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Theory of the Urbach Rule

THOIKAS H. KKIL
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(Received 12 November 1965)

The two-vibrational-mode model proposed by Toyozawa and Mahr to account for the Urbach rule is
considered both in the semiclassical approximation and in the full quantum theory. The semiclassical line
shape accounts for both the exponential Urbach tail and the central Gaussian region of the absorption band.
Quantum modifications make the semiclassical line shape incorrect for an excited state stable to odd-parity
lattice distortions. The quantum line shape for an unstable excited state is shown to be qualitatively similar
to the semiclassical line shape. In particular the two line shapes agree at high temperatures, but diller
quantitatively at low temperatures. It is suggested that the hypothesis of an unstable excited state is con-
sistent with recent experimental results on intrinsic luminescence in alkali halides.

I. INTRODUCTION

''N a large number of insulating crystals, the iow-
a energy tail of the fundamental absorption band, and

also of impurity absorption bands, follows the Urbach
rule, which states that the absorption coeKcient is
given by

p((u, T) =iJ,p expt op(A(op Aa))/kT],

where Ace is the energy of the incident radiation, and

pp, Mp, and op are constants characteristic of the crystal.
Equation (1.1) applies for high temperatures. For low

temperatures the temperature dependence in the expo-
nential disappears, and T should be replaced by Tp,
with Tp an experimentally determined parameter,
generally on the order of 100'K. This rule was first dis-
covered by Urbach' in silver halides, and has since been
found to apply to a large number of other crystals. The
exponential dependence has been found to be obeyed
over a remarkably wide range of the absorption con-

stant, e.g., in' KI the range is seven orders of magnitude.
Similar results have been obtained for' KCl and' KBr.
In all three cases 0-p= 0.80&0.02. For a typical impurity
case, the absorption due to the I—ion in KCl, the ex-

ponential dependence has been observed' over a range
of 3-,'orders of magnitude of the absorption constant
with o-p=0.77. Other experimental results are summar-

ized by Knox' and Toyozawa. v

By assuming that the electronic transition couples
quadratically to one of the lattice vibrational modes,
Toyozawa used the semiclassical theory' of absorption
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line shapes to derive a theoretical expression which
reproduces the exponential tail of Urbach's rule. Since
the central region of the band is generally Gaussian,
Mahr' and Toyozawa proposed that a two-mode model
is more appropriate; the first mode, with a quadratic
interaction, gives the Urbach tail, and the second, with
a linear interaction, gives the central Gaussian region.
Such a model has been shown' to be capable of re-
producing some observed line shapes over the whole
spectral range.

In Sec. II of this work we present an exact derivation,
in the semiclassical approximation, of this two-mode
line shape, which has previously been treated only
approximately. Recently it has been pointed out" that
the semiclassical approximation has dubious validity
for a quadratically coupled mode at low temperatures.
In fact, for the case in which the excited-state adiabatic
potential has a positive force constant for the quadratic
mode, the semiclassical line shape is totally erroneous,
possessing a low-energy tail where the quantum line
shape has none. However, in Refs. 8 and 10 it was found
that, in order to reproduce experimental data, it is
necessary to assume a eegutive force constant in the
excited state potential. Therefore in Secs. III and IV
we consider the quantum line shape due to a quad-
ratically interacting mode with an unstable excited
state. We find that the quantum line shape is quali-
tatively similar to the semiclassical. In particular it
gives an exponential low-energy tail. The details of the
two line shapes differ somewhat, particularly in the low-
temperature behavior of the low-energy tail.

Such a model, with the addition of a second mode
with linear coupling, gives a quantum-mechanical line
shape which seems capable of accounting for both the
Urbach rule on the tail of the absorption band and the
central Gaussian region. In addition it is suggested that
the instability in the excited state of the quadratic
mode is consistent with recent observation. " "of the
luminescence of intrinsic excitons in alkali halides.

H. Mahr, Phys. Rev. 132, 1880 (]963).
T. H. Keil, Phys. Rev. 140, A601 (1965).~ K. J. Teegarden, Phys. Rev. 105, 1222 (1957)."M. N. Kabler, Phys. Rev. 136, A1296 (1964).
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II. SEMICLASSICAL LINESHAPE FOR
TWO MODE MODEL

where E is the energy of the incident photon,

ml 1 Ql + m2M2 Q2

U =E, +cQ1+-',mlM1'Ql'+-s, m2Msb'Q2'.
(2.1) and

Ke take as the adiabatic potentials" for the ground
and excited states, respectively,

1-1+(Ql)Q2) = +ab+cQ1+ sm2(M2b M2a )Q2

P(Q1) = 1r
—"'(1/Wl) exp( —Ql'/Wl'), (2.3)

P (Q2) = lr-'" (1/W2) exp (—Q2'/W2'),

Here Ql and Q2 are the normal displacements of the
linear and quadratic modes, respectively. ns& is the mass
and or~ the frequency of the linear mode. m2 is the mass,
co2, the ground-state frequency, and ~» the excited-
state frequency for the quadratic mode. E,& is the elec-
tronic excitation energy, By considering only two vi-
brational modes, we are essentially restricted to the
impurity case. However, as Toyozawav has suggested,
the formalism will also apply to intrinsic excitons if
self-trapping can be assumed to occur.

Following Lax' the semiclassical line shape for tran-
sitions from electronic state a to electronic state 6 in
this two mode model may be written

Wl= pi coth(AM 1/2kT)/mlM1 jr/2,

W2= (k COth(hM2a/2kT)/msMsaj'/'. (2.4)

I.b(&) =G dQ2 expL —DQ2' —&Q2'), (2.&)

where

G= (1/2rcW1W2) exp) —{A Eb)'/c'W—12$

D= [-,'m2(M2b' —M2.'))'/c'Wl',
F= 1/W2 +m2(M2b —M2 ) (E E b)/c Wl

(2.6)

The 5 function in Eq. (2.2) may be used to perform the
integral over Ql, and the line-shape function is

b(+) ~(Q1)~(Q2)~t ~+(Ql Q2) +)4iQldQ2 (2 2)
It can be shown" that

expL —Ax' —Bxsgdx=v2B '"(B'/SA)'/' exp(B'/SA)E1/4(B2/SA) (B)0)
—~gB 1/2 (B2/SA)1/2 exp (B2/SA )lt 1/4( B2/SA ) (B)0)

(2.7)

Here El/4(x) is the Bessel function of the second kind
with imaginary argument. Defining Z'1/4(x) —( /2x)'/'e

Z'1/4( —x) —(vr/2x)"'i e+',
(2.10)

Using the asymptotic forms for the Bessel function

2GD2+

(02tf, M2 y

C02~

A coth
2kT

we can obtain the line shape in the low-energy tail,

I. ()=(/2 )'"L2&
(2.S) XexpL o'(I/Mp e)7 (e((2AMp) (2.11)

1 1SyGO]72=-
C2 k coth(AM1/2kT)

and applying Eq. (2.7) to Eq. (2.5), we obtain for the
line-shape function

/
o. ) 1/2 — ~ —1/2 —o2

I.b(e) = rl I + 2 exp
E2 si

r2/ K 2

Xexp ——
~

e— Kl/4
2 E 2r'

~2 ~ 2-

X a—
~

e+. . (2.9)
2 E 2r'

If Msb'(M2, 2 the minus sign applies when e( o/2r . —

and in the region of the peak absorption,

I.b(e) = (a/22r)'/2)e 2/2Mpf
—'"

Xexp L
—r e $(2e&2)2/2M p) . (2.12)

Here hMp= o/4r. Since at h—igh temperatures

rr Msa /(Msa Msb )kT= o p/kT (2.13)

Eq. (2.11) reproduces the exponential dependence of
the Urbach rule, Eq. (1.1), except for an unimportant
square-root factor. Equation (2.12) gives the central
Gaussian region of the band. In addition Eq. (2.11)
contains the low-temperature cutoff of the Urbach rule,
since, for low temperatures, coth(hM2, /kT) =1 and the
temperature dependence in the low-energy exponential
tail disappears. Using an approximate form of Eq. (2.9),
Mahr" has shown that the two-mode model is capable
"T. H. Keil, thesis, University of Rochester, 1965 (un-

published).
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of fitting the experimentally observed absorption in
KCl:KI over a wide range of photon energies and at
several temperatures.

One slight extension of the two-mode model is of
interest. Suppose we add a third mode, which also
interacts quadratically, but whose ground and excited-
state frequencies are the same as those of the first
quadratic mode. The adiabatic potentials are now

Q +-', ~ .(Q"+Q"),
Ub=E. b+CQ2+-,'222g~g'QP+-', 2222~2b'(Q2'+Q2') . (2.14)

Using the previous method it is straightforward to show
that the line shape is given by

where ~= (E—E,b)/l2+-'2co2~ —-2~2b. The line shape
Eq. (2.18) has No low-energy tail, and in fact has a
sharp cutoff on the low-energy side of Ace=0. This is in
direct contrast to the corresponding semiclassical
result. " Hence the semiclassical two-mode line shape
Eq. (2.9) will be incorrect for co2b2) 0 at low
temperatures.

However Toyozawa and Mahr' found that to
account for some experimental results it was necessary
to assume that o-0&1. The semiclassical line shape
Eq. (2.9) still applies for this case, but the quantum
line shape Eq. (2.18) is no longer valid. Thus it is of
interest to examine the quadratic-mode quantum line
shape in the case of an unstable excited state (a&2b2(0).

I. (b)c=o2r ''2 exp +os
T2

exp[ —x2)de, (2.15) IIL QUANTUM LINE SHAPE FOR AN UNSTABLE
QUADRATIC MODE: T=O

where n=r2+o/2r. Equation (2.15) is identical with
Mahr's'2 proposed empirical shape formula (noting
that Mahr's h20 is not the same as our h&ob). The
asymptotic expansions of Eq. (2.15) are easily found.
For ~(&2kcoo

I.b(e) = 0 expL —0 (h(op —2)] (2.16)

and for ~))2Acuo

I. (be) = $e—2h(op( ' exp[—r2c2) . (2.17)
2Txll2

The three-mode model then has essentially the same
features as the two-mode model.

Note that, according to Eq. (2.11) and Eq. (2.16),
the two models have exactly the same behavior on the
low-energy exponential tail. It is easy to see that the
addition of more quadratic modes (with the same fre-
quencies) will not change this behavior. If an arbitrary
number of vibrational modes with (possibly) different
frequencies are included in the calculation, the low-

energy exponential dependence will be characteristic of
the quadratic mode with the lowest value of 0-. This fact
allows us to confine our attention to just one of the vi-
brational modes which may interact quadratically with
the center, at least as far as considerations of the
Urbach tail are concerned.

The line shape Eq. (2.9) can be regarded" as the con-
volution of the semiclassical line shape due to the linear
model with that due to the quadratic mode. As pointed
out in Ref. 11, the semiclassical line shape for a quad-
ratic mode with co2~'&0 is incorrect at low temperatures.
At T=O the quantum line shape is given by

(~2~~2b) I

I (Mb) = g 5(2lc02b —M)
M2s+M2b l 0

2l! (c02~ c02b

X i, (2.18)2"(l!)'ka) 2,+a)2b

In this section we will confine ourselves to the quan-
tum line shape due to the quadratic mode alone. Since
the semiclassical line shape for the linear mode is ex-
pected' to be valid in most interesting cases, we can find
the line shape for the two-mode model by taking the
convolution of the semiclassical linear-mode line shape
with the quantum quadratic-mode line shape.

The adiabatic potentials for the quadratic mode are

U, = -', cue,2Q2,

Ub= E.b+ 22mCOb2Q-2

(3.1)

I'zo. 1. Adiabatic po-
tentials for an odd-parity,
quadratically coupled vi-
brational mode with an
unstable excited state. We
assume that the tempera-
ture is low enough so that
regions in which higher than
quadratic terms are im-
portant (dotted lines)
not a6ect the line shape.

These are plotted in Fig. 1. The dashed portion of the
excited-state potential represents the region where
higher than quadratic terms become important. 1A'e will
assume that the temperatures considered are low enough
so that these terms exert a negligible influence on the
line shape. Ordinarily in computing a quantum line
shape, it is necessary to evaluate overlap integrals
between ground and excited vibrational states(Frank-
Condon factors). Because of the nature of the excited-
state potential, it is diKcult to obtain excited-state vi-
brational wave functions. However, we can make use of
the results of Lax, ' which allow us, by using the Fourier
transform of the line shape, to eliminate the need for an
explicit knowledge of these wave functions. In this way
we can obtain an "exact" result for the line shape.
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Previously the properties of this line shape have been Eq. (3.8) may be performed using'
sketched roughly by Eagles" and Halperin. "

Following Lax' we may write the line shape as
00 g

—AS P
e '*pdx=y exp p~ n+iy

(et//~+e-'/7)" 4 y)——i(E—E.b)t-
g(t)«(3 2)I,b(E) = exp

2&h &&~(7(~+iy), ~—v(~+iy)), (3 9)

where where B(x,y) is the beta function and Eq. (3.9) holds
when Re(v/y)) Ren) 0 and

~
Imtt

~

(n. Rey. Using
Eq. (3.9) and rewriting the beta function in terms of

nd more familiar functions, we obtain a line shape

H, =—(A'/2m) 8'/8Q'+ U~

H b = —(/'t'/2m) 8'/BQ'+ U;
/34) M~ M ( xI.b((o') = exp ——

~

2 tan —'———2s.
~

2)n (

where

a) = (E E.b)/h+ —', /d. ,'~b, -
Q+ = (M~+Mb)

0 = (CO~ O/b)

(3.6)

Since we are interested in the case in which co~'&0, we
let cab ix, where x——is real, and rewrite Eq. (3.5) as

(io:.x) '/p

I,b(o/') = dt exp[ —i~'t ——',xt)

)(LQ~~—Q ~e—2~~)—~/& (3 7)

Here op'= (E—E,b)///t+-', op, .
The integral in Eq. (3.7) may be performed expli-

citly. However, the result is inconvenient for purposes
of analysis; so we consider a somewhat diRerent case
which is analytically simpler but has the same features.
Assume that there are two quadratic modes present,
with the two ground-state frequencies co, and the two
excited-state frequencies coq= ix. The line shape for this
case will be just the convolution of the line shape
Eq. (3.7) with itselP and is thus given by

~
au) is the ground-state vibrational wave function and

Av stands for a thermal average over the ground vi-
brational states. Using the methods of Refs. 9 and 11,
we can show that the line shape for T=O is

(~ ~ )1/2 oo

I.b(op) = dte —'"'$0~' —n 'e""b')-'/', (3.5)

X «sh (3.10)

The behavior of Eq. (3.10) on the high- and low-energy
tails is easily obtained. For co'))0

I,b(o/') = exp ——2 tan '—
[n (' x op.

and for co'(&0

(3.11)

I.b(op')-expL0. 80')'/x)

while the quantum low-energy tail goes like

I,b(o/') exp)2. 21o&'/x) .

(3.14)

(3.15)

Hence there is a large difference in the steepness of the
low-energy exponential tail for the two cases.

&o'/ x
I,b(op')= exp ——

~
2 tan '——

m
~

. (3.12)
[0 ]' g( o.

From Eq. (3.12) we see that the line shape due to
two unstable quadratic modes gives, at T=O, a low-

energy exponential tail, in qualitative agreement with
the semiclassical result. However, the constants appear-
ing in the exponential are substantially diRerent. At
T= 0 the semiclassical result on the low-energy tail goes
like Lsee Eq. (2.16))

I,b(op') expt (2~,/(o/, P+x'))~') . (3.13)

For x/o/, =0.5 (which corresponds to O.p=0.80), the
semiclassical low-energy tail goes like

Ia, b(o/ ) = dt expt —io/'t —xt)

XLQ+' —0 Pe "') '. (3.8)
IV. QUANTUM LINE SHAPE FOR AN UNSTABLE

QUADRATIC MODE: FINITE TEMPERATURES

Here co'= (E Eb)/It+o/, . As in th—e semiclassical case,
this two quadratic mode line shape will not diRer
essentially from the single-mode line shape, at least as
far as the low energy tail is concerned. The integral in

' D. M. Eagles, Phys. Rev. 130, 1381 (1963).
'7 B. Halperin, thesis University of California (Berkeley), 1965

(unpublished).

In this section we will discuss the behavior of the
low-energy-tail dependence of the line shape due to an
unstable quadratic mode at arbitrary temperatures. We
will see that the tail dependence is exponential, and at
high temperatures agrees with the semiclassical result.

' Bateman Manuscript Project, Tables of Integra/ Transforms,
edited by H. Erdelyi (McGraw-Hill Publishing Company, Inc.,
New York, 1954), Vol. I, p. 120.
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As the temperature is lowered the slope of the expo-
nential is found to be quite different for the two cases.

Using previous methods, it is easy to show" that the
line shape in the case of two degenerate quadratic modes
is given by

Zoo~I,p(or') = [1—exp( —P,)]' dt exp[—ior't —xt]

)&{0+'[1—exp( —P.,—iQ t)$'

—(I '[1—exp( —P.—iQ+t)]'

&&exp(—2xt)) '. (4.1)

Here P,=kor./kT. It does not seem to be possible to
evaluate the integral in Eq. (4.1) explicitly. However,

I.O "

o 0.6-

EMICLASSICAL

—= I.O
X
00.2-

0.0 2.0 4.0 60 ' 80 IO.O

(a)

QUANTUM

I.O .

y+ 0.6 .

ICLASSICAL04-

02-
0.5

I

IO.O8.04.0 6.0
Pg

(b)

Fzo. 2. Exponential dependence of the low-energy tail /see
Eq. (4)—(5)g as a function of P =hor /kT in the quantum and
semiclassical theories for two values of the coupling constant
(a) x/or, =1.0 and (b) x/or, =0.5.

we can obtain the behavior of the low- and high-energy
tails by using a familiar result from the theory of
Fourier transforms. This theorem" states that if (1)
f(t)(t=x+iy) is analytic in the strip y (y(y+, with
y+) 0 and y (0 and (2) for any strip within this strip

If(t) I-~e' ' (x~"; ~-(0)
-Se'+' (x~—~; r+)0)

(4.2)

then I(or) = (1/2rr) J' „"dtexp( —iort) f(t) (withor=tr+ir)
will be analytic in the strip r (r(r+, and in any strip
within this strip

I
I( ) I

-C exp(y t ) (r ~ )
D exp(y+ru) (ti ~—~) .

(4 3)

Here A, 8, C and D are constants.
It is easily verified that the integral in Eq. (4.1)

satisfies condition (2). I%ence, in order to ascertain the
low- and high-energy exponential behavior of Eq. (4.1)
we can simply find the poles of the integrand closest to
the real axis and then apply Eq. (4.3). Note that we
can now easily see why the low-energy tail is the same
for a single quadratic mode and for two degenerate
quadratic modes. The single-mode line shape differs
from Eq. (4.1) in the appearance of a —si power instead
of a —1 power (and in the constants in front of the
integral), which does not affect the singularities of the
integrand. It does not seem to be possible to obtain the
singularities of the integrand of Eq. (4.1) analytically.
However, the problem is easily adapted to a digital
computer, and we have written a program for the
Princeton University IBM 7094 which finds the poles
of the integrand closest to the real axis. The results for
the singularity closest to the real axis on the positive
imaginary side are shown in Fig. 2(a) and Fig. 2(b) for
two values of the coupling parameter x/or, . In Fig. 2 (a)
x/or, =0.1 and in Fig. 2(b) x/or =0.5, and the singu-
larity is plotted as a function of the inverse tempera-
ture, P, =hor /kT. The abscissa, o.+, is related to y+ of
of Eq. (4.3) by

o+= zXP+=1

and the exponential dependence of the low-energy tail
is thus given by

I.p(or') exp[(2o~/x)or'j . (4.5)

In Figs. 2 (a) and 2(b) we have also plotted the quantity
a.+ for the semiclassical line shape.

Note that, as expected, "'7 the semiclassical and
quantum exponential tails coincide for high tempera-
tures (small P,). Both methods give a high-temperature
exponential dependence on the low-energy tail of

I,z(or) exp[o pkor/kT j (4.6)

with o.
p
——or,'/(or, '+x'). As the temperature is lowered

' P. M. Morse and H. I'eshbach, 3fethods of Theoreticu/ Physics
(McGraw-Hill Book Company, Inc., New York, 1953), Vol. I,
p. 459.
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I,s(ai) exp'. oPia&/kToj .

However, the semiclassical method gives

(4 &)

both methods give a line shape with a qualitatively
similar behavior. At low temperatures the exponential
tail goes like

CI

K+

CI

K+

(P Cls

CI

CI

CI

Cl

K+ CI

CIo K+

CI

CI

while the quantum result is

kTo ——hxoo/(w —2 tan '(x/co, )) . (4.9)

CI

(a)

CI K+ /
(b)

CI

From Figs. 2(a) and 2(b) we see that the exponential
tail at low temperatures will be considerably steeper
than the exponential tail given by the semiclassical
approximation.

Fro. 3. (a) A Vs center in an alkali halide Lsee J. H. Schulman
and W. D. Compton, Color Centers in Solids (The Macmillan
Company, New York, 1962), p. 152j. (b) An odd-parity (about
the halide ion marked A) distortion which could lead to trapping
of the exciton in the V& configuration and to the low-energy ex-
ponential tail of Urbach's rule.

V. DISCUSSION

We have considered the quantum-mechanical modi-
6cations to the two-mode semiclassical line-shape theory
proposed by Toyozawa and Mahr to account for the
Urbach rule in insulators. We found that, in the case of a
quadratic mode unstable in the excited state (&oss(0),
the quantum line shape has many of the same features
as the semiclassical line shape. In particular the expo-
nential behavior of the low-energy tail at high tempera-
tures is the same for both models. At low temperatures
the quantum result predicts that the absorption con-
stant will decrease more rapidly with smaller photon
energies than the corresponding semiclassical result.
The two-mode model in this case seems capable of re-
producing the absorption constant over the entire
range of interesting incident photon energies. For a
stable excited state (amos)0), the quantum line shape
has no exponential tail for low temperatures and the
two mode model fails to account for Urbach's rule.

There is some additional evidence that excitons in
alkali halides are unstable to a lattice distortion which
corresponds to a quadratically coupled mode. Kabler"
and Murray and Keller" have shown that the lumi-
nescence observed by Teegarden'~ upon irradiation in
the intrinsic exciton bands of several alkali halides is
identical with the radiation obtained from recombina-
tion of an electron with the Vl, center. A VI, center is
shown in Fig. 3 (a). This result suggests that the exciton
created at the halide ion marked A is unstable to a
lattice distortion such as that shown in Fig. 3(b). This
distortion has odd parity (about the central halide ion
marked A) and is thus a quadratic mode, ' "and could
well be the source of the Urbach tail. Absorption on the
low-energy tail corresponds to creation of an exciton at
a time when the lattice is distorted and translational
invariance is destroyed. Hence in this region it may not
be necessary to explicitly consider the dynamics of the
exciton, since it is essentially trapped at the time of

creation. For absorption in the center of the band trans-
lational invariance is preserved and the dynamics of the
exciton must be considered. Hence the present model
must be considered as only qualitative for intrinsic
excitons. It applies directly only to impurity bands.
Some considerations on lattice distortion around exci-
tons in alkali halides have been presented by Wood. 2

Some problems remain, the major one being the inter-
pretation of the low-temperature cutoff To. Martienssen4
found that in KBr, To 60'K. Using his value of
oo=0.79 and Eq. (4.9), we find ha~, /k 320'K, well
above the longitudinal-optical-mode frequency of
KBr,s' kali/k=230'K. Note that if the experimental
value of To were 45'K, we would obtain good agreement
with the longitudinal optical mode frequency. There are
two other possible sources of the discrepancy. First,
since quadratic cross terms in the normal-mode dis-
placements may appear in the excited-state adiabatic
potential, co may be an "e6ective" frequency, not neces-
sarily one of the normal mode frequencies of the ground
state of the crystal. Qualitatively, the effect of cross
terms will be to make the effective mass of the excited-
state oscillator diferent from that of the ground-state
oscillator. Such a mass di6erence will change the calcu-
lated value of co,. Second, since the excited electronic
state is degenerate, the dynamical Iahn-Teller effect
may introduce important modifications into the line
shape. Neither of these effects has been successfully
treated theoretically as yet.
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