '..) 'oj'"= —L1+o(~0)j(G '**) '«", (39)
o)pP ~ 0

and

I~ '
I

=-'& 'IP ' " '" 'III( o' ) "" (40)

6 '00"——6 ';j"" and 6 '0 "——6 ';0"'. The latter equality
holds because we intend to treat the case of a central-
force, two-body interaction, and so can use Eq. (5).The
elements of Eq. (34) can be put into a form more easily
evaluated in the limit ~0' —+0 with the aid of the
matrix identities given in (II-7) and (II-41):

(G 1 ) 1 cc

(6—1 cc 6—1 .cg. (6—1. gg) —1.6—1 gc)—1 (35)
and

G = Tco T (32) o)pP —+ 0

As in II, a problem is introduced because ~00 =0:G '
does not really exist. This results from the translational
invariance of Hz. In II, we circumvented this problem
by setting q0 =0, and taking the limit of all expressions
as a0' —+ 0. Here it is more convenient when performing
integrals involving states with one or more phonons
excited for one to follow the alternate procedure sug-
gested in II, in which one integrates 6rst over q„, next
over ((Ijc g)+, and then takes the limit of the resulting
expression as w0 —+ 0.

Thus if one combines Eqs. (22), (30), and (31)

f(q, c g) —Q 2 (lr/(82)8(K 2)/2 llm IG I

1/2
I
Q 1

I

1/2

copP -+ 0

&«exp' —~'V (G ' ) 'V j d((l' ")+ (33)

results, where

where

p 1''" "" '= l lrl I G—l. .gg

o)pP —2 0

6—l. gc. (6—1 cc)—l.6—1 .cg] (41)

and is the appropriately labeled element of the inverse
of the matrix F formed by striking out the (0') row and
column of G.

Thus substituting Eq. (38) into Eq. (34) and Eqs.
(38)—(40) into Eq. (33) we find that

lim q (Q 1 ) 1/t q, c g (P 1 g c K c) 1 q, c g (42)
copP ~ 0

P(a")= -'"~8IP ' " '"-'I "'
)(eXpL &2q c, g. (p l. . g—c, g—c) l, q. , )c(g43)

cg

6 '„=
j0

6 1 .cg
Oj

6—l..ggjj

and that

gc2 28/2g8 gc((82~ )1/2/(lr(N —8)/2+8/2Q) (44)"S. P. Boys, Proc. Roy. Soc. (London) A253, 402 (1960).
lg K. Singer, Proc. Roy. Soc. (London) A253, 412 (1960).
"Strictly speaking, Eq. (31) is valid only when the integrals

are over all space. Here, however, the matrix M will be such that
the particles are localized in a region of space that is Inuch smaller
then the lattice, and the correction to Eq. (31) due to Gnite limits
on the integration will be completely negligible. The single excep-
tion to this statement is discussed immediately following Eq. (44).

"The essential aspect of the notation is that, in order to save
writing unnecessary parentheses, M ';; or 3f;; are used to denote
the ijth component of M ' or Mt, respectively.

In Eq. (44) g' signifies that the three 0)00 ~ are omitted
froxn the product, and 0, the volume of the system,
arises from the integral over d(qj g)+.

C. Computation of General Matrix Element

It follows from Eqs. (18)—(20) that the computation
of the general matrix (I I VI2/8) will require performing
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an integral of the form

cg ~ ~ X
sg ~ ~ 1

c pr

j v ~ v]
n, p„,v

M" q'q" p V(q c'—
cI v)qc02dq

P2 V

Thus, if each term in gv is of mth degree in the q
it is clear that repeated application of Eq. (50) 22 times
will reduce the original integral to one involving only
products of Co" and of the mth order derivatives of
V(q "). Furthermore, each of the resulting matrix
products can be expressed explicitly in terms of the

and the Tip'"~~.
Applying Eq. (50) twice we obtain

where the equality follows from the symmetry proper-
ties of V and Co'agd g3f"'qV(q' ")4o"dg

M IcK ''X ~ )gG K ''' X

j ~ ~ 1 & ~vs i, j -i, ~ ~ ~ 1 —i (46) =-'a—' Tr(G—'M "&) V(q' ')C "dq

The tensor 3f will have the form C»" |c'G 'M"&G 'VV(q' ") dg (51)

C'''C IC'''K3I ~ / ~ ~ I
g ~ ~ ~ g ) ~ ~ ~ 3

Q ~ ~ v Q
~ ~ ~ gl

T cX, ap. . .T, , c'icv, a'pv

.cc cc,v8. . .Tt, , cc' cc', v' v (47)vj

1g—2 Tr(G—1~(2)) V(q, c, cc)P(q, c, cc) dq. c, cc

where there will be one factor of the form T;1,'~ & for
each phonon of energy co1,"P excited in (22~, and one
factor of the form Tt»I'" "~ for each phonon of energy
co2"" excited in ~222). The properties of the T~2'" are
such that

gvccc ~ 1c gvccc ~ ~ 1cg(f +.. .+kv p pv) (4g)

where A(k) =1 if k equals zero or a reciprocal lattice
vector, and A(k) =0 otherwise. Thus V only has matrix
elements between states of equal reduced wave vector
as would be expected. It is clear that this result follows
from the periodicity of the lattice.

Next, consider the integral

qicV(q' ")Co"dq=A" gvV(q c ")

X exp( —qGq) dq, (49)

g2V(q ")C2"dg==
2c

Co"V'G '21 V(q' ") dc' (50)

results. For the integrals of interest in calculating
(22~H ~222), G '2c will always involve either the product
(VG 'T);&c" ap or (TtG 'V') &1

"c pa which, from Eq. (16),
areequalto(a&1, "P) 'V' ' T '" Por(cvk"») 'Tt1, "'P V'1'

respectively.

"The integrated term vanishes by reason of the periodicity of
the lattice. Strictly speaking the lattice and the wave function
should be continued out of the L&(L)&L region being considered.
See, e.g., E. H. I.ieb, Phys. Rev. 130, 2518 (1963), Ref. 17.

where v is a vector whose elements can be functions of
the q . If one now integrates by parts in each term
that results from the inner product, one Ands that the
integrated term vanishes" and

+ P(q' ")17G—'M&'&G WV(q '") dq '" (52)

where
( ca ca

~
H

~
0) 1&2~ c,a+H cc, aa

., P g P (r, 1,c R, i,,)
41i2(& c,a& cc,P)1/2

and the superscripts and subscripts in the bra and ket
state vectors have their most obvious meaning. In
Eq. (56), since V(r;~ c') is a function only of rP and
r;, the vector t7T has only six components; the notation
(TtV')1, ' (VT)2" P is used to indicate that the open
product is taken,

Note that the last two terms in Eq. (53) give the
phonon energies to first order, and 'that Eqs. (55) and
(56) are the matrix elements which are required for the
computation of second-order correction to the ground-
state energy due to two phonon processes. It would be
expected that II1," ~g~~1, ' and that Q1, '" I p
in' ~p.

IV. NUMERICAL WORK

A. The Dynamical Matrix

The theoretical developments presented in Secs. II
and III have been applied to obtain numerical results

where M") is a second-rank tensor.
Using Eqs. (25), (33), and (52) one can obtain explicit

expressions for certain matrix elements as follows:

(1,' "(H
~ 1,

' )= (0)H )0)+-'a'cu1, c "+H " aa (53)

( c, a~H~ a, p) H ccc, ap 1 ~~~ p (54a)

(" "~H~O) II '"'p i n~» p (54b)
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for a simpli6ed, but instructive, model of a solid —a bcc
crystal in which each atom interacts with its nearest
and second-nearest neighbor through a Mie-Lennard-
Jones 12-6 potentiaL The details of the calculation will

illustrate certain features of the application of the
theory, and will bring out the implication of Eqs. (29)
and (53) from a computational point of view.

In constructing the matrix G to obtain a suitable
trial wave function, one can proceed along two diferent
routes: A model harmonic Hamiltonian IIj can be
chosen, and its eigenfunctions and eigenvalues then are
used for the calculation of the matrix elements of the
crystal Hamiltonian II, or, alternately, an arbitrary set
of coi, and Ui, can be chosen either ad hoc, or as a result
of some variational procedure. Ke have followed the
former procedure exclusively. This guarantees that 'kp

at least be a reasonable choice for a trial wave function,
and, in addition, restricts the number of free parameters
to a controllable amount.

Two different model harmonic Hamjltonians were
investigated. In one, each atom interacted with its
nearest and second-nearest neighbors with a Hook. e's-
law central force; a set of eigenfunctions could be
generated by varying the second-nearest-neighbor force
constant, while the nearest-neighbor force constant was
held at unity. In the other model Hamiltonian, a
nearest-neighbor only interaction was used in which

Details of the construction of the dynamical matrix
are discUssed in Refs. 6—9. In the example considered
here one can readily find

D~ ——1—cos(k,) cos(k„) cos(k,)
and

(59)

B. Calculation of Ground-State Energy

The Mie-Lennard-Jones 12-6 potential is given by

D, ~= p sin(k ) sin(ke) cos(k,), aWPNy/n, (60)

where the nearest neighbor of (0,0,0) is located at
(1,1,1).

As is well known, the symmetry of a cubic lattice is
such that the roots and eigenvectors of D& need only be
found in the 1/48—which can be called the irreducible
part —of the first Brillouin zone determined by the con-
ditions k,&0, k„&k„and k, &k„. In the remainder of
the zone, the roots are repeated and the eigenvectors
may be obtained from simple symmetry operations on
the vectors of the irreducible part of the zone. The al,
and Uq were determined numerically by means of an
IBM 7094 FORTRAN rv computer program at all points in
k space —which in this case form an fcc lattice —within
the irreducible part of the first Brillouin zone of a
crystal containing X=I.' atoms. Effects due to varia-
tions in E will be discussed later.

V'. .0.a-
x&j (57) V(r) = 4el (a/r)" —(o/r)']. (61)

V&; e= —(3p/8) (R&; R&)e/R&p) a.Wp (58)

where i and j denote nearest neighbors. Then V;~ is
determined by Eq. (4), and the remaining ma, trix
elements equal zero. Equations (57) and (58) with p= 1
would arise from a Hooke's law central-force interaction.
Since there is only one atom per unit cell in the model
chosen, we have dropped the first set of superscripts in
Eqs. (57) and (58), and will continue to do so in the
remainder of this section. "

It was found that of all the wave functions tried, the
one resulting from the potential given by Eqs. (57) and
(58) with p=0.9 gave the lowest value of (0 l

H l0), and
so this case will be considered exclusively in the re-
mainder of this paper. However, the value of (0lH l0)
was not too sensitive to the value of p, and also was not
much lower than that obtained from the first model
described when the second-nearest-neighbor force con-
stant was =0.1.

It should be kept in mind that the model harmonic
Hamiltonian is only a tool and that one is free to choose
it without regard for the elastic constants, etc. of the
substance whose properties are governed by the true
Hamiltonian II. Of course, one should select a model
Hamiltonian whose ground-state eigenfunction gives a
goo d value for (0 IH I 0).

"This means the same symbol is used for Rj as for Rj—R0.
However, no confusion arises from this because R0=—0.

Thus the Hamiltonian appropriate to the crystal de-
scribed in the preceding subsection is

ly2 P V 2+2 P(r .-12 r,—6) (62)

where R~ and R; are nearest or second-nearest neighbors,
X'= k'/(mo'e) and o and e are used as units of distance
and energy, respectively. Here it is not necessary to
incorporate X into the transformations given im-
mediately preceding Eq. (6); however, the right-hand
side of Eqs. (25)—(27) must then by multiplied by X'.

In order to evaluate Wo==(OlH l0) it is necessary to
determine F ';; for the eight nearest neighbors and six
second-nearest neighbors of (0,0,0). By substituting
Eqs. (12) and (37) into Eq. (41), one can obtain

F ';;= (2/7) P (1—e+' &)Uq rag 'Uat. (63)
k&p

Since the lattice defined by the R; has the same sym-
metry as that defined by the k vectors, and the sum in
Eq. (63) is over all k vectors (except k=0), F ';; is the
same for all equivalent neighbors of the origin. One can,
therefore, speak of the irreducible zone of coordinate
space. It is convenient to use the conventions +&1& to
designate a sum over all vectors in the irreducible zone
of either coordinate or k space and P&~& to designate
a sum over all vectors equivalent to a particular vector
in the irreducible zone. In addition, a bar over a symbol
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will designate that its subscripts refer to vectors in the
irreducible zone and that the quantity represented by
this symbol is identical for all equivalent vectors.

Thus we may write, in general,

W0/1V= A'a9, 2 p o», //&/

k, a

+-', g, &r& E&&E&&&f (r—Ri) &Er, (64)

where l(«(r —Ri) =—g(r& —Ri) has been used, and where
E ~' is the number of atoms located at lattice sites
equivalent to R;, ¹&E&will be used later in a similar
vein. In the case of nearest and second-nearest-neighbor
interactions only considered here, Eq. (64) becomes

t/I/'0 u9'
+4 V(r)lt'iii(1' —Riii) &fr

4g k, a

If one transforms each integral in Eq. (65) to a
primed coordinate system in which 0 is measured from
the axis defined by Ri, the integrals on the right-hand
side of Eq. (65) become

Xexp f —a2(y, &'&r'2 sin28+y«&'& (r' cos8—b)2j) (73)

and

V(2,0,0) =6usyr&2&(y«&2&/2r)'" V(r')

Xexp( —a'Ly, &'&r" sin'8+y«&'& (r cos8—2b/v3)'1)

(74)
where the nearest-neighbor distance is b,

+3 V(r)$200(r —R,0,) dr y, &'& = $ (F&. ..&
&»)«—(F&. ..&

&») ~&2$
—' (75a)

—=E+V(1,1,1)+V(2,0,0) .
»&"'= E{F&i,i.»'») +2(F&i.i,»'") s3 ' (75b)

(65)

F—i. .—P„&r& F.&» (66)

As a first step toward finding F ';; we may rewrite
Eq. (63) as

p &&=L(F & &)

&2& = ((F &»)»g-i

(76a)

(76b)

(F&»0 0&)'= o. (72)

In these expressions it is understood that n, P, and y all
refer to a different Cartesian coordinate and that
P,&&,

v&cp& indicates that the sum of the three cyclic
permutations of n=00, p=y, and y=s is taken. Note
that Eqs. (68) and (69) describe a matrix whose diagonal
elements are all equal, and whose off-diagonal elements
are all equal.

where

F;&»=(¹&&/241V)gx& '(1—e'"' i)U&, o& 'U&t (67)

and the sum prescribed by P&,&E& involves a summation
over all 48 combinations of reQection and permutation
operations on the components of k The general expres-
sion for such a sum is rather messy; however, in the
special cases considered here it is readily found that

(F&i i i&&"&)-=(16/31')$1—cos{k,) cos{k„)cos(k, )j
XTr(Ux. &0&,

—' U&,t), (68)

(F&i, i, i&&~&) s= (16/3Ã)
Xg,s, ~&op& Lsin(k ) sin(k&&) cos(k„)j

X(U&, 00'
—'-Uat) s, (69)

{F&2.0,0&'"')-= (4/&)2&2 L1—cos(2kP)3

X (Ux &ox-' Uat)» (70)

(F&2,0, 0&
")ww= (F&2,0,0&'" )**

= (2/cV)P &2

& P&L2 —cos(2k&2) —cos(2k')$
X(U&, 00' 'U&t)-, (71)

TABLE I. Calculations of Z a&2 /S, 7&&
& &, 'ri&&&, y&& &2&,

and yj.(2) for various values of L.

Z &0P/l&f

10 2.83911
20 2.83963
30 2.83966
40 2.83966
50 2.83966

1.53971
1.53948
1.53947
1.53947
1.53947

0.40797
0.40893
0.40898
0.40899
0.40899

Yl l
(2)

0.39093
0.39212
0.39218
0.39219
0.39219

»(2)

0.42129
0.42188
0.42191
0.42192
0.42192

'7 In the example considered in I and II, where exact expressions
are available for S(X)—=Zcuz/iV, for example Lace e.g., Eqs.
(II-IO) and (II-13)g it is readily found that LS(~)—S(N)g/—S(~)~Ã ' so that the convergence to the limiting value is
quite rapid.

The sum over frequencies necessary to obtain the
kinetic-energy contribution to 8'0 and the appropriate
sums specified by Eq. (67) necessary to evaluate

g &0 ~/1V 7 &'& y &" y &'& and y &'& were performed
simultaneously with the computer diagonalization of
D&,. The results for a few values of I.(/&/= I.') are given
in Table I. Apparently these quantities approach their
value in the limit E —+~ for rather small values of X.'~
Of course, it is necessary to take into account many
shells of nearest neighbors in the calculation of the
ground-state energy of a true crystal, and a larger
value of E would undoubtedly be required for the ac-

curate calculation of the F for more distant neighbors.
The correlated-Gaussian wave function considered in

this paper can best be compared with a Heitler-London—
type wave function 0 ' constructed out of a product of
Gaussian orbitals centered about the equilibrium sites
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of each particle. Such a wave function results if G is set
equal to a"I in Eq. (7), where I is the identity. In this
case, Eq. (65) would become

Wo'/E=3a'') '/4+4 V(r)P'(r —Riii) dr

+3 V(r)P'(r —Rsoo) dr, (77)
'D

D 3=E'+ V'(1,1,1)+V'(2, 0,0), (77a)

where

P'(r —R ) =a"(2/s. )s" expL ——',a"(r—R;)$. (78)

Thus the integrals in Eq. (77) are given by Eqs. (72)
and (73) with y, &'&=y„o&=7,&'&=y„&'&=-'s.

Suppose that a variational calculation has been per-
formed and that the value of a', which minimizes
Eq. (77), has been determined. If one then chooses
a p t 1( ) = gu &

the parts of the integrals necessary to
evaluate V(1,1,1) and V'(1,1,1) which have to overcome
the hard-core overlap between nearest neighbors are
equal, but, since y, &"(y ~, &'&, the exponential in Eq. (72)
is large over a greater region of space in which V(r) is
attractive than is the exponential in the integral expres-
sion for V'(1, 1,1). Thus it is found that V(1,1,1)
(V'(1,1,1). Since yt~&s&&p~t&'&, @ allows the second-
nearest neighbors to approach closer than 4' does, but
not so close that the hard cores begin to overlap. Since
the potential dies off rapidly, this results in V(2,0,0)
being less than V'(2,0,0).Thus V will be less than V' by
an undefined amount.

Next consider

E//E'= Q o&o&/(6'

i�)
&'&) . (79)

One can evaluate this quantity readily using the values
for P o», &/cV and y~~ "& given in Table I for I.=50 and
E/E'= 0.88 results. ' Of course, in a variational calcula-
tion of t/I/'0, one would minimize with respect to a, and
should find that. (Wp Wp)/E )0.12. Thus it follows
that one can improve any computation of the ground-
state energy of a bcc crystal in which a wave function of
the type 4' is used by using + instead of +', and that
this improvement will be at least equal to 12% of the
original kinetic energy. Since there is nothing special
about a bcc crystal, the preceding statement probably
applies to any crystal.

A variational calculation in which both t/t/o and t/t/'o

were coxnputed at various values of X has been per-
formed. The results are shown in Fig. 1 together with
the decrease in total energy. This decrease when
expressed as a percentage of the kinetic energy obtained
by using the correlated Gaussian wave function was

io-' io-'

/(0 m g)

.OOI

I'IG. 1. Ground-state energy per particle measured in units of &

as calculated using a noncorrelated (Wo'/(iso)j and correlated
Lg o/(lire) j Gaussian wave function. The difference of these two
quantities is also shown on an expanded scale.

C. Calculation of Phonon Energies

The phonon energies to first order for a system with
one atom per unit cell are given by the second and third
terms on the right-hand side of Eq. (53) with the ap-
propriate modification of superscripts; thus we may
write

approximately 14%, which is seen to be slightly greater
than the expected 12% minimum and was divided
roughly equally between the kinetic and potential
energies; the division would be equal if the crystal
potential, were only composed of a constant and a
Harmonic term. As would be expected, the improvement
in energy becomes greater as X increases, because the
e5ects of correlation are more important in crystals com-
posed of light atoms. Further discussion of the signi6-
cance of the numerical results will be deferred until
Sec. V.

The value b=i.095o. was used for the nearest-
neighbor distance in all calculations. This value is the
classical equilibrium distance for the model chosen.

In order to avoid the artificial singularity produced by
the r " term in the potential, we modi6ed the Mie-
Lennard-Jones potential by multiplying it by a factor
L1—exp( —cr")jwith c= 10 000. This did not noticeably
alter the value of the potential for r&0.3, but did pro-
duce a function which approached a large positive
constant as r —+ 0, and also possessed continuous non-
singular derivatives. The energy calculations were in-
sensitive to rather wide variations in c.

'8 In I the value for the quantity equivalent to what is called
IC/E' here was found to be 8/s'=0. 81. E&~ ,'a9P~&"+H&«——-(80)
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and TABLE II. Zeroth- and 6rst-order phonon energies at
various values of X' for k = (0.4s,0.3s.,0.ls).

EE), =E(4a'(ds )
—'Q'r) Q(~) p(rj —R;)

XZee (2'»' —&'»') ~le

X Vje'P';, &'- Z—'jps'-) V (rj)drj (81)

=(2 ' ) 'Z. '" Z"'0( —R)(1—"")
Xgpp U), eV'ieWie'U), ~' V(rj)drj, (82)

where Eq. (56) has been written more explicitly by
using V)V(rj) = —VpV(rj) to obtain (81) and (82) then
follows from Eq. (12). If one takes the indicated
derivatives

ua —(2(iso)&u)-I p.(I) p()r) p(rj Rj)(1 eik. Rj)

0.00001

0.0001

0.001

0.01

u9 2~J,a

0.0451
0.0624
0.0204
0.143
0.197
0.0645
0.494
0.683
0.223
1.75
2.41
0.790

0.0475
0.0637
0.0128
0.153
0.207
0.0432
0.509
0.705
0.170
1.85
2.71
0.851

V'(rj)
+ V"(rj)—

V'(rj) E(rj U.)~"7
drj

-(V'
~

V'
Tr(D&j)

I
V

I
cos'(A+V"+—

V'
I+(IJa Ds' &s)-~ V"——(3 cos'e —1)

r

XP '(r —R ) (Er, (84)
where

Ds' ~e= (X.(e)) 'g ( )(1—e '~' j)R R ~/RP. (85)

Results from a numerical calculation of unco~ and of
E),~ for k= (0.47r, 0.3s., 0.1s.) are shown in Table II.
The value of u' was chosen to be that which minimized
8"0 for each different choice of X', and the particular
k vector was simply considered to be a typical random
choice. It is interesting to note that, even though the
only connection between the model Hamiltonian and
the true crystal comes from the variational selection of
a~, the first-order phonon energies were within about
10% of the zero-order energies. This result obtained
throughout most of the phonon spectrum although the
energy values are not tabulated here.

The value I.= 10 was used in the phonon calculation.

V. DISCUSSION

The techniques described in this paper should provide
a useful new approach to the calculation of the ground-
state energy and phonon spectrum of crystalline solids—
especially those of simple structure. In particular we

(83)
results.

In the example considered here each of the f(rj —R;)
is cylindrically symmetric about R; and Eq. (83)
assun1es a simpler form when expressed in terms of the
coordinate system used in Eq. (64).Thus one can obtain

aa —(4(rso) n) r—p +.(z)
Rj = (0,1,1)

(2,0,0)

intend to apply this theory to solid Ne and to solid He'
and He4 at O'K.

It is anticipated that the calculation of the ground-
state energy of solid neon will require little more than
the extension of our present computer programs so that
elements of F ' can be obtained for many nearest
neighbors, and the rather trivial modi6cations required
to treat the fcc structure. Mullin4 has calculated the
ground-state energy of solid Ne using what was essen-
tially" a noncorrelated-Gaussian wave function, and
has obtained a total energy of —431 cal/mole with a
kinetic-energy contribution of approximately 90 cal/
mole. We would expect to improve upon this result by
at least 10 cal/mole.

The results of Mullin's are equal to those obtained by
Nosanow and Shaw" who calculated the ground-state
energy of neon and other rare-gas solids using a wave
function constructed out of a product of the optimum
(as determined by a Hartree calculation) single-particle
wave functions which are spherically syn1metric about
a lattice site. We, therefore, conclude that the correlated-
Gaussian wave function is superior to this Hartree wave
function, and, as will be discussed later, is considerably
easier to work with.

A straightforward calculation of the ground-state
energy of solid He' or He4 would be for one to use a
correlated-Gaussian wave function multiplied by a
Jastrow function. This should result in an. improvement
over the result of Nosanows by at least 10% of his
kinetic energy —an amount of the order of 4 cal/mole.
Since, however, there are certain unsettled questions" "
concerning the validity of retaining only the Grst term
in the cluster expansion in the Nosanow calculation, a
perturbation-theory approach using the correlated-
Gaussian wave function is more attractive. Here the

"In reality he used a noncorrelated-Gaussian multiplied by a
Jastrow function. However, he found that the Jastrow function
had little e8ect other than eliminating the singularity in the Mie-
Lennard-Jones potential at r&(0- so that the calculation was
equivalent to simply using a less singular potential as was done
here.

~ L. H. Nosanow and G. L. Shaw, Phys. Rev. 128, 546 (1962)."K. A. Srueckner, Seminar, Stanford University, 1965 (un-
published).

ss D. J. Rosenwald (private communication).
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results are unpredictable, and one cannot say a priori
whether a reasonable value could be obtained for the
energy by retaining only a few higher order terms al-
though, in principle, convergence could be obtained by
brute force.

It is obvious that a first-order calculation of Wp fol
He' or He4 will give a poor value. In fact, since objec-
tions may arise concerning the use of a wave function
derived from the harmonic approximation to treat solid
He' or He4 where the atoms on the average reside on a
local potential maximum, we should like to point out
again that the Hamiltonian from which the trial wave
function is derived need not bear any relationship other
than that of identical crystal structure to the true
crystal Hamiltonian which uses atomic potentials. The
harmonic Hamiltonian serves merely to enable one to
6nd a correlated ground-state wave function and com-
plete set of excited states which can be readily integrated
over all but a few coordinates. In addition, the Gaussian
shape is not as bad at the particles' equilibrium position
as it is when two particles overlap. In calculations of the
ground-state energy of loosely bound systems using
Gaussian wave functions, the inadequacy of the wave
function at the equilibrium position contributes less to
the poor results obtained from such calculations than
does the fact that the wave function does not fall off
rapidly enough when two particles approach, and thus is
forced, in the variational calculation, to have too much
curvature and, consequently, too much kinetic energy.

The numerical work involved in using the correlated-
Gaussian wave function is not too dificult, and is of the
type that can be performed quite readily on a high-
speed digital computer. The ioq and Uq can be computed
once and stored on magnetic tape, and then the calcula-
tion of 8'p or E& involves one or two integrals for each
shell of equivalent nearest neighbors used. One can
readily test many different model Hamiltonians by
computing the various parameters that enter into the
energy calculations for small values of L, and then can
perform only one large scale calculation of the phonon
spectrum of the most promising harmonic Hamiltonian.

Except for obtaining values for a few E~, we have
not calculated any matrix elements of II other than
(0 ~H ~0). It may prove in practice that the use of Eq.
(49) for obtaining a general matrix element will cause

difhculty because the integrals involve derivatives of the
potential which, in the case of the Mie-Lennard-Jones

potential, are more singular than the potential. This
problem arises primarily from the choice of the analytic
form for the potential, and in a perturbation-theory
calculation it may be better to use the Slater-Kirkwood
form.

While the numerical results shown in Fig. 1 do not
apply to any real substance, and, therefore, are not
physically meaningful, we feel that they have this

significance: If one performs a variational calculation
using a noncorrelated-Gaussian and obtains an energy
lVp', and if the value of P, to which this corresponds in
Fig. 1, is Xy, the result of a calculation using a correlated-
Gaussian will probably be approximately Ws(X&).

It should. be poin. ted out that, while Eq. (29) is a
rather simple looking expression for (0

~
U ~0), the calcu-

lation would be very dif.Iicult by ordinary methods for
loosely bound systems. In effect, Eq. (29) is an exact
expression for what would be written as the expectation
value of a sum over the harmonic term and all of the
anharmonic terms in the conventional expansion of a
Harniltonian in terms of the qq' . Thus all of the an-
harrnonic effects are tak.en into account in this theory.

Although the orientation of this section has been
primarily directed towards discussing the calculation of
the ground-state energy for various systems, we feel
that this work. will ultimately be as useful for the calcu-
lation of the phonon spectra —or more precisely the
excitation spectra —of solids. One can, in principle, now

compute the phonon energies exactly using perturbation
theory and a knowledge of the atomic interaction. Qf
course, electronic effects must be taken into account
in systems for which they are important.

We have not discussed the problem of constructing a
properly symmetrized function out of a sum over per-
mutations of 0 p . This issue was taken up in II, and the
results obtained there are applicable to the three-
dimensional wave function considered here.
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