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Random-Walk Method for Calculating Correlation Factors: Tracer Diffusion by
Divacancy and Impurity-Vacancy Pairs in Cubic Crystals
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The random-walk technique is extended in a way that allows correlation factors to be calculated in all
cases where principle axes for diffusion can be found. The results are applicable both to tracer and to impurity
diffusion. Explicit calculations are given of correlation factors for the diffusion of tracers by bound impurity-
vacancy pairs in fcc metals and NaCl-type ionic crystals, and by bound divacancy pairs in NaCl-type
ionic crystals, CsCl-type ionic crystals, and fcc metals. Appropriate modifications for the "isotope effect"
are made for the case of impurity-vacancy pairs.

1. INTRODUCTION

S defined by Bardeen and Herring, ' the correlation
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factor f is the ratio of the diffusion coeKcient of
a species to the diffusion coeKcient computed on the
assumption of randomly oriented jump vectors. In gen-
eral, f is less than unity because, in general, successive
jumps of a particle tend to have displacements in oppo-
site directions. This is obviously the case for diffusion
by a vacancy mechanism: a tracer having exchanged
with a vacancy has a better than random chance of
executing the reverse jump.

Lately, there has been much experimental and theo-
retical effort in the determination of correlation factors
for self- and for impurity-diffusion in various classes of
crystals and for various diffusion mechanisms. Refer-
ences to particular work may be found in the review
articles by Friauf2 and by Howard and Lidiard. '
Generally, the correlation factor plays one of two roles
ni the investigation of the atomic mechanisms of dif-
fusion. If the diffusion mechanism is known, then a
comparison of measured and calculated values of the
correlation factor may allow certain atomic parameters
(e.g. , jump frequencies) to be determined. On the other
hand, when there is some uncertainty about whether
diffusion occurs by one or another mechanism, the
question may sometimes be decided by a comparison of
the measured correlation factor with those implied by
the alternative diffusion models. It was demonstrated
in this way that silver interstitials in AgBr and AgC1
diffuse by the so-called "interstitialcy" mechanism. '

Two general methods have been available to calcu-
late correlation factors. In the pair-association
method, s s impurity-vacancy (or tracer-vacancy) pairs
are distinguished and their Aux calculated in terms of a
set of frequencies describing vacancy jumps between
sites variously situated with respect to the impurity.
Pair-association calculations proceed by straight-

' J. Bardeen and C. Herring, in Imperfections in Nearly Perfect
Crystals, edited by W. Shockley (John Wiley Bz Sons, Inc., New
York, 1952), p. 261.

2 R. J. Friauf, J. Appl. Phys. Suppl. 33, 494 (1962).
3 R. E, Howard and A. B. Lidiard, Rept. Progr. Phys. 27, 161

(1964).
4 A. B.Lidiard, Phil. Mag. 46, 1218 (19SS).' R. E. Howard and A. B.Lidiard, J.Phys. Soc. Japan Suppl. 11

18, 197 (1963).

forward kinetic methods and yield closed-form expres-
sions for diffusion coeKcients and hence for correlation
factors. However, the approximations which are in-
herent in this type of calculation make it somewhat
inaccurate unless there is substantial binding between
the vacancy and the impurity. Also, it appears that the
pair-association method can be easily applied only to
the case of diffusion by a single-vacancy mechanism in
cubic crystals.

In the random-walk method, introduced by Bardeen
and Herring, ' the starting point is the Einstein formula

D = (R')/6t, (1 1)

(or a suitable generalization of this formula for an
anisotropic crystal). Here (R') is the mean-square dis-
placement of a diffusing particle in the time t. If the
displacement vector R of the diffusing particle is written
as the sum of the vectors representing individual par-
ticle jumps, then the correlation factor may be found
as an infinite series in the cross terms between jump
vectors Lcf. Eq. (2.4)]. In situs, tions having special
symmetry, namely situations where all jump vectors of
the diffusing particle are axes of two- or threefold
symmetry, "the series expression for the correlation
factor reduces to the simple expression

f= L1+(cos8is)/1 —(cos8is)$, (1.2)

where (cos8is) is the average value of the cosine of the
angle between any two consecutive jumps of the dif-
fusing atom. The quantity (cos8») may be calculated
numerically. ' ' We note, however, that the validity of
Eq. (1.2) depends on a rather strict symmetry condi-
tion. The use of the random-walk method has been, for
the most part, limited to cases where such a condition
is satisfied. (Exceptions are the particular calculations
of Compaan and Haven, ' of Mullen and of Huntington
and Ghate. ")

~K. Compaan and Y. Haven, Trans. Faraday Soc. 52, 786
(1956); 54, 1498 (1958).

~ An equivalent but somewhat different version of this symmetry
condition is presented in Sec. 2.

e J. R. Manning, Phys. Rev. 136, A1758 (1964), and references
therein.' J. G. Mullen, Phys. Rev. 124, 1723 (1961).IH. B. Huntington and P. B. Ghate, Phys. Rev. Letters 8,
421 (1962);H. B.Huntington, P. B.Ghate, and J. H. Rosolowski,
J. Appl. Phys. 35, 302'l (1964).
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One of the objects of this paper is to extend the
random-walk method by deriving an equation for the
correlation factor, analogous to Eq. (1.2), which remains
valid irrespective of the symmetry of the jump vectors.
Such an equation is derived in Sec. 2 and permits corre-
lation factors to be calculated in cases where Eq. (1.2)
is not applicable, by the same computational methods
as for simpler cases, and without very' much greater
difFiculty. In Sec. 3, we calculate correlation factors for
the particular cases of tracer diffusion by divacancy
pairs and by impurity-vacancy pairs in cubic metals
and ionic crystals (impurity-vacancy pairs in fcc metals
and NaC1-type ionic crystals; divacancy pairs in fcc
metals, NaCl-type ionic cry'stals and CsCl-type ionic
crystals). In addition, for the case of impurity-vacancy
pairs, we calculate the effect on the correlation factor of
varying the mass of the tracer.

There has been much evidence lately for the operation
of pair mechanisms in certain situations' "—"and the
correlation factors associated with these mechanisms
may soon be measured. It is hoped that the present cal-
culations may serve as a basis for obtaining detailed
information from such measurements, particularly in-
formation about the ratios of certain characteristic
vacancy-jump frequencies which determine the correla-
tion factor (e.g. , the ratio of the impurity-vacancy
exchange frequency to that for a normal atom-vacancy
exchange if the diffusion mechanism is via impurity-
vacancy pairs) .

2. FORMULA FOR THE CORRELATION
FACTOR

We shall obtain a generalization of Eq. (1.2) by ex-
tending the formulation of the random-walk method due
to Mullen. ' We begin by writing the Einstein formula
in a manner valid for anisotropic crystals. For an
anisotropic crystal, the diffusion coeScient is, in
general, a second-rank tensor. Such a tensor may be
diagonalized by ending principle axes for diffusion and
we assume in what follows that such axes have been
found. In many cases, they may be found by inspection
but in cases of sufhcient complexity their determination
may not be straightforward. Assuming that the diffu-
sion-coe%cient tensor has been diagonalized it is easy
to show that each of the diagonal elements, D, for
example is given by an equation of the form

D.,= lim (Xs)/2t, (2.1)

"N. Laurence, Phys. Rev. 120, 57 (1960};K. Yharmalingam
and A. B.Lidiard, Phil. Mag. 6„1157(1961).

~ L. W. Barr and A. D. LeClaire, Proc. Brit. Ceramic Soc. 1,
109 (1964)."L. W. Barr, J. A. Morrison, and P. A. Schroeder, J. Appl.
Phys. 36, 624 (1965).' F. Ramsteiner, G. Lampert, A. Seeger, and W. Schule, Phys.
Status Solidi, 8, 863 (1965).

»The results of this section were reported on at the Fefth
Coeferertce ort the Reoctioity of Solids, MNnich, 1964, edited by
G.-M. Schwab (Elsevier Publishing Company, Amsterdam, 1965),
p. 255.

where (X') is the mean-square displacement of a dif-
fusing particle along the x principle axis in the time t.
If the crystal is isotropic, (Xs)= (ys) = (Z') = s (Rs), and
we recover Eq. (1.1).

Following Mullen we rewrite Eq. (2.1) in terms of
individual atomic jumps. Suppose that in the time t
there is a sequence of e jumps and suppose that x; is the
projection of the ith jump along the principal axis x.
(The magnitude of x, maybe positive, negative, or zero. )
We may then write for the total displacement X along
this axis

X=+ *;. (2.2)

Substituting Eq. (2.2) into Eq. (2.1) we find that

D,=lim ((g x~)')/2t(N)
n-+co i=1

(2 3)

=lim f,((P xP))/2t(rt),
n-+to i=1

where we define the correlation factor f„ for the x
principle axis, as

f,=1+2g (x,x;+1+x'x'+2+' ' )/g (x, ). (2.4)

We note that in evaluating Eqs. (2.3) or (2.4) we need
only include those jumps for which the x component
of displacement is nonzero and we here and henceforth
in this section restrict our considerations to such jumps.
In the absence of any correlations between jumps (i.e.,
if the probability that the jump j is of a particular
length and direction is independent of the length and
direction of the preceding jump j—1, for all j) then

for all j and j+k. Hence, in this case, f,=1.
Equation (2.4) for f, is in a somewhat intractable

form since it involves correlations not only between
consecutive jumps (i.e., terms (x,x;+r)), but also corre-
lations between jumps that are not consecutive (i.e.,
terms (xix;+s), k) 1). We wish now to reduce Eq. (2.4)
to a form where only terms describing consecutive
jumps appear. The simplest, nontrivial case where such
a reduction can be made is the case where al} jumps are
equivalent; i.e., for all jumps j which have nonzero
projections along the x axis, the magnitudes of the pro-
jections ix;i are the same and also the averages

(x,x;+r) are the same. This is the case, for eample, for
diffusion of tracers by vacancies in a cubic crystal.
Here, all nonvanishing projections of tracer jumps in the
x direction (which we take along a (100) axis) are of the
same length, a, the spacing between lattice planes; also
the probability that the x projections of two consecutive
tracer jumps are in the same direction or in opposite
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directions is the same for any two consecutive jumps.

(x;x;+i)/a'= P, (2.5)

where $ is a constant independent of j.When all jumps
are equivalent' '

(xjxj+2) (xjxj+1) (xj+txj+2) ((xix2) l
(2 6)

a' a' a' E a'

Then
N

(x„x „)/a'= g t,'P.
P=1

(2.11)

It is now easy to show that the t; & can be expressed in
terms of tp&. We erst note the following recursion rela-
tion for the pi~~P:

By induction
(x;x;+;)/a'= ((xixs)/a') '. (2 7)

Equation (2.7) now allows Eq. (2.4) to be summed, and
we obtain

f,= L1+(xtxs)/a'/1 —(xtxs)/a'], (2.8)

Hence,

N

p;. +'=Z (p p P+P' .V "-'). (2»)

(2.13)

which expresses the correlation factor in terms of an
average over any two consecutive particle jumps. If the
crystal is isotropic, then it is easy to show that (xixs)/
a'=(cos0is), the average of the cosine of the angle
between any two consecutive jump vectors, and we
recover Eq. (1.2).

We wish now to find the analog of Eq. (2.8) under
the general condition that not all jumps are equivalent.
Let us suppose quite generally that there are X types
of jumps (labeled by the subscripts n=1, ,E) such
that for all x; of the same type the series

We may now construct the E&CE matrix T; with the
elements tj P. Then from Eq. (2.13)

T;= (Ti)j, (2.14)

which is the desired relation. From Eqs. (2.9), (2.11)
and (2.14) we may now write for the correlation factor

f,=1+2c Ti(l —Ti)—'1, (2.15)

where c is the row matrix (ci, cs, ,c~), and I is the
X)&X unit matrix and 1 the ¹omponent unit column
matrix. We have made use of the identity

P (xjxj~;)=P (x.x,;),

where the subscript n,i refers to the ith jump following
a jump of type 0,. If we assume that all nonzero x dis-
placements are of the same length a, (this restriction
will later be removed) then we may write Eq. (2.4) as

(I—Ti)—'= &+Q (Ti)j.
j=1

The extension of Eq. (2.15) to the case where the x„
are of different lengths is straightforward. We Gnd in
the more general case the expression

f.=1+2 g c P (x x,;)/a', (2.9) where
f,=1+ 12Ti(1—Ti) 'd (2.16)

where c is the fraction of jumps of type n in any long
sequence of jumps Li.e. , it is the a Priori probability
of an n-type jump; (cf.Ref. 9)].We now recognize that
x x,;/a is &1 (ignoring as before jumps perpendicular
to the x direction), and that (x x„,;/a') is equal to the
probability that x,; is in the same direction as x minus
the probability that it is in the opposite direction. Let
us delne the quantities pj~ P as equal to the probability
that given an initial jump of type o,, the jth jump
following (excluding perpendicular jumps) is of type P
with an x projection in the same (+) or opposite (—)
direction as that of the initial jump. "Let

(2.10)

's It may happen that there are jumps of type o; (as deimed
above), say os and ~&, for which p;~~&s/p;~~». Accordingly, we
amend the definition of "type": Two jumps A and B with x
projections xg and xg are of the same type if both of the following
conditions are satisfied:

Z; i(xgxg, ;)= Z; t(xsxs, ;), (~)
and

p;+ P= p;+ P, (ail types p, au j). (2)

Here the subscripts A,i and Bi refer to the jth jumps following

and

fxt
[xs

.fxiv/.

f~ CtfÃ]+Csfgs p (2.17)

the particular jumps A and B, respectively. The quantities p;+~p
and p;+~& are the probabilities that the jth jumps following the
particular jumps A and B, respectively, are jumps of type p with
x projections in the same (+) or in the opposite (—) directions
as those of the A and B jumps. We do not require that the classi-
Qcation into types be unique. In general, to make classi6cations
into types may not be easy. However, for the cases we shall con-
sider here, how to classify jumps will be obvious-

b= (g c.x.')-'(ci(xi), cs(xs(, ~ c~)x„)).
a=1

Equations (2.15) and (2.16) are the desired generaliza-
tions of Eq. (2.8). They express f, in terms of correla-
tions between only successive jumps.

Consider the special case 1V=2 and suppose that the
x projections of the two types of jumps are of the same
length. Then, Eq. (2.15) becomes
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where

and

(1+6')(1—t")+P(2+8')

(1 (11)(1 (22) ~12~21

(1+P) (1—t")+t"(2+V)

(1 /11) (1 $22) $12Pl

(2.18)

(2.19)

(We here and henceforth drop the subscript 1 on the
t'&.) If, in addition, cl ——c2=-', , then

(1+Pl) (1+i12) ~11~22

(1 ~11)(1 P2) ~12~21
(2.20)

3. TRACER DIFFUSION BY PAIRS

A. Method of Calculation

We shall now apply the general results derived in the
preceding section to calculate the correlation factor for
cases of tracer diffusion by divacancy and impurity-
vacancy pairs in cubic crystals. In cubic crystals, the
correlation factor is isotropic; hence we need only cal-
culate the correlation factor with respect to any one of
the principle axes. The procedure of each of the calcu-
lations is as follows: We erst classify the types of jumps
that may occur and Gnd the a priori probabilities of each
type. This will give a relation between f, and the t &

via Eq. (2.15). We shall then calculate the 8& by
methods used by Bardeen and Herring' and by Mullen. '
Here we shall suppose that initially the tracer makes a
jump of a particular type into the origin; we shall
specify the type of jump which has occurred by speci-
fying the position, immediately after the tracer jump,
of the pair which caused it. The diffusion of this pair is
then followed until it again causes the tracer to move
in the x direction. In this way we shall find. the proba-
bility that the second tracer jump is of a particular
type and that its x displacement is in a particular direc-
tion. This will yield the t I' for all (2 and p.

An exact calculation of the t P involves following
the wandering of the pair over all the sites in the crystal
that are available to it. In practice, some approximation
must be made which limits the number of pair sites.
Following Mullen, ' we shall in each case de6ne a
boundary surrounding the origin and suppose that if a
pair wanders outside this boundary, it will return to
the origin only randomly, and thus make no contribu-
tion to the t~& Formally, thi.s is equivalent to setting
the occupation probabilities of pair sites outside the
boundaries equal to zero for all times. Once such a
boundary is chosen, the t t' will be calculated with no
further approximations.

In the cases we shall consider, it will always be pos-
sible on the basis of symmetry arguments to classify
the pair sites within the chosen boundary into sets such
that all pair sites within a given set have the same
probability of being occupied. The number of pair sites
that need to be considered explicitly may thus be limited

to one from each set. Suppose that in a given case there
are M such sets and that we have chosen M distinct
pair sites. Suppose that we have ordered these in some
definite way. I,et p„(i) be the probability that the pair
site i(i= 1, 2 M) is occupied on the 22th jump of the
pair following the tracer jump, given that a second
tracer jump (having nonzero x displacement) has not
occurred. We construct the 3f-component column
vector '

p-.(1)
Pn=

.p„(M).
(3.1)

which speci6es the occupation-probability distribution
after the rsth jump. The vector p0 gives the distribution
of occupied pair sites immediately after the tracer jump
and thus speci6es the type of jump which has occurred.
It is clear that p„ is linearly related to p ~ and we
define an M&(M matrix A such that

p =Ap (3.2)

A typical matrix element A;; is the probability that the
particular site i is occupied after n pair jumps, given
unit occupation probabilities after the e—1 jump for
all pair sites in the set containing j.The elements of A
will be found by inspection, in each particular case, in
terms of relevent jump frequencies. We de6ne the
vector P by the equation

P= Ep- (3 3)

The components of this vector give the probabilities
that each of the sites i are occupied at some time during
the interval between consecutive tracer jumps (exclud-
ing jumps perpendicular to the x direction). Substitut-
ing from Eq. (3.2), P may be expressed as follows:

where

P=(Z A")uo=5. Po,
+=0

y= (I—A)—'.

(3.4)

(3.5)

pP= Q((() .P(~) (3.6)

Hence, P can be found if P2 and A are known. It will be
clear in each of the particular cases that we shall save
much effort if we choose initial probability distributions
of occupied pair sites to be antisymmetric with respect
to reQection in the ys plane. It is easy to show from
symmetry arguments that the probability distribution
remains antisymmetric for all e. It then follows that the
occupation probabilities of corresponding groups of
sites on either side of the ys plane differ only in sign.
We shall need therefore to consider explicitly only
typical members of groups having positive x coordi-
nates. In addition, it will be possible to compute the
t I' directly from equations of the form
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(0,I,I)

-(I,O, I)

() ~ y [](I,I,O)

X

()

(a) Type I

C) Normal atom

OI Impurity0 Vacancy

~ Tracer

{b) Type 2

FIG. 1. Tracer jumps by bound impurity-vacancy pairs in an fcc
lattice: (a) shows one of the sixteen possible con6gurations im-
mediately after the type-1 tracer jump into the origin; (b) shows
one of the sixteen possible conlgurations following a type-2 jump.
Unit distance is taken as half the cube edge.

Here the superscript &r denotes that P &~& is derived from
an initial probability distribution appropriate to an
&r-type jump. The components Q &&'& of the row vector
Q&z& are transition probabilities of pair jumps from
groups of sites equivalent to i causing a P-type jump of
the tracer. The Q &@, like the 2;; will be found by in-
spection in each case.

To summarize, we shall first obtain a relation
between f, and the t P by classifying the types of tracer
jumps and by finding their a priori probabilities. Im-
mediately after an o,-type jump has occurred, one of a
certain set of equivalent sites must be occupied by a
pair. We shall choose certain (antisymmetric) super-
positions of initial occupation probabilities to describe
each n. A boundary will be defined outside of which the
pair-site occupation probabilities are put equal to zero.
(This is the only approximation in computing the pr;
the accuracy of the calculation may be increased by in-
creasing the size of the boundary. ) Sets of equivalent
pair sites within the boundary will be distinguished and
representative sites will be selected and ordered. The
matrix A and the vector Q &&'& will be found by inspection
in terms of vacancy jump frequencies and the t & cal-
culated via Eqs. (3.4)—(3.6).

3. Impurity-Vacancy Pairs in NaC1-Type Ionic
Crystals and in fcc Metals

Consider the diffusion of a tracer in one of the sub-
lattices of a NaCl-type ionic crystal (or in an fcc metal)
by exchanges with an impurity-vacancy pair which
moves in the same sublattice. We may distinguish two
types of tracer x displacements (see Fig. 1). Type 1 is
from pairs for which the impurity has an x coordinate
different from the initial position of the tracer (i.e., its
position before its jump into the origin); type 2 from
pairs for which the impurity has the same x coordinate.
These two types of tracer jumps occur with the same
u priori probability. Therefore, Eq. (2.20) applies. We
label pair sites by listing the coordinates of the vacancy
first, and then those of the impurity. Thus p„Lv,i] is
the probability that the pair site Lv,i] is occupied after
the nth jump of the pair.

p&&"'p (1, &1, 0) (0, &1, 0)]= etc. =—,
p&&"'p(—1 &1,0)(0, +1,0)]=etc.= —s,

and
P&&&"L(1,0, &1)(1, 1, 0)]=etc. = s,

p&& &L(—1, 0, +1)(1, 1, 0)]=etc.=—s .

(3.7)

(3.8)

Such antisymmetric initial distributions allow the t &

(rather than the p+~&) to be calculated directly.
The symmetry of the distributions (3.7) and (3.8)

together with the lattice symmetry imply that the occu-
pation probabilities are the same of any two pair sites
which can be obtained from each other by changing the
sign of the y or of the z coordinates or by interchanging
the y and z coordinates (these operations being applied
to both members of the pair). Also, pair sites which can
be obtained from each other by changing the sign of the
x coordinates of both members have occupation proba-
bilities which differ only in sign.

We now limit the number of pair sites which may
have nonzero occupation probability to those for which
at least one member neighbors on the origin. From the
symmetry considerations of the preceding paragraph
we And that there are 15 independent groups of pair
sites having positive x coordinates. We list representa-
tive members of each group; the number of members of
each group is given after each representative site:

(1) L(1, 1, 0) (0, 1, 1))8

(2) L (1, 1, 0) (1, 0, 1))8

(3) P(1, 1, O)(2, O, O)) 4

(4) $(1, 1, 0) (0, 2, 0)) 4

(5) L(1 1 0)(»2, o)]4
(6) L(1 1 0)(»»1)]8
(7) $(1, 1, 0) (1, 2, 1))8

(8) L(0 1 1)(1,2, 1)]8

(9) t (0, 1, 1)(1, 1, 0)) 8

(10) ((2, 0, 0) (1, 1, 0)]4

(11) L (0, 2, 0) (1, 1, 0)) 4

(12) P(2, 2, 0) (1, 1, 0)]4

(13) L(2, 1, 1)(1,1, o)) 8

(14) L(1, 2, 1)(1,1, o)) 8

(15) L(1, 2, 1)(o »1)]8.

Let us suppose that the tracer has made a jump into
a site which we shall take as the origin. In specifying
site coordinates, we take as unit distance the distance
between neighboring (100) planes. If the tracer jump is
of type 1, then immediately after the jump one of the
following sixteen pair sites must be occupied (see
Fig. 1): L(&1, +1, 0)(0, &1, 1)), L(&1,0, &1)
X (0, 1, &1)],L(&1,&1,0) (0, &1,—1)],L(&1,0, &1)
Xo, —1, &1)],where the signs of the y and also of the
z coordinates of the impurity and vacancy are the same
for each pair site. Similarly, one of the following sixteen
sites must be occupied immediately after a type-2 jump:
L(&1,0, +1)(&1,1, 0)], L(&1, 0, &1)(&1,—1, 0)],
L(&1, &1,0) (&1,0, 1)], L(&1, &1,0)(&1,0, —1)),
where now the x coordinates as well as the y and z co-
ordinates of the impurity and vacancy are of the same
sign. To take most advantage of the crystal symmetry
we choose the following antisymmetric distributions to
represent an initial type-1 and type-2 jump, respectively:
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We have not listed pair sites both of whose members have zero x coordinates since, from symmetry, the occu-
pation probability of these is always zero. The initial probability-distribution vectors may now be written as
the 15-component column vectors

1/8
0

p, (1)— 0

0
1/8

y (2) — 0
0

0

(3.9)

The elements A;; of the matrix A are the transition probabilities of pair jumps out of the group of sites
equivalent to j into the single site i. We 6nd by inspection

0
0
0
0
0
0

A= 0
b

0
0
0
0
0

0 0 0 0 0 0
b 0, 0 0 0 0
0 2a 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 a 0
0 0 0 0 0 0
0 0 0 0 0 a
a 0 0 0 0 0

2a b 0 0 0 0
0 0 b 0 0 0
0 0 0 b 0 0
a 0 0 0 b 0
0 0 0 0 0 b

0 0 0 0 0 0

0 b 0 0 0 0
0 a a 0 0 a
0 0 b 0 0 0
0 0 0 b 0 0
0 0 0 0 b 0
0 0 0 0 0
a 0 0 0 0 0
0 0 0 0 0 0
0 a 0 a 0 0
0 0 0 0 0 2a
0 2a 0 0 0 0
0 0 0 0 0 2a
0 0 a 0 a 0
0 a 0 a a a
b 0 0 0 0 0

0 a'
0 0
0 0
0 0
0 0
0 0
b 0
0 b

a 0
0 0
2a 0
2a 0
a 0
0 0
0 a.

Here,
a= 1/(4+ o),

b = ti/(4+ t'i),

It is to be expected, of course, that the present
method of obtaining the t~p will always overestimate f
(i.e., underestimate correlation effects). The present
calculations are in agreement with those of Reiss'7 done

a(p11+p22)+a (pllp22 p12p21)

(1+ P. )(1+ P.) "P P-—(3.11)

The values of Pii, etc. are found by inverting the matrix
(l —A) for selected values of 5. Values of f versus 5 are
listed in Table I along with the more accurate (but
widely spaced) values obtained by Compaan and
Haven (C-H) from analog computer calculations. A
comparison shows that the present calculation gives
values of the correlation factor that are larger than the
C-H values by 5 to 6'Po. The accuracy could be im-
proved by choosing a more extensive boundary and
such an improvement could be carried out without
excessive trouble.

where 8= vs/vr is the ratio of the exchange frequencies
of a vacancy with the impurity (vs) and with one of the
normal atoms surrounding the impurity (i t). The
vectors Qf~& are found by inspection to be

Q &"= —8a(0, 1, 0, 0 0),
(3.10)

Q &'& = —8a(1, 0, 0 ~ 0) .
The t ~ may now be computed from Eq. (3.4)—(3.6).
We find explicitly t"=—ap», t"=—apts t" apts,
t"= —aPis. Substituting into Eq. (2.20) gives

dlnf
1+

dlnvi' f(C —H) f(reR.) f f(C-H) f(re~. )

0.0010
0.0021
0.0031
0.0042
0.005 1,

0.0061
0.0081
0.011
0.031
0.050
0.080
0.1
0.11
0.21
0.30
0.40
0.50
0.60
0.80
1.0
1.5
2.0
3.0
5.0

0.0044
0.0094
0.0134
0.018
0.021
0.026
0.034
0.044
0.10
0.15
0.20

0.23
0.30
0.33
0.36
0.37
0.39
0.41
0.42
0.44
0.45
0.47
0.48

0.012
0.017
0.021
0.025
0.029
0.033
0.040
0.050
0.11
0.15
0.20

0.0019

0.019

0.2047 0.12

0.3540

0.3977 0.27

7.0 0.49
10.0 0.50 0.4711 0.32

100 0.51 0 32
0 4862 0 32

' H. Reiss, Phys. Rev. 113, 1445 (1959).

TA&LE I. Correlation factors for tracer diffusion by bound
impurity-vacancy pairs in an fcc lattice. The quantity 5 is the
ratio of the exchange frequency of a vacancy with an impurity to
that of a vacancy with a normal ion; v&' is the exchange frequency
of a vacancy with the tracer. The values of f were calculated
assuming the transmitting boundary described in the text, and
those of f(re )assuming a. reflecting boundary. The values
f(C—H) were taken from Ref. 6.
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by a different method but involving essentially the
same approximations. The values of the correlation
factor designated as f(refl. ) were calcula, ted by the
methods described above but assuming a boundary
which stops pairs from moving so far from the tracer
that neither of its members neighbor on it. Such a re-
Qecting boundary overestimates correlation effects and
therefore gives lower limits to the correlation factor.
Ke note that the Compaan and Haven values lie
between the values of f and f(refl. ) but much closer to
the values of f. As might be expected, the transmitting
boundary is the better approximation. "

nism in cubic crystals f is of the form'2 22

f=A/(A+vl'), (3.15)

where A is dependent of v~', In this case

(3.16)1+ (8 ln f/8 lnvl') =f,

(D.—Db)/D. = f(8m/2m) .
and hence

(3.17)

Under the conditions where this equa, tion is valid, f
can be measured directly.

For diIIfusion by an impurity-vacancy pair mecha-
nism, it is not clear over what range of jump frequency
ratios and to what approximation Eq. (3.16) is satisfied.
We therefore wish to calculate the expression
1+(81nf/8 lnvl'). The calculation of f(vl') is carried
out by simply replacing v& by v&' in the equations of the
preceding section whenever a tracer rather than a
normal ion exchange is involved. It is easily checked
that Eq. (3.11) is replaced by the equation

C. Isotope Effect: Impurity-Vacancy Pairs

Ke have assumed in Sec. 38 that the exchange fre-
quencies of a vacancy with tracer and with normal host
atoms are the same. However, the tracer and the
normal host atoms may have different masses and,
because of this, somewhat different jump frequencies.
It is sometimes possible to take advantage of such a
difference to study the correlation factor directly by
studying the simultaneous diRusion in the same host
crystal of two different isotopes of the same tracer. """

Consider the digerellce between the diffusion co-
eKcient of two isotopes labeled a and b. In an obvious
notation we write

(p p) (pp pp)
3.18

(1+lb P21 ) (1+lb P12 ) lb (Pll P22 )

/ / / /2 / / / /
11 + 22 +ll ll 22 12 21

f(»') =

where
& = vl /(v2+3 vl+ vl ) ~ (3.19)

/
via )

~fbVlb

The P@' are elements of the matrix (1—A') ' where the
matrix A' is identical to the matrix A except for the

(3.12) following replacements:

where the constant c is the same for the two species and
where we use a prime to denote the frequency of
vacancy-tracer (as opposed to a vacancy-normal atom)
exchange. Then

Agg~ a',

Agg —& a",
Agl ~ b

A15, 1 ~ +

Ag2~ a",
Ago 2~ 2u")

A~a 2
—+ a",

Agg —+ b',

A2g —+ a',

All, 9 ~ 2+ )

A]4, 9 ~ 8 ~

Da Db favla fbvlb

Da favla

( 81nf)(8 ln, ') Here,

(3 13) and

lb"= vl/(v2+3vl+ vl'),

fl'= v2/(v2+3vl+ vl') .

(3.20)

(3.21)
to 6rst order in 6m= m~ —m, . Assume that
vl, bn (1/m, , b)

"2 $V,iney.ard" has discussed the physical
basis of this assumption; it appears to be valid for self
diffusion in Pd (Ref. 22) and for cation self-diffusion in
NaC1 (Ref. 12) but may not be for self-diffusion in Na
metaP2. ) Then Eq. (3.13) becomes' '

(D, Db)/D, = (1+(8 lnf—/8 lnvl') )5m/2m. (3.14)

(See Ref. 24.) For diffusion by a single-vacancy mecha-

"cf.A. D. Franklin, J. Res. Nat. Bur. Std. 69A) 301 (1965).
"A. H. Schoen, Phys. Rev. Letters 1, 524 (1958).

A. B. Lidiard, Proceedings of the Fourth Interrogational Sym-
posiur/z os Reactivity of Solids, Ar/amsterdam (Elsevier, Amsterdam,
1960), p. 52.

~' G. H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).
"N. L. Peterson, Phys. Rev. 136, A568 (1964).
~L. H. Barr and J. N. Mundy, DQfuszon Az Body-Centered

Cubic Metals (American Society for Metals, 1965), p. 171.
'4 We note that Eq. (21) in Ref. 12 is wrong because the dif-

ferentiation is carried out with respect to )/1 instead of s1'. Hence
those results of Ref. 12 which are based on Eq. (21) are wrong.

The elements of A which remain unchanged do not
involve vacancy-tracer interchanges.

Table I lists values of 1+ (8 ln f/8 lnvl') as a function
of 6=- v2/vl. It is apparent that the rela, tive difference
between this quantity and the corresponding value of f
is appreciable only for small 5, becoming less than 5%
(the accuracy of the present calculation of f), for
b&0.1.

D. Divacancy Pairs in NaCl-Type Ionic Crystals

To be de6nite, we suppose that the tracers are
cations. Ke may again distinguish two types of tracer
jumps according to whether the aruon vacancy has an x
coordinate (1) different from or (2) the same as the
tracer before its jump (see Fig. 2). The o priori proba-
bilities of these kinds of jumps are the same and hence
Eq. (2.20) applies. We label divacancy pair sites by
specifying the midpoints of the line joining the indi-
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vidual vacancy sites and define p„(x,y,s) as equal to
the probability that the mth cation vacancy jump
(following the initial displacement of the tracer) fills
the pair site (x,y,s) (given that a second tracer displace-
ment in the x direction has not yet occurred). We again
assume that the initial tracer jump is into the origin and
choose the following initial probability distributions to
represent a type (1) jump and a type (2) jump,
respectively:

and

p, & &(-.', , ~1,0) =p, & &(-;., 0, ~1)=-;
Po"'(—-' ~1 o)=P "'(—-', o, ~1)=—k)

(3.22)

p„(O,X,s)=—0. (3.25)

Equation (3.24) may be used as a basis for choosing
groups of equivalent pair sites.

We again restrict the number of pair sites having
nonzero occupation probability to those for which at
least one member neighbors on the tracer at the origin.
We find that there are seven independent groups of such
pair sites. Representative members and multiplicities of
each group may be ordered as follows:

(1) (l,1,0) 4 (4) (1,1 s) 8

(2) (1,l,0) 4 (5) (-,',1,1) 8

(3) (2,0,0) 1 (6) (2,1 0) 4

(7) (1,—,',0) 4 .

We then have for the initial occupation probability
vectors

0

ps&s&= 0 . (3.26)
0

0
y 0)— 0

0

Po"'(1 ~-' 0)=ps&»(10 +-')=-'

p, &»(—1 ~r 0)=p &»(
(3.23)

Here, we have taken the anion-cation distance as unity.
Our choice of initial occupation probabilities implies
that

P-(»y, s) = —P-(—*,x, «)
=p (x, +y, +s) =p„(x, as, +y) . (3.24)

In particular

-(O, I,O)~~~j-—(I /2, 1,0)~A' LC~(i, i,o)iL . x
~y Cg (I,I,O)

tf A '(I pi/2')
EI,O,O)

(a) Type I UC Cation vacancy

K Anion vacancy

Cation tracer

(b) Type 2

FIG. 2. Cation tracer jumps by bound divacancy pairs in a
NaCl-type ionic crystal: (a) shows one of the eight possible con-
figurations immediately after a type-1 tracer jump into the origin;
{b) shows one of the sixteen possible configurations following a
type-2 jump. The cation sites are at the rnidpoints of the cube
edges; the cation tracer is at the center of the cube. The anion sites
are at the corners of the cube and at the centers of the cube faces.
The anion-cation separation is taken as unit distance.

in Fig. 3 with the anion vacancy at the site labeled (a).
We define q~, 4q2 and qa as the probabilities that upon
the next cation vacancy jump, the anion vacancy is at
the site (a), one of the sites (b—e) and the site (f), re-
spectively (i.e., the sites that can be reached from the
original anion vacancy site by a minimum of zero, one
or two anion vacancy jumps, respectively). Clearly,
qr+qs+4qs=1. By inspection, we find the following
matrix for A in terms of the q;:

0 0 0 0 0 0
2q3 2q& q& 4q3 2q3 2q2

1 4q& 4q3 0,'8q3 4q3 4q2
A= —

qs qs 0 qr+ qs qa qs

4 2qs 2qs 0 2 (qr+ qs) 2qg 2q3
0 0 qs 0 0 0

.0 0 0 0 0 0

0
0
0

qy
—

q2

0
0
0

(3.27)
The vectors Q&' » are given by the expressions

Q &'& = —(qs, qr, 0,2qs, 0,qs, qs),
Q&'& = —(q, ,q, ,0,2qs, o,qs, qs) .

(3.2S)

Explicit expressions for the q; as a function of 5= vs/vr,
the ratio of the anion-vacancy jump frequency to that
of the cation vacancy, are given in the Appendix. Values
of f versus 8 computed from Eqs. (3.4)—(3.6) and
(2.20) are listed in Table II along with values from
Compaan and Haven. ' The values of f computed here
are larger than those of Compaan and Haven by about
3% over the entire range of 8.

.0. .0 E. Divacancy Pairs in CsC1-Tyye Ionic Crystals

The reader will note that we have enumerated pair
jumps by counting only those of the cation vacancy.
The subscript n appearing in Eqs. (3.22)—(3.25) repre-
sents the number of cation vacancy jumps of the pair
following the jump of the tracer. The anion vacancy
jumps are taken into account by computing the proba-
bilities of the pair reorientations that may occur
between cation vacancy jumps.

We dehne certain reorientation probabilities as
follows: Suppose that the pair occupies the site shown

Here there is only a single type of vacancy jump
(see Fig. 4). Hence Eq. (2.17) for the correlation factor

FIG. 3. The six nearest-
neighbor anion sites of the
cation vacancy C in a NaCl-
type ionic crystal. These are at
the center of the faces of the
cube surrounding QC. Initially,
an anion vacancy is at the
site (a).
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TABLE II. Correlation factors for cation tracer diGusion by
bound divacancy pairs in a NaCl-type ionic crystal. The quantity
8 is the ratio of the jump frequency of the anion vacancy to that of
the cation vacancy. The values f(C—H) are taken from Ref. 6.

f f(C—H)

0.47
0.51
0.54
0.59
0.62
0.63
0.68
0.70

0.4136

0,5283

0.6189

0.6894

0.001 0.0050
0.002 0.0098
0.003 0.0146
0.004 0.0194
0.005 0.024
0.006 0.029
0.007 0.033
0.008 0.038
0.009 0.042
0.01 0.046
0.03 0.12
0.05 0.18
0.07 0.23
0.09 0.27
0.10 0.28
0.20 0.40
0.24
0.3
0.4
0.5
0.7
0.9
1.0
1.5
2.0

3.0
4.17
5.0
7.0

10.0
100

1000

f
0.73

0.76
0.78
0.79
0.81
0.82

f(C—H)

0.7451

0.7793

0.7815

(4,0,0)

sites. We list representative members and multiplicities
of each group as follows:

1. (3,1,1) 4

2. (5,1,1) 4

3. (1,3,1) g
7. (3,3,3) 4.

4. (1,5,1) 8

5. (1,3,3) 4

6. (3,3,1) 8

The vector pp giving the initial probability distribution
is then

nion
e Cation tracer
CAIAnion vacancy
Cation vacancy

Fio. 4. Cation tracer jump by bound divacancy pairs in a CsCl-
type ionic crystal. The figure shows one of the eight possible con-
6gurations immediately after a tracer jump into the origin. The
unit distance is taken as 4&& the anion-cation separation.

reduces to the expression

f= (1+pr)/(] —pr) (3.29)

yp= 0

,0.

(3.31)

Again we consider the diffusion of a cation tracer and
take as the initial probability distribution

p, (3, +1, a1)=-,',
ps( —3, ~1, ~1)= ——.', (3.30)

where the sites are labeled by the midpoint of the line
joining the two vacant sites; the tracer is at the origin.
We have taken the unit distance as ~~ the separation of
nearest-neighbor cation sites. It is clear from symmetry
that Eq. (3.24) again applies. As in the preceding
sections, we limit the pair sites with nonzero occupation
probability to those having at least one member neigh-
boring on the tracer. There are seven such groups of

We again enumerate successive cation-vacancy jumps
and calculate reorientations due to anion-vacancy
jumps by introducing the reorientation probabilities
q;, (t'= 1, 4): Given that a vacancy pair is situated as
shown in I'ig. 5, g~, 3q~, 3q3, and q4 are the probabilities
that when the next cation vacancy jump occurs, the
anion vacancy occupies the site (a), one of the three
sites (b —d), one of the three sites (e—g), or the site (h),
respectively (i.e., sites that can be reached from site (a)
by a minimum of zero, one, two, or three anion vacancy
jumps, respectively). The calculation of these quanti-
ties as a function of 6, the ratio of anion vacancy to
cation-vacancy jump frequencies, is given in Appendix B.
In terIns of these probabilities we find for the matrix A:

0
0

1 0
A=- 0

3 0
qt+ 2qs+ qs

0

0
0
0
0
0

qs+ 2qs+ q4

0

0
0

gy
—

g3
0

2(qt —qs)

gz
—

g3
0

0
0

g'2 —g4
0

2 (q,—q4)

gg
—

g4
0

0
0

gy
—

g2

g2
—gs
0
0

gi —g~

2(qt+q, ) 0
'

2 (qs+qs) 0
qt+ qs 0
qs+qs 0 )

0 qg

qx

qr+ qs

and for the vector Q,

0= —s4[(qr+2qs-+q, ), (qs+2qs+q4), O,O,O,O,O] .
(3.33)

Table III gives values of fversus 5. As 5 —& ~, the corre-

lation factor must approach that for tracer diffusion by
single vacancies in a simple cubic crystal. This is 0.66
as computed by Compaan and Haven. ' We find j=0.70
for 5=3200, about 5/o too large. We estimate that this
is the error in f over the entire range of 5,
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F. Divacancies in an fcc Metal

Here the two vacancies in the pair are equivalent;
hence the correlation factor is a number independent of
jump frequencies. Ke distinguish two types of jumps:
those caused by pairs both of whose vacancies have
different x coordinates from the tracer (type 1) and by
pairs which have one vacancy with the san1e x coordi-
nate as the initial tracer position (type 2) (see Fig. 6).
These types occur with the same u priori probability;
hence Kq. (2.20) applies. The two distributions de-

scribing initial jumps of type (1) and (2) are:

and

(3.35)

Ke have labeled the pair sites by the midpoint joining
the site of the individual pairs, with the origin at the
tracer and the lattice spacing along a cube direction as
unit distance. The symmetry conditions given by
Kq. (3.24) apply. We choose a more extended boundary
than heretofore and allow those pair sites to have non-

zero occupation probability for which (at least) one
member is a nearest neighbor or a next-nearest
neighbor of the tracer. This gives 27 independent
groups of pair sites. Representative sites and multi-

FIG. 5. The eight nearest-
neighbor anion sites of the
cation vacancy gC in a CsC1-
type ionic crystal. These are at
the corners of a cube surround-
ing . Initially an anion va-
cancy is at the site (a).

plicities are listed as follows:

10. (-'„2, s) 8

18. (—', 2, s) 8

19. (-'„-'„0)4

27. (s, s, &) 8.

8

0
po (&) — 0

.0
and the matrix A:

0
1

p (2) 0
0

,0

(3.36)

The initial probability-distribution vectors are

2
2 0
0 2
2 0
0 0
0
1 0
1 0
0 0
0 0
0 0
0 0

1 0 0
A= — 0 0

8 0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0 1 0 0 1 1
2 0 0 2 0 0
2 0 0 2 O 0
0 0 0 0 2 0
0 0 0 2 2 0
1 0 1 1 1 0
0 1 1 1 0 1
0 0 0 0 1 1
0 1 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
OOOOO 2
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 1 0
0 0 1 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
2 0 0 2 0 0
0 0 1 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
1 1 0 0 1 0
0 0 1 1 0 1
0 1 0 1 1 0
2 0 0 0 0 2

1 0 0 0 1
0 2 0 0 0 0

0 1 1 0 0
0 1 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 0 2
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0,';- 0 0
0 0 0 0 "i',OgO
0 0 0 0.0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

oooooo000000000000000000
00 2000010000
0 1 1 0 0 000000000000000000000000

OOO00
0 2 0 2 0 0
0 0 1 0 1 1
0 0 0 1 0 1
0 1 1 1 0 0
0 1 0 0 1

0 1 0
0 0 2 0 0 001100000000
0 1 1 0 0 0
0 2 0 2 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0
0 0 0
2 0 0
0 0 0
0 2 0
1 1 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
2 0 0
1 1 0
0 2 0
0 1

0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
2
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2

0

1
0 2

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
2
0
1
0
1

(3.37)
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I
—t(0, I, I)

. X Jh
%V

(I,I/2, 1/2)

J (I,I,O&

(a) Type I 0 Normal atom

H Vacancy6 Tracer

(b) Type 2

FIG. 6. Tracer jumps by bound divacancy pairs in a fcc crystal:
(a) shows one of the sixteen possible configurations immediately
following a type-1 jump of a tracer into the origin; (b) one of the
eight possible configurations following a type-2 jump. The unit
distance is tak.en as twice the cube edge.

The vectors Q are

Qo&= —(0100 )
Q&s&= —(100 ) .

Substituting into Eqs. (3.4)—(3.6) gives

(3.38)

spsl y

t"= spss, —
tls — x

p

P= 4pls ~

TABLE III. Correlation factors for cation tracer diffusion by
bound divacancy pairs in a CsCl-type ionic crystal. The quantity
5 is the ratio of the jump frequency of the anion vacancy to that
of the cation vacancy.

0.0011
0.0021
0.0031
0.0041
0.0049
0.0060
0.0079
0.011
0.021
0.030
0.053
0.086
0.10
0.20
0.30
0.39
0.52
0.64
0.85
1.0
1.5
2.0

0.0094
0.018
0.026
0.034
0.040
0.048
0.062
0.078
0.13
0.17
0.23
0.29
0.31
0.38
0.42
0.44
0.47
0.49
0.51
0.53
0.56
0.58

3.2
5.2
7.6

10.1
25
50

100
3200

0.61
0.64
0.65
0.66
0.68
0.69
0.695
0.70

2~ G. Schottky, Phys. Letters 12, 95 (1964).

The p;; are found by inverting (I—A). After substitut-
ing into Eq. (2.22) we 6nd f=0.475, a value slightly
more than half that for tracer diffusion by single vacan-
cies in an fcc lattice. In a previous calculation,
Schottkyss found the value f=0.54 T. o obt.ain this
result, however, Schottky used Eq. (1.2) which is not
valid in this case.

4. SUMMARY AND CONCLUSION

A method is presented whereby correlation factors
can be calculated in situations where there is low sym-
metry by the same techniques that have been used in
random-walk calculations of correlation factors for
simple cases. The general method is used to calculate
correlation factors for cases of tracer diffusion by bound
impurity-vacancy and divacancy pairs in cubic metals
and ionic crystals. The present calculations tend to
overestimate correlation factors by about 5% in all
cases where results can be compared with more accurate
calculations. Such accuracy can be improved, if desired,
by choosing larger boundaries within which correlation
effects are included. The method can be applied without
modi6cation to the calculation of correlation factors for
impurity diffusion as well as tracer diffusion. The case
of tracer diffusion by impurity-vacancy pairs which may
dissociate is also tractable and will be treated in a forth-
coming paper.
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APPENDIX: REORIENTATION PROBABILITIES
FOR DIVACANCY PAIRS

Divacancies in NaC1-Type Ionic Crystals

We calculate here the reorientation probabilities
g;, (i=1—3), defined in Sec. (3D). Referring to Fig. 3,
the sites labeled (a,b, f) are the six anion sites which
neighbor on the cation-vacancy site as shown. Suppose
that at the time 1=0, the anion vacancy occupies the
site (a). Let w(a, t) equal the probability that the anion
vacancy occupies the site (a) at the time t, given that
the cation vacancy has not made a jump away from 0.
The quantities w(b, t)=w(c, t) =w(d, t) =w(e, t) and
w(f, t) are defined in the same way. The w(a, t) etc. may
be found by solving the following set of equations:

dw (a, t)/dt = 4 vs (w (b, t) —w (a, t) ), (A1)

dw(b, t)/dt= vs(w(a, t)+w(f t) —2w(b, t)), (A2)

dw(f t)/dt =4vs(w(b, t)—w (f,t)), (A3)
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with the boundary conditions

w(a, O) =1; w(b, 0) =w(f, O) =0.
The q, then satisfy the equations

e '"i'w(a t)dt

(A4)

with the boundary conditions

w (a 0)= 1 w (b 0)=w (e 0)=w (h, O) =0. (A15)

The q; are de6ned as in Sec. 3E and are given in terms
of the probabilities w(a, t), etc. by the equations

q2=4pg e ""w(f,t)dt, (A6)
e "i w(a)t)dt, (A16)

e 4""w(b,t)dt. (A7) q2=3m& e '"~'w (—b, t)dt, (A17)

We 6nd the following expressions for the q; in terms of 8:

(A8)
1+5 2+38)

3
+ (A9)

1+5 2+3bl
2

vI=6 1—
2+3')

'

e '""w(e,t)dt,qs= 3V1

e—'"i'w(h, t)dt. (A19)

Equations (A11)—(A19) yield the following expressions

(A10) for the g;:

where b= v2/vq.

Divacancies in CsCl-Tyye Ionic Crystals

Referring to Fig. 5, the sites labeled (a-h) are the
eight anion sites neighboring on the cation vacancy.
The probabilities w(a, t), w(b, t) =w(c, t), w(e, t) =w(f, t)
=w(g, t), and w(h, t) are de6ned as in (A1) and satisfy
the equations

dw (a, t)/dt =3v2 (w (b, t) —w (a,t) ), (A11)

dw(b, t)/dt= v2(w(a, t)—3w(b, t)+2w(e, t)), (A12)

dw(e, t)/dt= v2(2w(b, t) 3w(e, t)+w(—h, t)), (A13)

dw (h, t)/dt=3v, (w(e, t) w(h, t) ),— (A14)

3t1 3 3 1
pi=-i -+ y + I (A20)

8(3 3+28 3+48 3(1+28))

~ =-I-+
8(3 3+28 3+48 3(1+28))

(A21)

3t1 1 1 1
+ (A22)

8 E3 3+25 3+45 3 (1+25)

3(1 3 3 1
~4=-I — + (A23)

8 k3 3+28 3+48 3(1+2b)1

where b= v2/v~.


