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Expressions for the third-order elastic constants of nonprimitive lattices are derived from lattice theory
by the method of homogeneous deformation. The interlattice displacements are obtained as a power series
in the strains from the condition that the strain energy is a minimum with respect to these displacements.
For third-order elastic constants these displacements need to be known only to the first order in strain.
The expressions for the elastic constants are verified by deriving the equation for wave propagation in a
homogeneously strained crystal and comparing it with the equation from continuuum mechanics. The
expressions given here are valid only for nonpiezoelectric crystals.

I. INTRODUCTION

ATTICE-theoretical expressions for the third-
order elastic constants of primitive lattices have
been given by Leibfried and Ludwig.! Explicit ex-
pressions for the third-order elastic constants of the
cubic primitive lattice in terms of the third-order
coupling parameters have been derived by Coldwell-
Horsefall.2 In nonprimitive lattices, a macroscopic strain
gives rise to interlattice displacements. This compli-
cates the theoretical situation. In the alkali halides,
each ion is at a position of a center of inversion. There
can be no interlattice displacements in the alkali
halides and the theoretical expressions in these crystals
are similar to those for primitive lattices. The elastic
constants of these crystals have been studied theoreti-
cally by Bross,® N’ran’yan,*5 and Ghate.®

Experimental data of the third-order elastic constants
have recently become available for several materials
occurring in nonprimitive lattice structures, such as’”:
Si and Ge.”:8+9:10 For an analysis and utilization of these
data in terms of a force-constant model, the general rela-
tion between the third-order elastic constants and the
third-order coupling parameters for nonprimitive lat-
tices must be known.

In this paper, the general lattice-theoretical expres-
sions for the third-order elastic constants of nonprimi-
tive lattice are derived by the method of homogeneous
deformation. The interlattice displacements are elimi-
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nated by imposing the condition that, for a given macro-
scopic strain, the energy must be a minimum with re-
spect to these inner displacements. The inner displace-
ments are obtained as a power series in the strain
components. For the strain energy up to the third-order
in strain, we need to know the inner displacements only
up to the first-order in the strain. The expressions for the
elastic constants are verified by the method of long
waves. The equation for wave propagation in a homo-
geneously strained medium is derived from lattice
theory. It is then compared with the equation of
Thurston and Brugger!! based on continuum theory.
In this process we derive a Kun-Huang relation for
third-order coupling parameters. This relation has
already been given by Leibfried and Ludwig.!

Before proceeding to the derivations the notation
used in the following pages is explained below:

L, M, N, upper case letters stand for cell indices.

A, i, v, Greek letters stand for basis indices.

I, m, n, lower case letters refer to the Cartesian
components.

Fik pm,rs, Symmetric with respect to interchanges
(jerk); (pom); (res)--- and  (Gk) < (pm);
(pm) < (rs), and (rs) < (jk).

Fijk,pm, symmetric with respect to interchanges
(7> k); (p <> m); but not with respect to (j&) <> (pm).

Fit.irs1,0m, Symmetric with respect to (j<>k);
(p <> m); but not with respect to (r & s).

F;, tep, (rs), Symmetric only with respect to (kp) <> (rs).

X;(LN), jth component of the position vector of atom
(LX) in the unstrained state.

u;(L\), jth component of the displacement of atom
(L)) from the initial configuration.

@1 (LN, M p,Nv) = 03®/ du;(LN) dur( M p) duy(Nv), @ is
the potential energy of the crystal.

4, volume of the unit cell in the undeformed state.

1 R. N. Thurston and K. Brugger, Phys. Rev. 133, 1604 (1964).
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II. METHOD OF HOMOGENEOUS
DEFORMATION

We consider a crystal of large but finite volume V.
The crystal is assumed to be free of any forces or
stresses in the initial state. So

®;(LN)=0

for every atom (LX). The potential energy of the crystal
is expanded in powers of the atomic displacements
u;i(L\):

B= Py Dy, (1a)
where
Bo=3 2 rar 2onw 2 ik Pin(INMp)u;(LN)ur(Mp),  (1b)
D=5 2 LuN 2w 2o ikr Pir(LN,Mu,Nv)
X (LN ur(Mp)u.(Nv), (1c)

The second-order crystal potential (CP) ®;x(L\,Mu)
satisfy the following conditions!:

(bfk(I)VM“) = ¢’5.7(214-/~")L>‘) ’
2o mu B (INMu) =3 1x $(LNMu)=0

(2a)
(2b)
(translational invariance),

2y Bin(LNMp) X (M u)
=2 wu Pja(INMp) X (Mp)  (2¢)

(rotational invariance).
For an infinite lattice

(LN, Mp)=2jt(ON, M — Lp)=®;i(L— M\, Op). (2d)
The conditions (2b) and (2c) become
ZMM quk(O)\:Mp')=O) (28)
2 B (ON, M) X o(ON, M )
=ZMIL q)jl(O)‘;M:u)ch(O)\:Mﬂ) ’ (Zf)

where
Xy(INMu) =X (Mp)—X(L)).
The third-order CP’s ®;z,(LN\,Mu,Nv) satisfy the fol-
lowing conditions!:
q)jkT(L)‘)M:u'JZVV)
= P (LN, Nv,Mu) = Prjr(Mu, LN, Nv) ,

22 0x Pier(LNM u,Nv) =3~ ary Bjier (LN, M u,Nv)
=ZNv q)jkr(L)\;M:u)NV)=O (3b)

(3a)

(translational invariance).

ZNV @jkr(L)\,M,U.,ZVV)XS(ZVV)

- (I)js,(L)\;Mﬂ)Bkr- ‘I’sk(L)\,M,u) 0jr (3C)

must be symmetric in (7 <+ s) (rotational invariance).
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For an infinite lattice
&1y (LN, M, Nv) = 31,(O\, M— Ly, N—L»), (3d)
(3b) and (3c) are now written as
2 ot Rier(ON M, Nv) =25y Bjier(ON M, Nv) =0, (3e)
2w ®jur(ON, M u,Nv) X (0N, Nv)
— Do (ON, M 1) 81— Poi(ON, M )35 (3£)

must be symmetric in 7 and s.

For atoms within the body of the crystal we could
expect (2d)-(2f) and (3d)-(3f) to be valid. For surface
atoms this will not be so.

In a homogeneous deformation

ui(LN) =225 €ipX o(LN)+w;(A) 4)

€j:=(0X/9X—0;s) is the deformation parameter and
w;(\) is the jth component of the internal displacement
of the sublattice . In order to express the strain energy
in a form invariant with respect to rigid rotation the
proper parameters to use are (Born and Huang!?)

Nii=3[ et €t 20 €pi€pil, (5a)
wj()\) = wi()‘)"l"Zp eppro\) . (Sb)

After substituting for #;(L\) from (4), (1b) can be
written as

Do=3 2 ik 21 2 nw Pin(INMp)w;(N)wi(u) (62)
F 2 ikm 2o nar 2on Pin(INMu)
XX n(Mp)wi(N)exn (6b)
+3 2 ikom 2o 1ar 2one Pin(LN,Mp)
XX p(LN) X (M p)ejperm. (6c)

In the expressions (6a), (6b), and (6¢c), the following
lattice sums can be defined:

1
D\f;#k]=;ZLM P LNMp)=[uk,\f], (7a)
1
(Nj,km)= “Vj 2w 2o Bin(INMp) X (M )
1
=; 2o 2o Pin(LNMp) X n(INMyE),  (7b)
1
Cfp,km=; 2w 2o Bin(INMu)
XX p(LNXwn(Mp). (7c)

(\j,km) is symmetric in k and m and c¢;,,km s symmetric
with respect to (j < p), (k<> m), and (jp) <> (km).

2 M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Oxford University Press, New York, 1962), Chap. VI.
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This can be shown with the help of (2c). The contribu-
tion of the surface atoms to the sum (7a) becomes
negligible (~ V—1/3) compared to the contribution from
the atoms in the body of the crystal for large volumes.
This will not be the case when the lattice sum involves
the position coordinates X;(Mu). Following Leibfried
and Ludwig,! we can define new lattice sums by re-
placing the position coordinates with the relative co-
ordinates X;(LN\,Mu). By doing so, we make the con-
tributions from the surface atoms negligible compared
to the contributions from the volume atoms. Replace-
ment of X,,(Mu) by X»(L\,Mu) in (7b) does not give
rise to a new lattice sum because of (2b). Making use of
(2d) for the atoms within the volume of the crystal, we
can write (7a) and (7b) as

1
[Njuk 1=— 22 Pi(ONMu), (7a)

Va

1
(g km)=— 2 u 2 P (ONM ) Xon(ONMu) . (70"

Va

2, is the volume of the unit cell in the undeformed crys-

D= Py 4Py,

By =V{F 2oau 2o INFuk J0;(N k() 4200 22 ikmN 7 km )i (N) em~+5 2 ikpm Cip kmMipTem)

Dy =—V 2 nu Zikp Mok Jwr(N)wp(w) ep;

— VX3 Z)\ ZJ'kmpO\]'ykm) [ZU;,'(A) fpkfpm+wp()\) e:nj(ko"I' emk)]

1
—TX 3 ijkmr Cjp, km€ip€rk€rm -
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tal. Instead of (7c) we define a new lattice sum

Crik,pm1 = —% S o Bin(IN, Mu)
. XX p(LNMp) X (LN M )
=——2u 2u Pis(ON,Mu)
" X X (O M) X n(ONMu). (8)
From (7¢) and (8) it follows that

281k, pm1= Cip,kmt Cim kp - )
So
(10)

i.e., éijk,pm) must also be symmetric in (j&) <> (pm).
This is the Kun-Huang relation on the second-order
coupling parameters for an infinite lattice initially free
of stress. This cannot be derived from the rotational
invariance relation for an infinite lattice. So this repre-
sents new conditions on the second-order coupling
parameters. In terms of the ¢;, pm, the ¢jx, »m are given by

(11

Making use of (5a) and (5b) and (7a)-(7b’) we can
write ®; as

CLik,pm] = Cjk,pm »

Cip,m=Cik,pmtCip,im— Cip,km -

(12a)
(12b)
(12¢)
(12d)

®,"" must be added on to the corresponding terms from ®;. Substituting for #;(Z\) from (4) in (1c) we get

By=§ 2 jkr 2o 1.mN 2nw Pinr(LNM p, Nv)w;(Nwi(w)w,(v)
+3 2ikrs 2208 2onw Piter (LM p,Nv) X o(Nv)wi(N)wi(u) ers
1 X itrms 2o naw 2w Piter (LNMpy, Nv) X (M) X 5 (Nv)20;(N) €mers
+& Zikpmrs 2 LN 2w Pinr(LNMp,Nv) X p(LN) X (M) X s(Nv) € prmers -

Adding ;" to ®; we can write

v
P, 4- ‘1>s=~6~ 2 ke v 221N Lier(LN, M, Nv)wi(N)wi(u)w,(v)

(13a)
(13b)
(13¢)
(134d)

(13a))

1
+3V Xjkrs Z?\n l:; 2 mw 2o Piwr(LNMu,Nv) X o(Nv)— [A7,us10,6— [ksy#k]‘;rj:le(k)wﬂﬂ)Ers (13b)

1
F3V 2 ikmrs 20 |:; D oun 2w Pikr(LNMu,Nv) X (M p) X s(Nv)

— (Nm,rs) 85— (Nj,ms) 5kr]zUj()\) €xmers  (13¢)

1
LV i [; 5 st S By (ENM i N9) X o LN) X (M) X o(N)

_Cpm,rsajk—Ckm,psajr— ij,msakr] €;p€kmErs - (13dl)
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We can now define the following lattice sums
. 1 1
[Aj,ukeyyr ] =7 2o 1uw Bier(LNMp,Nv)=— 3" sn jir(ON,Mu,Nv), (14a)
Va
. 1
[)\],uk,rs:I:; ZLMN ZV @jkr(Lk,Mu,NV)XE(NV)— [Ajyﬂsj Ork— [)‘Sr.uk:larj ’ (14b)
1
[Ajkem,rs]= 7 21N 2 Piter(LNMp,Nv) X (M) X o(Nv)— (Ns,mk) 8js— (N rs) 05— (Nj,ms) k., (14c)

Cjp,km,rs =; ZLMN Z)‘“y <I>,-k,(L)\,Mu,Nv)Xp(L)\)Xm(My)Xx(Nu)—c,,,,,,,,,ajk—ckm,,,saj,-—cj,,,msk, . (14d)

With the help of (7a") and (3c) we can show that [Aj,uk,rs] is symmetric with respect to (7 <> s5). X,(V») can be re-
placed with X ,(ON\,N») without altering the lattice sum in (13b’). At the same time the contribution from the
surface atoms becomes negligible compared to the volume contribution. We can make use of (3d) for third-order
coupling parameters for atoms in the body of the crystal. (14b) can be written as

1
[)\j,uk,rs]=— ZMN Zy q’jm(O)\,M/.t,NV)X;(O)\,NV)— D\j,,us]tsrk—— I___)\S,,u.k:lsrj.

Va

(14b")

With the help of (7b’) and (3c), it can be shown that [Aj,km,rs] is symmetric in (7 <> s). From the definition
(14c) it is obvious that [\j,km,rs] is symmetric with respect to (km) <> (rs). So it is also symmetric in (% <> m).
We can replace Xn(Mu) and X,(Vy) with X,,(O\, M) and X ,(ON,N») without altering the sum (14c). So we could

write [N j,km,rs] as

[)‘j’km:rs:]—: [)‘]y (km),(rs)]~ ()‘S;km)‘sif_ O\mﬂ’s)éﬂc_ O‘j}ms)akf ]

1

(N7, (km),(rs)]=— 2w 2 uw Pinr(ON M u,Nv) X (ON, M 1) X ;(ON,Nv) .

Va

(14¢)

(14d)

Cip,km,rs defined in (14d) is obviously symmetric in (jp) <> (km) <> (rs). It is also symmetric in (r <> 5) and hence
(k<>m) and (j <> p). This can be shown with the help of (7c) and (3c). To avoid the surface contribution, we de-

fine a new lattice sum

1
Cik,[rs],pm™= o 2z 2onw Bier (LN M, Nv) X (LN M) X (LN M) X (LN, Nv)

1
=——— 2w 2 u Piar(ON M, Nv) X p(ONM ) X (ON M) X s(ON,N9) .

Vg

From (15), (14d), and (8) it follows that

2[61'10. trs],om— Cljs, pm1Okr— Clsk, pm] 5:ir:| =Cip,km,rs Cim,kp,rs T (Cpm,rs+0mp,TS) k-

Now

Cin,trs1,om— Cljs, pm] 5kr—é[8k ,pm] Ojr

is symmetric in 7 and s. This can be seen from (15),
(8), and (3f). In addition to the above symmetry,

Cit,trs1, pm™ Clis, pm) Okr— Clsk,pm] O+ C pm,rs0ik

must be symmetric in the interchange (jp) <> (km).
This is the Kun-Huang relation on third-order coupling
parameters derived by Leibfried and Ludwig.! It may
impose additional restrictions on the third-order coupling
parameters. We can derive an expression for ¢;jp,km,rs

(15)

(16)

from Eq. (16). We add to (16) the equation obtained
by interchanging j with p and subtract the equation
resulting from the interchange of p with k. Then

Cip,km,rs= éik,[re] ,pm+épk Jrsl,jm™ é\ip,[rs] km
- [@[sk,pm} "5[sp,km]:|5:'r
— [tje,om+Crps,im 10k
- [é[sk,im] - é\[J'-v,lmljazor

- [Cpm,rsajk+cjm,rsakp— ckm,rsaj;n] .

an

Making use of the symmetries of the lattice sums
(14a)-(14d), we can write ®,”+ ®; as follows. As we are
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interested in the energy only up to the third-order in
the strains, we can write % for w and 7,, for (e, €;r)
in these terms. So

By '+ Py= %V 2 abe Z)\#V [)‘a;l‘b:l’c:lwa()‘)wb(/‘)wC(V)
+%V ijrs Z)\y [kj’MkJS]wj(}‘)wk(u)"lrs
+3V zikmrs 27\ [}‘jykm;rs:le()‘)ﬂkmﬂm

+&V Zipkmrs Cip km,rsNipNkmMrs - (18)

So the strain energy per unit volume of the undeformed
crystal is

1
¢=;[<I>2+<I>3]=% an ij [Aj;#k]wj()\)wk(p)

+ 220 Zitn(NJ km) i (N nemt+3 2 ipkm Cip kmNipNim
+& 2oikr 2onw [NFoue,vr J0;(N)0r ()0, ()

+3 Xikrs 2onu [N Gk, 75 J0;(N) 101 () 1rs

+3 Zskmrs 2x [N 7k, rs 10;(N) e

1
+§ ijkmrs Cip,km,rsNipNkmNrs -

(19)

The components w;(\) are eliminated by imposing the
condition that

d¢/dw;(\)=0.

SRINIVASAN
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This leads to the equation

Eu Zk [Aj,ﬂk]wk(ﬂ)
=—=2km(Aj m)nim
— 2w 2kt [N ule b ](1— 58,0100 (u)01(v)
_ZM D krs [)‘jyl‘kfrs]wk(“)ﬂrs
—3 2 kmrs [NJ ke s Tnmys - (20)

This equation can be solved to yield %;(\) in a power
series in the strain. As long as we are interested in the
energy up to the third order in the strains, we need
to know w;()\) only up to the second order in the strains.
Writing @;(\) =w; P (\)+w;2(\), w;P () is the solu-
tion of the equation

20 20k [Nk Tk () = — Zkm(Nfem) . (21)

The Det[A\j,uk] is singular because >y [Aj,uk]=0.
However, we can assume the sublattice A=1 to have no
internal displacement, i.e., w;(1)=0 and calculate the
relative displacement of the other sublattices. Follow-
ing the procedure of Born and Huang,® we take the
(3n—3)X (3n—3) submatrix I'°(3z—3) of [Aj,uk] by
omitting the 3 rows and 3 columns A=1 or u=1. The
inverse is then bordered with zeros to make a 3nX3n
matrix {Aj,uk}. We can then write the solution as

WiDON) == km ANF, k) 1km

Substituting for w;(A\) in terms of w;P(\)+w;P(\)
the strain energy (19) can be written as

(22)
where

e=3% 2 au 2ok [N,k J00; 0 (N0 D () + 2w 25 [N 7,k Jobie D ()10, (M)
+220 2 iem (N kem) ;P N nemt+ 20 Zikm (N, km)0; P (N niem~+3 X iptm Cip knilivMiom
+& 2 gr 2onw [Ny 35D (N D ()10, D ()43 3 jirs 2onw Aoy 75 T8O (N3O () 0,0
+3 ijmrs Z)\ [)‘j)km;”]wi(l)()‘)ﬂkmnrs'*'% ijpmrs Cip km,rsNjpNkmMrs - (24)

Because of (21), the terms in ;®()) cancel out. So to get ¢ correct to third order in strains it is enough to know
® to the first order in strains. Finally, substituting for @;()\) from (22) we can write (24) as

—1 . 1 . A .
=73 Zip,km Cip, kmMipNemt§ Znﬂcmrs CjplmrsNipNkmMrs 5

where

Cip,om™= Cip,km= 2_» Zl(Vl:jP)A (vl,km)

(25)

(26)

Cip,km,rs= Cip,km,rs— Zv Zl [E(Vl,[:km,rs])A (Vl)jp)_l_E(Vl)D’S)]P])A (Vl:km)+E(Vl; []?)km])A (Vl,?’&)]

Cipkm and &jprm,rs are the second- and third-order
macroscopic elastic constants

E@l,[km,rs])=[vlkm,rs]—c(l,[km,rs]),
cWllkmys )= o >0 [W,aa,rs A (aa,km).

When every atom is at a center of inversion the sums
(A\j,km), A(Nj,km), (\j,km,rs) are zero. There can be no
internal displacement and

(28a)
(28b)

Cip,km=Cip,km; Cip,km,rs=Cjp,km,rs -

— 2 ww 2oabe [Aa,ubyc]A(Na, jp) A (ub,km)A (ve,rs) .

@7)

The above expressions are valid for the alkali halides.

The expressions (26) and (27) are valid only for non-
piezoelectric crystals. In a piezoelectric crystal, a
macroscopic strain gives rise to a macroscopic electric
field which depends on the shape of the specimen. Then
we have to separate out from the strain-energy expres-
sion (19) the contribution due to the macroscopic elec-
tric field. This problem is under investigation.

8 M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Oxford University Press, New York, 1962), p. 234.
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III. LONG-WAVE METHOD

Thurston and Brugger!! have given the following
equation from macroscopic elasticity theory for wave
propagation in a homogeneously strained crystal'4:

PoW2si=2"kom A (i), tem)N pV S . (29)

Here p, is the density of the crystal in the undeformed
state, W is the “natural” velocity of propagation nor-
mal to a plane of natural normal N and s; is the jth
component of the displacement from the homogeneously
strained state. Using a strain-energy expression of the
form (25) and the expression for 4 (jp,am) given by
Thurston and Brugger, we can write

A Gp), (km) = apj,m,k:—I_er [épj,mk,'rs'l'épm,rsajk]"]rc
+2 4 Coa,mh€iqt2q Cpimata-  (30)

When the strain energy is known up to third order in
the deformation, A4 (jp),&m) is known only to the first
order in the deformation. In (30) 7, can be replaced by
%(era‘-}- esr)-

In the long-wave method, we derive from lattice
theory the equation for wave propagation in a indefi-
nitely extended medium. This equation is compared with
(29) and (30) and the expression for the elastic con-
stants are derived.
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We consider a homogeneously deformed lattice. The
atomic displacements u;(L\) are given by (4). The
atoms are given a further infinitesmal displacement
si(LX) from the deformed state. The equations of motion
can be shown to be

MNEIN) == 5 20 2 Yia(INMp)si(Mp).  (31)
M (M) is the mass of the \-type atom.
Uik (LN M) = (LN Mu)+Aj( LN M p) (32a)

Ajk(l)\;M#) =ZN Zv Zl quu(L)\,Mu,NV)uz(NV) . (32b)
If we seek a solution of (31) in the form
si(LN)=s5;(\) expi[wt— Y N-X(Z)\)]

[this equation is of the same form as Eq. (3.9) of
Thurston and Brugger!'],

MNw?si(N) =20 220 208 Yin(LN,Mu)
X (exp{—[{¥N-X(Z\Mu)IPsu(w). (33)

Here the “wave number” of the wave is ¥ and we are
considering a wave traveling normal to a plane whose
natural normal is N. w?/V2=W? when Y is small.

The long-wave method developed by Born and
Huang!® can be applied to Eq. (33) to obtain the equa-
tion in the form

1
PpW0=3 kpm SkONmeI:—_" > ot 2onn Vin(ON M u) X p(ON M p) X o (ON, M 1)

Va

Vg

1
+—2up Z)\er qu \I’fq(O)\ym/‘)Xp((»‘;Mﬂ) P—I(NQ:Ur)\I'rk(O‘T:P"r)XM(OO';PT)] . (34)

The matrix T(ug,07) is obtained as follows. A(3n—3)X (3n—3) matrix is obtained from 3 (0N My) by
omitting the 3 rows and 3 columns with A=1 or u=1. The matrix is inverted. The inverse matrix bordered with

zeros gives I'Y(ug,07).

Comparing (34) with (29) the lattice-theoretical expression of 4 (jp), xm) can be written

1
A vy, kmy= o 2o 2on Yin(ON M) X 5 (ON, M 1) X 1 (ON, M 1)

Va

1
+— 2 1 2onpor 2oar Via(ONM ) X o(ON, M p) T~ (ug,07) ¥ ,1(00, Prr) X (00, Prr) .

Vg

(35a)

(35b)

Substituting for ¥;;(ON, M) and #;(L)) from (32a), (32b), and (4) in (35a) yields

1
- Z M Z)\M cI)jk(O)\;M/“‘)XP(O)\)MH)XM(O)‘:M/'L)

20,

1
I ZMN Z)\uv er (I>J'kr(OA;MM;N”)XP(O)‘:MM)XM(OX:MN)X.?(NV) €rs

Va

Va

1
- '2— ZMN Z)\MV ZT (bjkT(O)\:M/J:NV>XP(O)‘9M:“)XM(O)‘1MI‘)WT(V) .

(36a)

(36b)

(36¢)

1 4 ip), (bm)y corresponds to 4 5;zpm in Thurston and Brugger, Ref, 11,
15 M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, New York, 1962), Chap. V.
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(36a) and (36b) are the lattice sums éjj, pmj and X s Ejk, (51, pmérs defined in (8) and (15), respectively. Making use of
(3d), (3a), (3e), (36¢c) can be written as
DI [V77[jk:Pm]]wr(V) ’ (37a)

where

1
[, Lok, pm 1= o 2 ar 220 (O, M s, LN X (M p, LN) X (M i, LX) . (37b)

Va

Since 4 ¢y, wmy 1s required only to the first order in the deformation, we can replace w,(v) with @, (») given by
(22) and write (37a) as

—er Zv Zl A (Vl,f&) [Vla [jkyﬁm]]nrs . (38)
Now we evaluate (35b)
258 U4y (0u,S0) =4[ ug,07 ]+ D(ug,07) (392)
where
D(ug,or) =257 27 205 Pars(OuySo, T)us(T',7). (39b)
I'—'(ug,07) can be expanded in powers of D(ug,07) and only terms up to the first power in D(ug,o7) need be retained.
1 1
T4 (ug,0r) =—{ug,07} —— Fap 2oas {ug,0a} D(aa,80){Bb,o7} . (40)
g g
Substituting for I'"Y(ug,a7), (35b) can be written up to the first power in displacement as
1
_; ZMP Z?\lmﬂ qu @fQ(OA)M#)XP(OAyM/J') {uq,tﬂ’}‘-IDTk(Oo',Pr)Xm(Oo‘,P'Jr) (413')
Va
1
+_'; ZMP Z)\wﬂr th (I)J'Q(O)‘7M“)XP(O>‘7M/~‘){I‘q:‘ﬂ}Atk(OU)PW)Xm(O‘T:Pﬂ-) (41b)
Va
1
+_2 2o mp 2onuor 2 at Big(ONM ) X p(ON, M 1) {l‘q;at}cbtk(OU:PW)Xm(O‘T;P"r) (41c)
Va

1
——— 2 uP 2 ruorep 2 qrab Lig(ON, M) X ,(ON, M 1) {#q,ad}D(ad,Bb) {B8b,a7} ®,1(00,P) X (00, Pr). (41d)

U3
Using (2a), (2d), (7b’), and (23), (41a) can be written as
— 2k X o(ng, ip) A (ug,lem) (412)
Substituting for A(0o,Pr) from (32b), #;(L)\) from (4), and using (7b’), (41b) can be written as
—;)1— 2PN 2 pomr 2 att(ug, ) Bixi(00, Pm,Nv)wi(v) X (00, Pr) { g0t} (42a)
) :
= S5 T T4, 701} Bur 00 P, 50)X.00,50) X 00 P (42b)
From (23) and (14b’) and replacing w;(v) with @,V (») from (22), (42a) becomes
2ov 2iret A0ty jp) A Wlrs){ Lot,pl km 1+-Lompl 18+ [ot,vm o0} nys (43)
Using (28b) this can be written as
2 Zars {cOLLipkm D) Al rs)+ A vk, 1) 01,75) b1mt A vk, 75) (W, ) Stm} s (44
(42b) can be rewritten with the help of (14d’) and (23) as
=20 Zurs A, jp) [0, (km), (75) Jers (45)
From (41c) we get two terms similar to (44) and (45), namely
2 Zars{c(l,Lkm, jp DA Whrs)+ A j fem) (01,75) 0157 A (v 3,75) (Wl em) Sup} 1rs (46)

and

=2 Zars A km)[01,(39),(7s5) Jers - (47
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With the help of (2a), (2d), (7b’), and (23), (41d) can be simplified to

(1/v0)2Z ap 2- av A(aa, jp) D(aa,Bb) A (8b,km) . (48)
Substituting for D(aa,Bb) from (39b), (48) becomes
(1/7)11)231’ Zaﬂﬂ' Zabc A (ad,jP)q:’ﬂ bc(oayBﬁypﬂ')WC(ﬂ-)A (ﬁb;km) (4:921)
1
+— ZBP Zvﬁﬂ' Zlbrs A4 (Vl;j?)@le(OV;Bﬂ:P"r)XS(PW)A (Bb:km)ers . (49b)
Va
(49a) can be simplified with the help of (14a) and (22) to
—2 rs 2ar Dabe [aa,ﬂb,m:]A (aa:jP)A (8b,kem) A (mc,rs)nzs . (50)
(49b) can be transformed using (14b’) and (28b) to
20 2ours Lc@l,[km,rs )+ A, jp) (vs,km) 81+ A Wl em) (vs, j5) 81 Jers . (51)

Collecting the terms, 4 (jp), &m) from lattice theory is

A () omy = C i, pm1 — 200 220(0h, jp) A (w1, )
+ZN ers{éfk,lrs],pm'*"zv Zl {A (Vl;rs)(C(Vly[j?;km:l)+G(Vl;[km)ji§]))— [Vl,[]kipm]]}
+LAWk,rs) VL, jp)Sim~+A (v f,rs) Wl km)d1p 1+ { (v,rs) LA (vE, §9) S1m+ A (v 5 ) 81, ]}
+A @1, 7p) {(vs,kem)8ue— [l (km),(rs) 1+ A (wl km) { (vs, 7p) 61— [, (7p), (rs) ]}
+A @, jp)cl,[om,rs])— X sy X ave [1a,8b,v¢ 14 (va, jp)A (Bb,km)A(ye,rs)} . (52)
If the lattice has no inter-lattice displacement the only terms present in (52) are &pjk,pm1 and X_rs €rsCik, (rs], pm-
Now A (i ,wm+4 (im),kpy from lattice theory must be equal to the same quantity on macroscopic elasticity
theory. So

Ctit, pm1F ik mp) 2 rs €rs[ i, ral, pmt-Cik, trel,mp
= ij,mk"_cmj, pk+er ers[cpj,mk,rs+ ij,pk,rs"l’ chm,rsajk_l" (Cps,mk+5ms,pk) 5rj+ (ij.ms+cmf,p8)5rk] . (53)

Taking the term of zero order in ¢,
Cpj,mk-Cmj, k= 2C1jk, pm) - (54)

This leads to the Kun-Huang relation, i.e., éjx,pm) is symmetric in (j&) <> (pm). The cpjmr can be expressed in
terms of épjx, pm; and this leads to Eq. (11).
Comparing the coefficients of e,; and using (54) we get

2[6ik,[rs] ,om—Crsk, pm10ri— é[is,pmlark]_ 2€ pm,#s0k= Cpj,mk,rs~Cmj, pk,rs - (55)

The quantity on the left is symmetric in 7 and s from the rotational invariance relations for an infinite lattice. The
left-hand side must also be symmetric in (jp) <> (k). This is the Kun-Huang relation on the third-order coupling
parameters. ¢jp,km,s can be expressed in terms of &jk,(rs1,pm as in (17).

For the nonprimitive lattice in which interlattice displacements are present we can write

Cpi,mk= Cpj,mk+pjm 5 (56a)
Cpjmk,rs = Cpj,mk,rs+ A pj mk,rs - (56b)
Here ¢pj,mi and ¢pj,me,rs satisfy (54) and (55). Comparing (56) and (52), we get
— 220 21 [0, jp) Al )+ (vh, jm) A (Wl kp) 1= A pj,mi+ @i, (57)
Since —2, 2_:1(vl, jp)A (vl,km) has the same symmetry as dpj,ms
Bpiymie=—2_y 21w, 7p) A (Wl ,km) , (58)

Zv 2 {4 (vlrs) { - 2[Vl:[]k ,PMIH-C(VZ, []k’?m])"'c(yl,[km7]P])+c(Vl: [kP,]m])‘l‘C(Vly [jmykpj) }
+A k)L, j5)S1m~+ (b, jm)d1p 1+ A (v §,75) [ (v, m) d1p+ W1,k p)61m ]
+ @l rs)LA(vk, jp)S1m+ A Wk, jm) 815+ A (v 7, km) 81+ A (v7,km)d1m ]
— 2 u8y 2oabe [v0,8b,vc 14 (ve,rs)[A(va, jp)A (8D, km)+ A (va, jm) A (Bb,kp)]
+ AL p) { (vs,km)du—+ (wl,ms),u— [, (km) ,(rs) 1} +A (1, jm) { (v, p) 81+ (vl, )8 — v, (kp), (rs) 1}
+ALkp){ (vs, jm)du~+ (vlyms)8rs— w1, (jm), (rs) 1 +A (Wl fm) { (vs, j9)81+ (01, 5)8ri— 01, (5 p)U(rs) 1}
+4 (Vl;jP)C(”l:[km’73])+A (Vl:jm)c(”l’ [kl’;’s:l)} =dpj,mk,rstBms,pk,rst 28 pm re0i . (59)
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The right-hand side is symmetric with respect to (jp) <> (km) and (r <> s). The left-hand side is obviously sym-
metric with respect to (jp) <> (km). If it should be symmetric with respect to (r & s),

Dol (km),(rs) ]— (vs,km)d1,— (vl,m8) 8

must be symmetric with respect to (7 <> s). This follows from the rotational invariance conditions on third-order
coupling parameters.

We can solve for dp;, mx,» from (59) by adding the equation obtained by interchanging p with j and subtracting
the equation obtained by interchanging j with . The expressions for &;p km and &jp km,rs obtained thus from the
long-wave method agree with the expressions (26) and (27) from the method of homogeneous deformation.

The theoretical expressions developed in this paper are being applied to analyze the experimental results on the
third-order elastic constants of Ge and Si in terms of the third-order coupling parameters.
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The electronic polar and dipolar thermal conductivity of both #- and p-type Si-Ge alloys with different
carrier concentrations are calculated in the temperature range 300 to 1100°K. With carrier concentration
remaining constant, the nature of the scattering mechanism is determined from the temperature depend-
ence of the conductivity mobility. The scattering parameter being known, the temperature dependences
of the reduced Fermi level and the density-of-states effective mass are determined from thermoelectric
measurements on these samples by Dismukes et al. These temperature variations are taken into account
in the calculation of the contribution of the electron-phonon interaction to the thermal resistance of the
doped Si-Ge alloys. The thermal conductivities due to longitudinal phonons and transverse phonons are
calculated separately, and there is good agreement between the calculated temperature dependences of
the total phonon conductivity and the experimentally obtained values of thermal conductivity minus the
electronic thermal conductivity. The dilatational deformation potential is found to increase with the in-
crease in the carrier concentration and the reduced Fermi potential. The dipolar contribution is found to be
significant only at temperatures above 700°K and for #-type alloys, for which the doping is comparatively
low.

I. INTRODUCTION interaction on lattice thermal conductivity has been

. . shown by Steigmeier and Abeles? to be substantial in
ECENTLY, it has been observed that doping of : 1 . a4 .
Si-Ge alloys! reduces the lattice thermal conduc- doped Si-Ge alloys. This contribution is estimated by

.. . . . . assuming the additivity of reciprocal relaxation times
tivity. This has been interp reted_ in terms .Of scattering g6 14 different scattering mechanisms of phonons, such
of phonons by free charge carriers. At high tempera- ?

- R as phonon-phonon scattering (umklapp and normal),
tures polar and dipolar contributions to thermal J€  scattering of phonons by defects, and phonon-electron
sistance due to electrons and holes also become im-

. .5 - scattering. The effective relaxation time thus obtained
portant. The lattice thermal conductivity at such high £ v & : ol

. . . is used to determine the phonon conductivity in the
temperatures 1s .usu.ally obtained by subtracting the g0, 1 of Callaway.® The expression for the phonon-
electronic contribution from the experimentally ob-

.. . electron relaxation time for the electrons in the para-
serveq total thermal conductivity. In hlghly dOPed bolic band involves the knowledge of the reduced
mat‘epals phonor_ls are a.lso §cattered by ionized im- g .. potential, the density-of-states effective mass,
purities, but this contribution towards thermal re-
sistance is negligible. The influence of phonon-electron
—_— 2 E. F. Steigmeier and B. Abeles, Phys. Rev. 136, A1149 (1964).

17]. P. Dismukes, L. Ekstrom, E. F. Steigmeier, I. Kudman, and 3 J. Callaway, Phys. Rev. 113, 1046 (1959); J. Callaway and
D. S. Beers, J. Appl. Phys. 35, 2899 (1964). H. C. Von Baeyer, zbid. 120, 1149 (1960).



