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Lattice Theory of Third-Order Elastic Constants of NonpriInitive,
Nonpiezoelectric Lattices*
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Expressions for the third-order elastic constants of nonprimitive lattices are derived from lattice theory
by the method of homogeneous deformation. The interlattice displacements are obtained as a power series
in the strains from the condition that the strain energy is a minimum with respect to these displacements.
For third-order elastic constants these displacements need to be known only to the 6rst order in strain.
The expressions for the elastic constants are veri6ed by deriving the equation for wave propagation in a
homogeneously strained crystal and comparing it with the equation from continuuum mechanics. The
expressions given here are valid only for nonpiezoelectric crystals.

nated by imposing the condition that, for a given macro-
scopic strain, the energy must be a minimum with re-
spect to these inner displacements. The inner displace-
ments are obtained as a power series in the strain
components. For the strain energy up to the third-order
in strain, we need to know the inner displacements only
up to the first-order in the strain. The expressions for the
elastic constants are verified by the method of long
waves. The equation for wave propagation in a homo-
geneously strained medium is derived from lattice
theory. It is then compared with the equation of
Thurston and Brugger" based on continuum theory.
In this process we derive a Kun-Huang relation for
third-order coupling parameters. This relation has
already been given by Leibfried and Ludwig. '

Before proceeding to the derivations the notation
used in the following pages is explained below:

I. INTRODUCTION

ATTICE—theoretical expressions for the third-
& order elastic constants of primitive lattices have

been given by Leibfried and Ludwig. Explicit ex-
pressions for the third-order elastic constants of the
cubic primitive lattice in terms of the third-order
coupling parameters have been derived by CoMwell-
Horsefall. In nonprimitive lattices, a macroscopic strain
gives rise to interlattice displacements. This compli-
cates the theoretical situation. In the alkali halides,
each ion is at a position of a center of inversion. There
can be no interlattice displacernents in the alkali
halides and the theoretical expressions in these crystals
are similar to those for primitive lattices. The elastic
constants of these crystals have been studied theoreti-
cally by Bross, ' X'ran'yan, 4 ' and Ghate. '

Experimental data of the third-order elastic constants
have recently become available for several materials
occurring in nonprimitive lattice structures, such as~ '
Si and Ge. ""For an analysis and utilization of these
data in terms of a force-constant model, the general rela-
tion between the third-order elastic constants and the
third-order coupling parameters for nonprimitive lat-
tices must be known.

In this paper, the general lattice-theoretical expres-
sions for the third-order elastic constants of nonprimi-
tive lattice are derived by the method of homogeneous
deformation. The interlattice displacements are elimi-

I., M, E, upper case letters stand for cell indices.

X, p, v, Greek letters stand for basis indices.

1, m, e, lower case letters refer to the Cartesian
components.

F,& „„„symmetric with respect to interchanges

(j ~ k); (p ~m); (r ~ s) . and (jk) ~ (pm);
(Pm) ~ (rs), and (rs) ~ (jk).

F~;I, „~, symmetric with respect to interchanges
(j~k); (p~ m); but not with respect to (jk)+-+ (pm).

F,& i„,l „, symmetric with respect to (j~ k);
(p+-+ m); but not with respect to (r~ s).

tt; g,», &„,&, symmetric only with respect to(kp) +-+ (rs).

X;(I.X), jth component of the position vector of atom
(I.X) in the unstrained state.

u;(LX), jth component of the displacement of atom
(I.X) from the initial configuration.

4;t t(LX,3/Itt, PVv) = r)'4/r)u;(I X)ituA(3ftt)r)ut(1Vv), 4 is
the potential energy of the crystal.

v„volume of the unit cell in the undeformed state.
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LATTICE THEORY OF THIRD —ORDER ELASTIC CONSTANTS

C.,k(Lh, Mp) = 4 k;(Mp, Lh), (2a)

Qzz, C,k(Lh, Mp) =Qzk C,k(Lh, Mp) =0 (2b)

II. METHOD OF HOMOGENEOUS
DEFORMATION

We consider a crystal of large but 6nite volume V.
The crystal is assumed to be free of any forces or
stresses in the initial state. So

4;(Lh) =0

for every atom (Lh). The potential energy of the crystal
is expanded in powers of the atomic displacements
I;(Lh):

(1a)
where

Cz=-', Qzzz Qk„Q,k 4;k(Ih, Mp)zz, (Lh)zzk(Mp), (1b)

4 8 6 ELMS Z kvv P jkr 4jkr(L~qMpg v)

XN, (Lh)uk(Mzz)zz„(Nv), (1c)

The second-order crystal potential (CP) C,k(Lh, Mp)
satisfy the following conditions':

'%J= zI 4j+&ji+Qv &vi&vjj p

w;(h) =w;(h)+P„e„,w„(h) .

(5a)

(5b)

For an in6nite lattice

C,k„(Lh,Mp, Nv) =4;k, (Oh, M—Lp, , N I-v)—, (3d)

(3b) and (3c) are now written as

Qzz„4.;k„(Oh,Mp, Nv) =+~„C,k„(Oh, Mp, Nv) =0, (3e)

Q~, 4;k„(Oh,Mp, Nv) X,(Oh, A v)

4;,(—Oh, Mp) bk„C,k(—0h, Mp) 8;, (3f)

must be symmetric in r and s.
For atoms within the body of the crystal we could

expect (2d)—(2f) and (3d)—(3f) to be valid. For surface
atoms this will not be so.

In a homogeneous deformation

N, (Lh) =Q„e;vx„(Lh)+w;(h),

k;,=(Bx /Bx, 8;,—) is the deformation parameter and
w;(h) is the jth component of the internal displacement
of the sublattice X. In order to express the strain energy
in a form invariant with respect to rigid rotation the
proper parameters to use are (Born and Huang")

(translational invariance),
After substituting for N, (Lh) from (4), (1b) can be

written as

(6a)

Q kz„C',k(Lh, Mp)xi(MZz)
„4'; (Lh,Mp)x (Mp) (2c) @ p p ~ @ (LhM ) (h) ( )

(rotational invariance).
For an infinite lattice

4, (kL,hM)Zz= 4;k(Oh, M Lp) =4;k(L M—h, Op) . (2d—)

The conditions (2b) and (2c) become

+Zjkm QI M g) v @'j7c(L~yMP)

)&X (Mp)w;(h)zk (6b)

+2 Zzkvm ZLzz Zxv 4zk(L~&MP)

&(Xv(Lh)x (Mzz)e;„ek . (6c)

Qzz„C,k(Oh, Mp) =0, (2e) In the exPressions (6a), (6b), and (6c), the following
lattice sums can be defined:

where

„kzC(~ kO, hMp)Xi(Oh, Mp)
=Qzz„C;i(Oh, Mzz)xk(Oh, Mzz), (2f)

Lh k) p @ (Lh M )
V

(7a)

X,(Lh, M„)=Xi(M,) X,(L,h) . —

The third-order CP's C,k, (Lh, Mp, Nv) satisfy the fol-
lowing conditions':

C,k„(Lh,Mp, Nv)

=4;„k(Lh,Nv, Mp) = 4'y„,(Mp, Lh, Nv), (3a)

Qzk 4;k„(Lh,Mp, Nv) =Qzz„C;k„(Lh,Mp, Nv)
=QN. C,k, (Lh, Mp, Nv) =0 (3b)

(translational invariance).

Qzz, C,k, (Lh, Mp, Nv)X, (Nv)
—4;.(Ih, Mp)8k„— ,4( kL, hpM)8, „(3c)

must be symmetric in (r+-z s) (rotational invariance).

1
(hj,kzzz) =—Q L,zz Q „4,k(Lh, Mp)X (Mp)

V

=—Ql zz Q„C.,k(Lh, Mp)X„(Lh, Mp),
V

1
c;v,k~= —Qrzz Qk„C',k(Lh, Mp)

V

(7b)

"M. Born and K. Huang, DyrIamical Theory of Crysta/ Lattices
(Qxford University Press, New York, 1962), Chap. VI.

XX„(Lh)X„(Mp). (7c)

(hj,kzzz) is symmetric in k and zzz and c;v k is symmetric
with respect to (j&-+ p), (k~zzz), and (jp)+-& (kzrz).
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P j,](k]=—PM C;1,(O](.,MP), (7a')

1
(](j,km) =—PM +„4,7,(OX,MP)X„(O](,MP) . (7b')

v, is the volume of the unit cell in the undeformed crys-

This can be shown with the help of (2c). The contribu-
tion of the surface atoms to the sum (7a) becomes
negligible ( V "') compared to the contribution from
the atoms in the body of the crystal for large volumes.
This will not be the case when the lattice sum involves
the position coordinates X,(M])2. Following Leibfried
and Ludwig, ' we can dehne new lattice sums by re-
placing the position coordinates with the relative co-
ordinates X;(LX,M]j). By doing so, we make the con-
tributions from the surface atoms negligible compared
to the contributions from the volume atoms. Replace-
ment of X (Mp) by X (LX,M]I) in (7b) does not give
rise to a new lattice sum because of (2b). Making use of
(2d) for the atoms within the volume of the crystal, we

can write (7a) and (7b) as

tal. Instead of (7c) we define a new lattice sum

A

c[jk,ym] ELM Z]((s C S7s(L~qM]I)

)&Xu(LX,My)X (LX,Mp)

QM Q],„C;(,(0](,Mg)
2&a

&& Xu(0](,Mp)X (0](,My) . (8)

From (7c) and (8) it follows that
Q *
s'C[s7s, um]

= Cs'u ]sm+Cjm, (sv ~

So
A A

C~jk, &m~
= Cjk, ~m, (1O)

i.e., c],&,u„] must also be symmetric in (jk) ~ (Pm).
This is the Kun-Huang relation on the second-order

coupling parameters for an in6nite lattice initially free
of stress. This cannot be derived from the rotational
invariance relation for an infinite lattice. So this repre-
sents new conditions on the second-order coupling
parameters. In terms of the cjk,„,the cjk,„are given by

A A A

cjoy, k~= cjk,@~icky,jm

cjoy,

k~ ~

Making use of (5a) and (5b) and (7a)—(7b') we can
write C ~ as

C'2 = C'2'+ C'2",
C,'= U[-,' P,„Q,, P j,&k]e,(X)M,(~)+P, P,,„(Xj,km)e, (Z) ~,.+-,' P;,„c,„,, ~,,~,„j,
C,"=—V P),„P;„Pj,] k]w, (X)2P„(]()e„;

—V&&-2' QZ Q,Lmu(]( j,km) [ru;(]()e„zepm+2C, (]()ev, (e&m+ em&)]

Ttm1 VI' X g ~jykmr Cjy, km&jp&rk&rm ~

C2" must be added on to the corresponding terms from C,. Substituting for u, (LX) from (4) in (1c) we get

C,= -,' Q,7,„ELM~ Q],„,C,(„(L](,Mp, )VP)w, (]()2ua(](() 2c,(v)

+-', Q;I, +LrMs~ Q],„r @,I,r(LX)MIJsEP)Xs(iVP)2u, (X)2u((y) ~rs

+-,' Q;(„,QLM](( Q],„,4', u,,(LX,M]J,,XP)X (M]J)X,(1VP)2C;(X)eI, e„,

+~~QJ(v „,QLM](( Q],„,C;1,„(L](,M](,1VP)XP(L]()X (M(M)X, (l](v) c;„cj, e„.
Adding 42" to C3 we can write

(12a)

(12b)

(12c)

(12d)

(13a)

(13b)

(13c)

(13d)

V
C 2 +4 2 Qskr QX(sr ELMS 4jlsr(L](sMPsl]' V)Ws'(X)'2PIs(P)2(tr(V)

6
(13a,')

+2 V Q,(- Q~, —QLM~ Q. 4;(,(LX,M]J, ,l('1v)X, (Ãv) [Zj I2s78„p ['Xs,]sk]8„,—w, (X)P~I,(]s)s—„,
U

+-,'U ps(s „Qg —QLMM Q(s, 4j(s,(LX,MIJ,1]lv)X (M]2)X,(EP)
V

—(](ns,rs) h;&—(](j,ms) 8A, , 2u;(]() ~& e„, (13c')

+ ~~V Q, uu. „, —QLM~ Q],„.Css7„(LX,Mu, l(tv)XP(LX)X (MP()X, (Ãu)
V

Cum, rs(]S7s CIsm, us(]Sr Cju, msf](sr &SP&(smears ~ (13d )
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We can now de6ne the following lattice sums

pj,[kk, vr] = Q—r,kr~ Cs, k„(LX,MJJ„Nv) = Q—kr~ C,k, (OX,Mp, Nv),
V

(14a)

Pj,[Ik,rs] = Pz]—[rz P, C.;k,(LX,M[J,,Nv)'X, (1Vv) Pj,—[js]8„k Ps,—[jk]8„;,
V

(14b)

Pj,km, rs] = gz~—~ P„.Cs&k.(LX,Mp, Nv) X (Mp)X, (1Vv) —(]Is,mk) 8;,—(Xm,rs) 8; k—(Xj,ms) bk„,
V

(14c)

1
&jv, km, rs= Zrk[]r Pkvr @jkr(L~~M[ksNv)Xv(L&)Xm(M[k)Xs(NV) &vm, rs&s'k Am, vs&jr &jvms4, r ~ (14d)

With the help of (7a') and (3c) we can show that pj,[kk,rs] is symmetric with respect to (r «-k s). X,(1Vv) can be re-
placed with X,(OX,Nv) without altering the lattice sum in (13b ). At the same time the contribution from the
surface atoms becomes negligible compared to the volume contribution. We can make use of (3d) for third-order
coupling parameters for atoms in the body of the crystal. (14b) can be written as

Pj,pk, rs]= Pkrz Q„—CJ,k„(OX,Mp, Nv)X, (0][,Nv) —Pj,ps]5„k—[Xs,pk]8„;. (14b')

(14c')pj km, rs]=[]jj,(km), (rs)]—ps km)8;„—pm rs)[]k (xj,ms)hk„—

With the help of (7b ) and (3c), it can be shown that pj, km, rs] is symmetric in (r «-v s). From the definition
(14c) it is obvious that []Ij,km, rs] is synunetric with respect to (km) «-+ (rs). So it is also symmetric in (k ~ m).
We can replace X„(My) and X,(Nv) with X„(0]I,,Mp) and X,(0][,Nv) without altering the sum (14c). So we could
write [Xj,km, rs] as

1
[~j,(km), (rs)]=—ZMN Z C'jk, (O&,M], Vv)X (0]I.,Mp)X, (0]%.,1Vv). (14d')

c,v, k,„,defined in (14d) is obviously symmetric in (jp) «-v (km) «-+ (rs). It is also symmetric in (r «-+ s) and hence
(k ~m) and (j ~P). This can be shown with the help of (7c) and (3c). To avoid the surface contribution, we de-
Gne a new lattice sum

1
Csk, [rs],vm= RIM]r Qkvr C'~ kr(LX)MP, Nv)Xv(LP')M[J)Xm(LX)M[J)Xs(LX, Nv)

2V

Qk„.Qkr]r C', kr(OX, Mp, Nv)Xv(OX, Mp)X (OX,Mp)X, (OX,Nv) .
28~

(15)

From (15), (14d), and (8) it follows that
A A A

&L&jk, [rs],xm &[jsvm]sskr &, [skvm]~jr]=, &jv, km, ra+a m, kv, rs+(cvm, rs+cmv, rs)~jk ~ (16)

Now
A ss A

Cjk, frs], ym Cfjs, ym]okr —C[sk, ym]~jr

is symmetric in r and s. This can be seen from (15),
(8), and (3f). In addition to the above symmetry,

A A A

Cjk, [rs],ym C[js,ym]okr C[sk, ym] ~j r Cpm, rs~jk

must be symmetric in the interchange (jp) «-v (km).
This is the Kun-Huang relation on third-order coupling
parameters derived by Leibfried and Ludwig. It may
impose additional restrictions on the third-order coupling
parameters. We can derive an expression for cj~,k,„,

from Eq. (16). We add to (16) the equation obtained

by interchanging j with p and subtract the equation
resulting from the interchange of p with k. Then

A I A A

Cjy km rs=Cjk, frs], ymWCyk, frsl jm Cjy, [rsl )km
A A

&[sk,Vm] &[sV,km]][JS'r

[~[j Jr+Vs[ jm]V, ]s4r
~ ~

sk A

C[sk, s'm] C[js,km]][]vr

[rVm, rs~jk+&jm, rs4V &km, rs~jV] ~ (17)

Making use of the symmetries of the lattice sums

(14a)-(14d), we can write C k"+C 3 as follows. As we are
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interested in the energy only up to the third-order in
the strains, we can write to for to and»„, for —,'(e„,+e,„)
in these terms. So

C s"+C s
——-', y P.k, Pk„, P.a,&ib,vc)t0. (X)t&&k(&i)t&&,(v)

+-,' y p;k„pi„p j,&ik,rsje;(X)ek(&k)»„

+s V Pjkmrs Pk P jskm, rS)to;(l&)&&kss'mrs

Mls V~jykmrs &jy, km, rsQj y'gkmQrs ~

1
q =—[Cs+esj=-', pk„Q;k p j,&ikjt&&;(&&)ek(&i)

V

++X Zs'km(~ jskm)t&&j(li) Vkm+'s Pjvkm Cjv kssrijv gkrs'

+-', Q;k, Qk„, [&j,&ik, vr je;P)ek(p)e„(v)

+ s Zsk- Zk. P j,& krsjes(& )ek(k) n-

+S Qjkrsrs gX p JskmsrS)ei(l&)rikssrirs

+6 Z jVkssrs Cj p, km, rs'gjV'/km'mrs ~ (19)

The components e;(X) are eliminated by imposing the
condition that

B /Be;(X)=0.

So the strain energy per unit volume of the undeformed
crystal is

This leads to the equation

g„pk [Xj,&ik)ek(k&)

= —pk (Xj,km)r&k

—2"Zki [& j,& k, vi)(1—
s b»ski)ek(u)ei(v)

—g„Pk„P,j,&ik,rs jek(&i) r&„,

S Zkmrs PgskmsrS)rlkrsr&rs ~ (20)

where
e, &»( )= —g,„A(&j,km)&, „, (22)

A(Xj,km) =g„Pi (&&j,&kl) (yl, km). (23)

Substituting for e, (X) in terms of e, &'&(X)+e;&'&(X)
the strain energy (19) can be written as

This equation can be solved to yield e, (X) in a power
series in the strain. As long as we are interested in the
energy up to the third order in the strains, we need
to know e;(X) only up to the second order in the strains.
Writing e;(P,)=e;&'&(X)+e &s&(X), e;&'&(X) is the solu-
tion of the equation

p„gk p j,pkjek(k&)= —pk (Xj,km)r&k . (21)

The DetP.j,&ik) is singular because Pz P,j,&&k)=0.
However, we can assume the sublattice A. = 1 to have no
internal displacement, i.e., e;(1)=0 and calculate the
relative displacement of the other sublattices. Follow-
ing the procedure of Born and Huang, " we take the
(3n 3)&—((3m —3) submatrix 1's(3&s—3) of P j,&&k) by
omitting the 3 rows and 3 columns X=1 or p=1. The
inverse is then bordered with zeros to make a 3e&(3e
matrix (Xj,&ik). We can then write the solution as

9 =-,'Qk„Q;k p j,&ikje, &'&)&)ek&'&(p)+Qk„Q, k p j,pk)ek&'&(p)e, &'&(X)

+Ex gjkss(~Jskm)ej (&&)rlkm+Zk Zjkm(&&gskm)t&&j (l&) vkm+2 Pjvkm cd, kssr&jvrlkss

+-', p;k„Qk» p j k&k, vr)e, &'& p)ek&i&(p)e„&'&(v)+-,' p,k„pk„pj&&k,rsje;&'&(& )ek&'&(&«)»„,

+ 2 pskssrs pk p Jskmsrsjtas (l&)&&kss&&rs+ s Zskvssrs cjv, krs, rsrbvr&kss'mrs ~ (24)

Because of (21), the terms in e;&s&(X) cancel out. So to get &v correct to third order in strains it is enough to know
e to the Grst order in strains. Finally, substituting for e;&'&(X) from (22) we can write (24) as

where
P= g ~jy, km &jp,kmgjy'/km~ 6 ~jykmrs &jykmrs'gjygkm'Qrs y (25)

c;,, „=c;„,„—g„g ( l, jP)A( l,km), (26)

c;v k,„, c;„k „, g„——gi [E(vl—, [km, rsj)A(vl jP)+E(vl, [rsj P))A(vl, km)+E(vl, [jP,km))A(vl, rs))
—Pk» P, ks P a, ljb, vc)A (haj P)A (1kb,km)A (vc,rs) . (27)

cj„,k and cj~,k,„, are the second- and third-order
macroscopic elastic constants

E(vl, [km, rs)) = [vl,km, rs) —c(vl, [km, rs)), (28a)

c(vl, [km, rsj) =P P. [vl,na, rs)A (na, km) . (28b)

When every atom is at a center of inversion the sums
(Xj,km), A (Xj,km), (Xj,km, rs) are zero. There can be no
internal displacement and

The above expressions are valid for the alkali halides.
The expressions (26) and (27) are valid only for non-

piezoelectric crystals. In a piezoelectric crystal, a
macroscopic strain gives rise to a macroscopic electric
field which depends on the shape of the specimen. Then
we have to separate out from the strain-energy expres-
sion (19) the contribution due to the macroscopic elec-
tric field. This problem is under investigation.

&jy, km= &jy,km j &jy, km, rs &jy, km, rs ~

"M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Oxford University Press, Nevv York, 1962), p. 234.
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XII. LONG-WAVE METHOD

Thurston and Brugger" have given the following
equation from macroscopic elasticity theory for wave
propagation in a homogeneously strained crystal":

Po~ sl gkvm A (l», (km)NvNmsk ~ (29)

Here pp ls the density of the crystal in the undeformed
state, 8' is the "natural" velocity of propagation nor-
mal to a plane of natural normal N and s; is the jth
component of the displacement from the homogeneously
strained state. Using a strain-energy expression of the
form (25) and the expression for A(;», (k„) given by
Thurston and Brugger, we can write

A (jv), (km) =&
jv, na kCMrs L&vj, mk, ra+~vs, rs~jk jr)re

+Q, ave „ke;,+Q, Cvj „,eke. (30)

When the strain energy is known up to third order in
the deformation, AU„~, (& ~ is known only to the first
order in the deformation. In (30) si„, can be replaced by

&ra &sr

In the long-wave method, we derive from lattice
theory the equation for wave propagation in a inde6-
nitely extended medium. This equation is compared with

(29) and (30) and the expression for the elastic con-
stants are derived.

We consider a homogeneously deformed lattice. The
atomic displacements u;(L}() are given by (4). The
atoms are given a further in6nitesmal displacement
s; (L}) from the deformed state. The equations of motion
can be shown to be

M(}()8,(LX)=—P)(r P„Pk @sk(L},Mp)sk(Mp). (31)

M(X) is the mass of the }(-type atom.

4;k(LX,Mp) = C; k(LX,Mp)+ t).;k(L},Mp), (32a)

t).;k(LXMp) =/sr p, p/ C;k)(L}„MpNv)Q((Xv) . (32b)

If we seek a solution of (31) in the form

s;(LX)= s;(}()exp'[(ot —I'N X(L}()j
Lthis equation is of the same form as Eq. (3.9) of
Thurston and Brugger"),

M(X)(o's;(X) =Pkr P„gk e;k(L})Mp)
X(exp f —LsTN. X(L}(,Mls) $))sk(ts) . (33)

Here the "wave number" of the wave is I' and we are
considering a wave traveling normal to a plane whose
natural normal is N. (o'/I"= Ws when F' is small.

The long-wave method developed by Born and
Huang" can be applied to Eq. (33) to obtain the equa-
tion in the form

t) o~'&so =Zkvm &ko&v&~
2vg,

QM Qk„%';k(0}(,MP)Xv(0},MP)X (0}(,MP)

+—Q~v pk„p„4;,(OX,rrsp)X„.(OX,Mp)I' '(pq, or)%'„k(0a,Psr)X (Oo,Prr) . (34)

The matrix I' '(pq, or) is obtained as follows. A(3n —3)&&(3N—3) matrix is obtained from gkr 4;k(0}(,Mls) by
omitting the 3 rows and 3 columns with X=1 or p, =1.The matrix is inverted. The inverse matrix bordered with
zeros gives I' '(pq, ar).

Comparing (34) with (29) the lattice-theoretical expression of A (;„),(k ) can be written

1
A (fv), (k„)=— Q js Qk„%;k(0}(,Mp)X„(0}(,Mls)X (0}(,Mp)

28(2

1
+—QMP gk&, Po„+so(OX,MP)Xv(0}(,Mls)I' r(tsq, (rr)%'„k(0(r,Por)X (0(r,Psr) .

(35a)

(35b)

Substituting for 4;k(OP, ,Mp) and I;(IX) from (32a), (32b), and (4) in (35a) yields

1
Qkr Qk„C;k(0}(,Mp)X„(OX,Mp)X (OX,Mls)

28~
(36a)

Qk(kr Qk„„Q„,C;k„(OX,Mp, Nv)X„(OX,Mls)X (OX,Mp)X, (1Vv) e„,
28f2

1
Qsrk( pk„„+„C~;k„(0}I.,Mp, Xv)X„(0},Mls)X (0}).,Mls)to„(v) .

28~

(36b)

(36c)

"A(;„),( ) corresponds to A;q„ in TIIurston and Brugger, Ref. 11.
"M. Born and K. Huang, Dynamical Theory of Crysta/ Lattsces (Oxford University Press, New York, 1962},Chap. V.
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(36a) and (36b) are the lattice sums ct;z, v ~
and P„,c;z, ~„,~, v e„,defined in (8) and (15), respectively. Making use of

(3d), (3a), (3e), (36c) can be written as

where
g„p„[vr,[jk, pm)]w„(v),

[vr, [ jk,pm]]= — Qrxr Q&„C„&(Ov MIJ, ,LX)Xv(MIJ, ,L'A)X„(Mti, L'A) .
28a

(37a)

(37b)

(38)—g„Q,Q& A(vl, rs) fvl, Ljk,Pm/]rt„.

Zs +,.(Ot, S'o)=~.Ll q, orj+D(t q «)

D(pq, or)=Par P, P, C,„,(op,So,Tr)u, (T,r).

Now we evaluate (35b)

where
(39a)

I' '(tiq, or) can be expanded in powers of D(tiq, or) and only terms up to the first power in D(tiq, or) need be retained.

1
1' '(vqor) = (tiq, or) — Qp —Q—.t, (pqna)D(na Pb) {Pb,or) .

&a &a

Substituting for F (tiq, «), (35b) can be written up to the first power in displacement as

Since A &;» &z &
is required only to the first order in the deformation, we can replace w„(v) with w„&'~(v) given by

(22) and write (37a) as

1
Q«C;, (OX,Mti)Xv(OX, Mti) {tiq,or) C „i(oo,Pm)X (Oo,P7i)

&a
2

(41a)

+—Q~v Qi„, Q, i 4;,(OX,Mp)X„(OX,Mti) {tiq,ot) hei, (oo,P~)X„(o.o,Pm)
&a

2

1
+—Qiiiv Qi,„Pqg 6;q(0'A, Mp)X„(oh, MIJ)(tiq ot)C gi(oo, Pm)X (Oo,P7i)

&a
2

1——P~v Pi„...o P«.~ &;,(OX,Mti)Xv(OXi MIJ)(vq, na)D(na Pb) {Pb,or) 4 „&(Oo,P7r)X„(oo,P~) .
Va

3

Using (2a), (2d), (7b'), and (23), (41a) can be written as

Z.E.(t qi p—)A (t q, km) .
Substituting for Aii, (oa,P~) from (32b), (uLl)fjrom (4), and using (7b'), (41b) can be written as

1——Pp& P„.,„P,«(tiq, jP) C&&( O, o~P,A )wv&(v)X (Oo,Pw){tiq, ot)

(41b)

(41c)

(41d)

(41a')

(42a)

Zzs 2&«. Zaire(uq, jp) (tiq, vl) C»i„(Gv,Pm, So)X,(ov,So)X (Ov, P7r) c„. (42b)

From (23) and (14b') and replacing w~(v) with wi&'~(v) from (22), (42a) becomes

P,„gi„,&A(ot jP)A(vl rs)(Jot vl km j+[omvl)B&&+Jot, vm/B»)rt„,

Using (28b) this can be written as

P„P«, (c(vl, [ jj,kmj)A(vl, rs)+A(vk, jP)(vl rs)8&~+A(vk, rs)(vl, jP)b&~)rt«

(42b) can be rewritten with the help of (14d') and (23) as

—P, P&„, A (vl, jP)Lvl, (km), (rs) jo„,.
From (41c) we get two terms similar to (44) and (45), namely

g„p&„,{c(vl,Lkm, jpj)A(vl, rs)+A(v j,km)(vl, rs)8&v+A(v j,rs)(vl, km)B»)g„

(43)

(44)

(46)

—g, pi„A(vl, km)Lvl, (jp), (rs)7o„,. (47)
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With the help of (2a), (2d), (7b'), and (23), (41d) can be simpliffed to

(1/y, )P p g, k A(na, jP)D(na, Pb)A(Pb, km).

Substituting for D(na, Pb) from (39b), (48) becomes

(1/y, )pZy pnj[ p, k, A(na, jp)C, k, (On, Bp,Pm)W, (y.)A(pb, km)

1
+—Qs& Q.p Q [k„, A (vl, jP)C &k, (0v,BP,Py-) X,(Py )A (Pb,km) e„,.

(49a)

(49a) can be simplif(ed with the help of (14a) and (22) to

—Q„,p p p.k, dna, pb, 7rc)A(na, jp)A(]3b, km)A(7rc, rs)rj„, .
(49b) can be transformed using (14b') and (28b) to

Pa Q &rs [c(vl, [km, rs)) +A (vl,jP) (vs,km) 8[a+A (vl, km) (vsj P)8&„)e„,

Collecting the terms, A U„~, ~I, ~ from lattice theory is

(5O)

(51)

A(;„]„(k )=c[jk,y ]
—Z. Z[(vl jP)A(vl km)

+p„, e„,fcjk, [„,],y +p„p[ {A(vl,rs)(c(vl, [jp,km))+c(vl, [km, jp)))—[vl, [jk,pm)J}
+ [A (vk, rs) (vl, jP)8&m+A (vj,rs) (vl, km) b&y)+ {(vl, rs) [A (vk, jP)5&m+A (vj,km) b[y) j
+A (vljP) f (vs, km) 8&„[vl,(k—m), (rs)) }+A(vl, km) {(vs, jP) b&,—[vl, (jP),(rs)) }

+A(vl jP)c(vl, [km, rs)) grjj~—P,ke [va,Pb,yc)A(va, jP)A(Pb, km)A(yc, rs) j . (52)

If the lattice has no inter-lattice displacement the only terms present in (52) are c[;k „]and g„, ~„,cjk [„]y„.
&ow A(j» (k &+A(; ] (ky] from lattice theory must be equal to the same quantity on macroscopic elasticity
theory. So
A I A I I A

C[jk,ym]+C[jk, my]+~ra yra[cjk, [rs],ym+Cjk, [as]my),
=Cyj, mk+Cmj, yk+gre Crs[Cyj, mk, ra+ Cmj, yk, re+ 2Cyna, rsbjk+(Cys, mk+Cms, yk) brj+ (Cyj, ms+Cmj, ys)brk) ~ (53)

Taking the term of zero order in e,
tj A

Cyjmk+Cm, jyk= 2C,[jk,yrn] ~

This leads to the Kun-Huang re1ation, i.e., c[;k,„]is symmetric in (jk) ++ (pm). The c», k can be expressed in
terms of c[;k,y„] and this leads to Eq. (11).

Comparing the coefficients of k„, and using (54) we get
nl A A A

&LCjk, [rs],ym C[ak, ym]aarj C[js,ym]brk) 2cym, rsbjk=Cyj, mk, rs+Cmj, yk, rs ~ (55)

The quantity on the left is symmetric in r and s from the rotational invariance relations for an infinite lattice. The
left-hand side must also be symmetric in (jp) +-+ (km). This is the Kun-Huang relation on the third-order coupling
parameters. c;„,k,„,can be expressed in terms of c;k [„,],y as in (17).

For the nonprimitive lattice in which interlattice displacements are present we can write

Cyjmk= Cyj m, k+dyj, mk a

Cyj, mk, rs =Cyj, mk, re+ dyj, rnk, rs ~

(56a)

(56b)

(57)

Here c»,„k and c»,„k,„, satisfy (54) and (55). Comparing (56) and (52), we get

—g, g& [(vl, jp)A(vl km)+(vl jm)A(vl kp))=d»k+d;, y, k.

Since —g, p&(vl, jp)A(vl, km) has the same symmetry as d», k

d„;, k= —P, P&(vl, jp)A(vl, km), (58)

p„p& [A(vl rs) { 2[vi [jkpm—)J+c(vl, [jkpm))+c(vl, [kmj p))+c(vl [kp jm))+c(vl [jmkp)) }
+A (vk, rs) [(vl, jp) b& +(vl, jm) 8&y)+A (vj,rs) [(vl,km)B&y+(vl, kp) b&m)

+(vl, rs)[A(vkj P)8&„+A(vkjm)B&„+A(vj,km)b&„+A(vj, km)B& )—P„]]„P,k, [va, Pb, yc)A (yc,rs) [A (va, jP)A (Pb,km)+A (va, jm)A (Pb,kP))
+A (vl jp) {(vs, km)b&, +(vl ms)b„k [vl, (km), (rs)) }+—A (vljm) {(vs, kp)B&„+(vl ps)b, k

—[vl, (kp), (rs)) }
+A (vl, kp) f (vsj m)B&„+(vl,ms)b„; [vl, (jm), (rs)) }—+A (vl, km) {(vsj p)b&„+(vl,ps)8„; [vl, (j p)l(rs))}-

+A(vl jP)c(vl, [km, rs))+A(vl jm)c(vl, [kP,rs))j=dy, , k, „,+d jyk, „,+2dy, „,8ak. (59)
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The right-hand side is symmetric with respect to (jp) ~ (ksrt) and (r ~ s). The left-hand side is obviously sym-
metric with respect to (jp) ~ (krrt). If it should be symmetric with respect to (r ~ s),

[vl, (km), (rs))—(t s,krrt) 5t„—(t l, rrts) b,s

must be symmetric with respect to (r ~ s). This follows from the rotational invariance conditions on third-ord. er
coupling parameters.

We can solve for d» I, ,„,from (59) by adding the equation obtained by interchanging p with j and subtracting
the equation obtained by interchanging j with m. The expressions for c;„& and t,;„,&,„,obtained thus from the
long-wave method agree with the expressions (26) and (27) from the method of homogeneous deformation.

The theoretical expressions developed in this paper are being applied to analyze the experimental results on the
third-order elastic constants of Ge and Si in terms of the third-order coupling parameters.
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The electronic polar and dipolar thermal conductivity of both n- and p-type Si-Ge alloys with different
carrier concentrations are calculated in the temperature range 300 to 1100'K. With carrier concentration
remaining constant, the nature of the scattering mechanism is determined from the temperature depend-
ence of the conductivity mobility. The scattering parameter being known, the temperature dependences
of the reduced Fermi level and the density-of-states effective mass are determined from thermoelectric
measurements on these samples by Dismukes et al. These temperature variations are taken into account
in the calculation of the contribution of the electron-phonon interaction to the thermal resistance of the
doped Si-Ge alloys. The thermal conductivities due to longitudinal phonons and transverse phonons are
calculated separately, and there is good agreement between the calculated temperature dependences of
the total phonon conductivity and the experimentally obtained values of thermal conductivity minus the
electronic thermal conductivity. The dilatational deformation potential is found to increase with the in-
crease in the carrier concentration and the reduced Fermi potential. The dipolar contribution is found to be
signilcant only at temperatures above 700'K and for e-type alloys, for which the doping is comparatively
low.

I. INTRODUCTION

ECENTLV, it has been observed that doping of
Si-Ge alloys' reduces the lattice thermal conduc-

tivity. This has been interpreted in terms of scattering
of phonons by free charge carriers. At high tempera-
tures polar and dipolar contributions to thermal re-
sistance due to electrons and holes also become im-

portant. The lattice thermal conductivity at such high
temperatures is usually obtained by subtracting the
electronic contribution from the experimentally ob-
served total thermal conductivity. In highly doped
materials phonons are also scattered by ionized im-

purities, but this contribution towards thermal re-
sistance is negligible. The inQuence of phonon-electron

' J. P. Dismukes, L. Kkstrom, E.F. Steigmeier, I. Kudman, and
D. S. Beers, J. App&. Phys. BS, 2899 (1964).

interaction on lattice thermal conductivity has been
shown by Steigmeier and Abeles' to be substantial in
doped Si-Ge alloys. This contribution is estimated by
assuming the additivity of reciprocal relaxation times
due to different scattering mechanisms of phonons, such
as phonon-phonon scattering (umklapp and normal),
scattering of phonons by defects, and phonon-electron
scattering. The effective relaxation time thus obtained
is used to determine the phonon conductivity in the
formalism of Callaway. ' The expression for the phonon-
electron relaxation time for the electrons in the para-
bolic band involves the knowledge of the reduced
Fermi potential, the density-of-states effective mass,

~ E. F. Steigmeier and B.Abeles, Phys. Rev. U6, A1149 (1964).' J. Callaway, Phys. Rev. 115, 1046 (1959); J. Callaway and
H. Q. Von Baeyer, ibid. 120, 1149 (1960).


