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Derivation of Wachtman's Equation for the Temperature Dependence of
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Recently, Vilachtman and his colleagues showed that a good description of the temperature dependence
of the Young's modulus of several oxides is Y Y=o —biT exp( —To/T) where Yo is the modulus at absolute
zero and b and To are constants. Wachtman and his colleagues pointed out that they had no theoretical
basis for this equation, but demonstrated that it worked very well over a large temperature range (1000'K),
and they discussed the physical basis for the parameters b& and Tp. In this paper we show that the form of
their equation for V is equivalent to an equation for the bulk modulus derived from the Mie-Griineisen
equation of state. The Wachtman empirical equation for Young's modulus apparently is valid only when
the variation of Poisson s ratio with temperature is small, for in that case d lnE/dT is equal to d lnB/dT,
where B is the bulk modulus.

b= 3Ryb/V p (3)

Here y is the Gruneisen parameter, Vp is the specific
volume per "average" atom at absolute zero, and 5 is an
important physical constant (analogous to the Griin-
eisen constant) independent of temperature given by

I. INTRODUCTION

N a recent article of this journal, ' Wachtman et al.
. . suggested that an equation of the form

V= Vs—b,T exp( —To/T)

represents the variation of Young's modulus with
temperature for several oxides. Here I'p is the modulus
at absolute zero, and b1 and Tp are arbitrary constants,
but thought to be related in some way' to the Gruneisen
constant and the Debye temperature. This equation
was later shown to hold very well for Th02 over a
temperature range of 1300 deg. '

The fact that this equation is reasonable and satisfies
theoretical limits was adequately pointed out by Kacht-
man et a/. However, the problem remained unfinished
since, as they said, ". . . No theoretical justification Lof
the equation) is known. . . and the physical inter-
pretation of the parameters b and Tp presents a challeng-
ing theoretical problem. "

The purpose of this paper is to justify Wachtman's
equation, and to interpret the parameters. Anticipating
the later sections, it turns out that, if we consider the
corresponding equation for the adiabatic bulk modulus,

B,=Bpp bT exp( —Tp—/T),

it is shown that

and R is the gas constant. Bpp is the bulk modus at
absolute zero and one atmosphere.

The parameter Tp is related to a characteristic
temperature O~, and the quantity 3RT exp( —Ts/T) is
an empirical representation of the energy J'C„dT over
the experimental range of interest.

The most important part of the derivation is the
establishment of (4). This has already been done by
Griineisen' for the case of the Born potential (some-
times called the Mie potential):

(g/ Vm/8)+. (B/ Vn/s) (5)

We adopt Gruneisen's result in the following sections.
A derivation of the main result, (4), is given for a more
general potential in the Appendix.

In deriving (4), Griineisen used the Mie-Griineisen
equation of state relating pressure and volume:

I'V+V(dC/d V) =yE,
where E is the thermal energy, and p the Gruneisen
constant.

Included in the assumptions leading to (6) are a
number of important relationships. First, 4 is a function
only of V as in (5), so that

(c/C/8V) =dC/d V.

Second, the entropy is a function of O~/T, where O~ is a
characteristic temperature; and any function of O~/T is
independent of I' if the entropy 5 remains constant. '
Thus
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Fourth, there is onIy one Griineisen parameter,

s E. Griineisen, Ann. Physik 39, 257 (1912).
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Third, the vibrational energy is equal to the thermal

where ~ is the coefficient pf vp]ume thermal expansion, energy w»c»a»een s»wn' «resu t »
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V (8V/8T) r

C, (r)V/BI') 8
(10)

7=~VB8/Cy,

defined either in terms of the frequency variation with
volume, ' or the thermal properties, by
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where a. is the volume coeKcient of thermal expansion,
8, is the adiabatic bulk modulus, and C~ is the specific
heat.

Equations (5) through (11) are the constraints
placed upon the result (4), as given by Griineisen.

Gruneisen's approach was to take the pressure
derivative of (6) at constant entropy, and redefine all the
resulting differentials in terms of the one differential
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(15)

which shows why (4) may be expected to be virtually
independent of temperature.

Experimentally, the above theory can be checked by
measurements of 8, and a. as a function of temperature,
to ascertain if y and 5 are independent of temperature
as required. by (9) and (15).

II. THE EXPERIMENTAL DATA FOR MgO
AT HIGH TEMPERATURES

Reports in the literature on the variation of y with
temperature for MgO are convicting. Susse' measured the
elastic constants of MgO, and her graph of y versus T
shows that p drops sharply with T above 500'C.

' M. Born and K. Huang, Dyrlumicat Theory of Crystat I.attices
(Oxford University Press, New York, 1956).

'C. Susse, J. Rech. Centre Nat. Rech. Sci. lab. Bellevue
(Paris) S4, 23 (1961).

To do this he invoked (7), (8), (9), and (10). The
resulting expression for 8, is

B.=&(1+7)+(d@/d V) (1+~)+V (d'@/d V') .

Equation (13) is equivalent to the expression derived
for the isothermal bulk modulus given by Born and
Huang. ' Griineisen used (5) to evaluate the last two
terms of (13) as a function of volume. He then showed
that the expression for B„(13),was equivalent to a
first-order expansion in volume: However, this really
involved the extra assumption that the volumes at high
temperature differ little from the volume at absolute
zero. The final result' is

(B,/Bss) = (Ve/V)' +"+' », (14)

where 800 is the volume at absolute zero and ambient
pressure.

Equation (14) can be written in an equivalent form
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Frr, . 1. (a) The variation of bulk modulus with temperature for
MgP. The line indicates results for single crystals. The dots results
for a polycrystal. The dashed line the theory according to (22).
(b) The variation of dB,jd2' tak—en from (a).

III. THE BULK-MODULUS TEMPERATURE
EQUATION

Substituting (11) in (15), we have

dB,/d T= —(5y) (C„/V) . (16)

r G. White and O. L. Anderson, J. Appl. Phys. 37, 430 (1966).' D. H. Chung and W. G. Laurence, J. Am. Ceram. Soc. 42, 254
(1959).

9 P. L. Anderson and P. Andreatch, J. Am. Ceram. Soc. (to be
published).

+ N. Soga and O. L. Anderson, J. Am. Ceram. Soc. (to be
published).

White's~ new values of a. combined with Susse's values
of B„show p to be slowly dropping with T.' Other
data in the literature on 8„indicate that y rises with
ascending temperature.

New data on the elastic constants of MgO have been
obtained by the writer and his colleagues. The variation
of 8, with T between 78 and 300'K on single-crystal
MgO by Anderson and Andreatch, ' and the variation
of 8, with T between 295 and 1050'K on polycrystalline
MgO by Soga and Anderson' are given in Fig. 1.These
data used in (11) along with the value of n obtained by
White, ~ show that y is independent of temperature, and
that 5 is virtually independent of temperature, as shown
in Fig. 2.

On the basis of these measurements on MgO, and
also the results of A1203 reported elsewhere, "the theory
of Gruneisen described in the previous section would
appear to be applicable to oxide solids.



DERIVATION OF WACHTMAN'S EQUATION

In the previous section, we presented the evidence that
0 and y are independent of temperature for 3IgO. Assum-

ing this as a general condition,

/C„q
dB,=—s~

I

—IdT.
&V)

We now derive the constant b in Kachtman's
empirical equation. We need the following approxi-
mation:
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200The approximation inherent in (18) can be checked
experimentally by observing whether the measured
value of dB,/d—T has the features of a C„curve; i.e., a
check for Qatness at high temperature in the plot

dB,/dT v—ersus T. This is demonstrated for MgO in
the top of Fig. 1.To obtain some idea of the error made
in (18) we replace C~ and V by expressions incr and T.
Thus, taking

1.2
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FIG. 2. The variation of the Gruneisen constant y with tem-
perature for MgO. The variation of the parameter —(d InB,/d T)/u
with temperature for MgO.

Comparing (25) with (2) it is apparent that the
empirical constant b of Wachtman's equation is given

byC„=cv(1+.Tny),

V—Vo(1+nT),

(19) b=3Ry8/Vo. (26)
(20) Equation (26) should hold irrespective of the special

relationship chosen between E and T, of which (23) is
one example. It is apparent that the term exp( —2'p/T)
of Wachtman's equation is empirically related to E in
much the same way that (24) is related to E.

We now show how the magnitude of Wachtman's
parameter Tp is related to O~. At high temperatures the
limits of integration in (24) are close, so that to a good
degree of approximation

we have

r Cn 1 ~ (I+Tcty)—dT= )C, dT.
o V Vo o ~1+otT i (21)

For a rigorous solution, (21) is integrated by parts
taking into account the temperature variation of o,.We
merely note that for MgO, I+crT changes by about 3%
in 1000', with the result that the coefficient of C„ in (21)
changes by 2%%uo. The approximation inherent in (18) is
the same as replacing the quantity in parentheses in
(21) by unity.

We recall that J'C„dT is the thermal energy E in (6),
so that the solution for 8, as a function of T is

H (x)=
e 1

f 0/2 /0/2 '= I+I + 'I +"-.
«T

At high temperatures the two expansions yield the

(23) same numerical result if Tp is close to the value Q~/2.

This accounts for the fact that the empirical values of
Tp quoted by Wachtman et al.' are close to one-half the
value of the corresponding Debye temperatures.

Since E/T according to (24) is tabled" for a given
O~/T, a convenient form of (24) is

E=3zTaI —I;tT '

e p
H(x) =— dP,

x' 0 e&—1

B,=Bpp (yb/Vp)E. — (22)
Expanding Wachtman's factor at high T,

Using the Debye approximation for E, the thermal
energy for a gram atom of a monatomic isotropic ""=&&+(T/T)+'(To/T) +-
substance is

where O~ is the Debye temperature. Thus,

3Ryb
~s ~00

t/'0
(25)

where Vp is the volume of the "average" gram atom,
defined by the ratio of "mean" a,tomic weight to
density.

Vll E(8/T)
~s ~00

~0
(27)

Equation (25) is the important result of this paper.
By using it, the bulk modulus can be estimated at high

"See AmericanIrtstitttte of Phy, sics Handbook (McGraw-Hill
Book Company, Inc. , New York, 1957), Chap. 7, Table IV.
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temperature from measurements of elastic constants
taken over a limited temperature range, providing data
on n exist at all temperatures considered.

At low temperatures, the thermal energy varies as T4,
so that for Q~/T&)1,

fome doubt that do/d T is small enough. A plot of do /d T
sor MgO and ThO2 is given in Fig. 3. The application of
(1) to some compounds may be questionable. Forcing
F and G to fit (1) may result in distortions in the com-
puted value of 8, versus T.

pp ~s~ T ~ (2S) V. DISCUSSION
The difference between the temperature variation of
T4 and exp( —To/T) is of no practical significance.

The variation of B,with T for MgO according to (27)
is shown as the dotted line in Fig. 1. The parameters
used are y = 1.53, 5=3.1, Vo ——5.56, and Q+= 930'. These
parameters were determined near room temperature.
The one arbitrary parameter is Bpp= 1660 kbars.

IV. THE YOUNG MODULUS AND THE
SHEAR-MODULUS EQUATION

We relate I" to 8 and 0-, the Poisson ratio, by

7=3(1—2o.)B, (29)

d lnV d lnB

Hence,
dT (1—2o) dT

dB da
=3(1—2o) 6B—

dT dT
(30)

A similar relationship holds for the shear modulus 6.
Consequently (31) reduces to (1) only if do/dT is.

suKciently small and a constant. For thoria and Al&03,
do/d T is suKciently small. ' For 1VIgO, however, there is

0.30

Taking do/dT as cons.tant

/dB do
V Foe=3 (1—2o)

i
dT 6B T. —(31)

kdT
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APPENDIX

We determine the conditions for deriving the result

d lnB, /dT = const
d lnV/dT

(A1)

from a more general potential than given by (5), and
assuming the Mie-Gruneisen equation of state.

We consider the cohesive potential

Wachtman's equation has been derived from the
Mie-Gruneisen equation of state, except that his Young
modulus is replaced by bulk modulus.

There are several incidental results of importance to
experimenters. It should turn out that dB,/d—T is
proportional to C, which serves as a good cross check
on the measured results of the elastic constants versus
T. Thus, at temperatures above Q~, dB,/dT should be
independent of T, and at temperatures around Q~/2,

dB,/dT—should rise with T. Equation (16) can be
used to estimate dB,/dT —from C„, provided there is
information of 8 and y. The variation of d lnB, /d T can
be estimated from n using (15) if o can be estimated.

Equation (22) is the basis for extrapolation into high
temperatures. Since, for example, (22) adequately
represents the data for MgO from liquid-nitrogen
temperature to 1200'C, it should also hold up to close
to the melting temperature.
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Th Op (S. SPINNER) instead of (5), where r is a representative interatomic
distance. The value of m can be, for example, 1 for the
Coulomb potential or 6 for the Leonard-Jones potential.
The repulsion potential f(r) can be, for example, the
Born repulsion of (5), or a Morse potential, or a sum of
terms including various interactions such as the van
der Waals interaction.

For convenience, (A2) is redefined in terms of the
volume t/'
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FIG. 3. The variation of do/dT with temperature
«r MgO and for ThOq.

dC m
+ '(e).

d V 3 Vm/8+1
(A4)

@'=—(~/V"")+f(V) (A3)

We need the derivatives of C as given in (13). The
first derivative of (A3) is
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From equilibrium conditions, we have

fdC
! =0
kdv p OT —0

Using (A4)

m)m A
B,—P(1+y) = E—

!
——+1(AS) 3 k 3 Vtn/3+1

The second derivative of (A3) gives

d'4 m m A
V = ———+1 +Vf"(V).

d' V2 3 3 P'tn/3+3

(A4) and (A6) are now substituted in (13).The problem
is to express the quantity B,—P(1+y) in terms of the
volume ratio V/Vp and presumably other constants
which vary quite slowly with volume. To do this we
use (A4) and (AS). Thus, (A6) becomes by using (A4):

d'C /m
v =!—+1 l! f'(v) —dc/dvj

dV' &3 )

Thus,

A—Bop= —Eo —
II
—+1

I) E 3 ) Uttt/3+1'
(A11)

A )Ey, V,~
"/'"'

—E —
I

—+1 I =! IBoo —
I (A12)

3) 3 )V "+' 4E) V)

(1+~) f'(V) —1 . (A 10)
E(m/3+1) f'(V) dC/—d V

The terms within the brackets cancel at absolute zero
where dC/d V is small compared with f'(V). At absolute
zero and P=O, we have from (A10),

X

B, P(1+y)—(Vp /'+' Ep

&V EThe quantity in braces is important in subsequent
expressions: ~00

Vf" (V)E=1+
(m/3+ 1)Lf'(V) dC/d V5—

(1+y)dC/d V
X 1+ (A13)

E(m/3+ 1)Lf'(V)—dC/d Vg

V "(V)
(A7) We factor out (A12) from (A10) and obtain

(m/3+1) Lf'(V) —dC/d V]

For most standard potentials, dC/dV is small com-
pared to f'(U). We now assume that the repulsion
potential is such that dC/dV is small compared to
f'(V) at all temperatures we consider, and that E is
slowly varying with V, or constant with V, as V in-
creases with T.

Ordinarily, E is a negative number larger than unity.
This results from the fact that the repulsion curve is
steeper than the attraction curve. For example, for the
Born repulsion as given by (S), E=(/3+m)/(m+3)'
when dC/d V=0.

Replacing (A4) and (A7) in (13), we have

m
B.—P(1+v) = (1+v)—

Vtn/3+1

m/m y A
+ (1+y)f'(V) —E—

!
—+1 !

3 ( 3 ) Vttt/3+1

Factoring out the far term on the right,

m m ) A
B.-P(1+~)=-E——+1!

3 3 ) VNt/3+1

Eo /'- ol (p&"
v ) IV)' (A14)

where co is a function of p and E'. In order to justify
(A14) the potential must be such that (1) dC/dV is
small compared to f'(V) at all temperatures considered,
and (2) Vf" (V)/Lf'(V) dC/dVj —must be a slowly
varying function of volume, or independent of volume,
at all temperatures considered. Placing (A14) in (A13),
we have

B /B —(U /V)ttt/3+1+tu (A15)

Taking the derivative of (A15) with respect to T at
constant P we have

We now obtain the desired result from (A13) pro-
vided the quantity in braces is a slowly varying function
of volume. It is not readily obvious that this will be so
for most potentials at all temperatures. However, we
may constrain the potential to produce the desired
result. Consequently, we replace the coefficient of
(Vp/V) /3+' in (A13) by an expansion in Vp/V, e.g.,

(1+v)(1+v)f'(p)
(A9)

E(m/3) (m/3+1) V"/3+' E(m/3+1)

d lnB, /dT

d lnV/dT

t'm
I

—+1+ )= to ttt t.
&3


