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In contrast to pure metals, the electron states in alloys exhibit a charging e6ect, i.e., a diferent electronic
charge is deposited on each constituent in the alloy for a given state. The criterion for perturbation theory
to be valid for an alloy is that the charging effect be small, i.e., the amplitude of an electron state be about
the same on each constituent. It is not suf6cient that the alloy be dilute. In fact if perturbation theory applies
for a dilute alloy, it applies for any concentration. The charging effect is expected to be small, and thus per-
turbation theory to be valid, when the difterence in the valence of the two constitutents is a small fraction
of the smaller valence. The charging eBect causes the energy of a given electron state in a binary alloy to
deviate from a linear interpolation between the values of the pure metals. Such a linear interpolation is
what one expects if the band structure is determined only by the average potential. Perturbation theory
predicts that the speci6c heat of a binary solid-solution alloy deviates from a linear interpolation as En(I a), '-
where 0. is the fractional amount of one of the constituents and E' depends, among other things, on the
variation of the potential from the average and on the amount of short-range order in the alloy. Optical
measurements at frequencies high compared with the relaxation time of the electrons measure the band
structure determined by the average potential only. Experiments have shown that the properties of the
Ag-Au alloy system near the Fermi surface can be treated by perturbation theory, and on this basis all of the
experimental measurements of this alloy system can be understood, including recent speci6c-heat measure-
ments. The d-band of the Ag-Au alloy system exhibits large charging sects and cannot be treated by
perturbation theory.

I. INTRODUCTION

l~iUR understanding of the electronic properties of
pure metals has shown such progress in recent

years that it has been possible to get detailed informa-
tion on the electronic properties which agrees rather
well with theoretical calculations. It appears that we
have a good physical understanding of the electronic
structure of pure metals. The electronic structure of
normal alloys is not in such a good quantitative state.
There has recently been much theoretical work attempt-
ing to understand the electronic structure of alloys. ' '
However, the experimental measurements to test these
theories have not been as numerous as required. Re-
cently, experimental measurements on the Ag-Au alloy
system have shown a very simple behavior, " namely
that the area of contact of the Fermi-surface neck. with
the Brillouin-zone boundaries varies linearly from pure
silver to pure gold. This means that the shape of the
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Fermi surface in the Ag-Au alloys can be calculated
from an average potential and that the properties of
these alloys near the Fermi energy can be calculated by
ordinary perturbation theory. ' Thus we have in this
system the 6rst example in which it should be possible
to expect quantitative agreement between theory and
experiment for an alloy.

A detailed calculation of the properties of Ag-Au
alloys should consist of 6rst calculating the properties
given by a periodic potential equal to the average
potential, and then treating the difference between the
average and actual potentials by perturbation theory.
Since the potentials contributed by Ag and Au ions are
rather well known, it should be possible to do such a
calculation from Grst principles, as in the case of pure
Ag and Au. Ke will not attempt such an ambitious plan
in this paper, but we will use the data from some experi-
ments to determine parameters with which other experi-
mental properties can be calculated. The advantage of
such an approach is that the mathematical details do
not become too involved and it is possible to bring out
the important physics involved.

There is one simple physical idea emphasized in this
paper with which it is possible to understand various
properties of the alloy both qualitatively and quantita-
tively. This is charging, the difference in the amount of
charge deposited by an electron in a given state on each
constituent atom of the alloy. Charging is zero in pure
metals but is most important in alloys. Among other
effects, it modi6es the potential of an ion from the value
it has in the pure-metal case. ' The next section will
review the calculation of the properties of an alloy by
perturbation theory and will show how charging deter-
mines when perturbation theory is applicable. In Sec.
III we will derive in a simple manner Jones's theory of
the effect of virtual scattering on the specific heat of

545



E
DOTARD

A. STERN

alloys4 directly from second-order perturbation theory.
By this means it can be shown that this theory is not
usually valid for dilute alloys. In this same section the
optical properties and effects of short-range order on the
electronic specific heat will be discussed. Section IV
contains quantitative estimates of the expected elec-
tronic specific heat and charging effect in Ag-Au alloys
and comparison with experiment. The conclusions are
stated in Sec. V.

II. PERTURBATION THEORY

The perturbation theory of alloys has been described
elsewhere by various people. "What will be given in
this section is some physical insights into the cause of
the energy shifts, and a discussion of when perturbation
theory is applicable.

The model considered is a perfect lattice, occupied by
two different constituents distributed in a random
fashion, i.e., no long-range order present, though short-
range order can be present. Thus we neglect lattice-
distortion effects. It is also assumed that the ion cores
of each constituent are stationary, centered on lattice
points, and that their interactions with the conduction
electrons can be represented by a potential. This
potential may not be the same as the ion core has in the
pure metal because of charging effects. ' The potential
of the alloy can be written as

U(r) = U. (r)+ U. (r),
where

lattice point in the alloy. The Z(k) have a width which
is also second order in V, because of real scattering of
the Bloch state k into other states of the same energy.
We will delay the discussion of the importance of this
real scattering until the next section. Throughout this
paper the symbol P denotes the principal value of the
sum, which excludes the contribution from the states
which contribute to real scattering.

From (1) and our previous discussion we see that

U, (r) =P.{U(r —R„)
L&V1(r R )+ (1 &) U2(r R )]) (~)

where R„are the positions of the lattice points;
Vq(r —R„) and V2(r —R„) are the ionic potentials of the
type 1 and 2 atoms centered at R„, respectively; and
V(r —R„) is the alloy potential centered at R„which is
V& or V2 depending on which type of atom is centered
at R„.Thus, (V,)(k can be written as

(V,) (k ——((1—n)/N) V) 2(k, l)p.e'(k-') 'R

—(a/N) Vq2 (k,l)P.e'(

Vgm(k, l)
ea(k—)) Ra

2V
where

V)2(k, l) = e'(" ')'U(*(r)(U)(r) —V2(r))U'k(r)d'r.

Here the integral for U(2(k, l) is over a unit cell; the
Bloch state is denoted by

V, (r) = V(k)e'k'd'k

Here g are the reciprocal vectors of the lattice; S(g) and
G(g) are the gth Fourier components of the potential
from the type-1 and type-2 ions in the alloy, respec-
tively; 0. is the atomic fraction of the type-1 atom in the
alloy; and V(k) is the kth Fourier component of the
alloy potential with the condition V(g) =0.

The zero-order wave functions are Bloch states
determined by V~(r), the periodic part of V(r). The
energy of the alloy states to second order in V, (r) is
given by'

E(k) =Ek+E((k),
where

(2)

Here (V,)k~ is the matrix element of V, between the
Bloch states with wave vectors k and I, and Ek is the
energy of the zero-order Bloch states. The energies E&
are the same as for a pure metal with the periodic
potential V„. Such a pure metal has been called a
"virtual crystal" and has a periodic potential at each
lattice point which is just the average potential at a

where Uk(r) is normalized in a unit cell and has the
periodicity of the lattice; R, and R, are the lattice
points where the type-1 and type-2 atoms, respectively,
are present; and in obtaining the last expression for
(U, )(k the relation

ei (k I) Ra+ Q ei (k I) Rs —0 (6)
ls use(I.

Using the form for (U,)» given by (4), E&(k) of (2)
becomes

1 j Vg2(k, l) i'G(k —I)
Z((k) =—P,

jv,
where

G(k I) —Q Q eg(k—O ~ (Ra Rt,)—
and the double sum is over sites occupied by type-1
atoms. G(k —I) is the absolute square of the x-ray
structure factor. Because U, (g) =0, V(2(k, l) =0 when
k—I= g, and we need not consider G(g). The subsequent
forms for G(k —I) explicitly assume that k —I/ g.

We have assumed a particular distribution of the
atoms in the alloy in order to calculate the above ex-
pression. Because of the very large number of atoms
involved, the value of a physical quantity found by
averaging over all possible distributions of the two
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constituents is representative of the alloy. The average
of Ei(k) over all possible distributions involves only
G(k—I). After such averaging

(G(k—1)), =¹(P,e'&" '~' ),

where T~ are the total number of type-2 atoms in the
alloy.

Defining

S(k—1)= (X/X2) (Q,e'&~—'& a )
= 9'/&i) &Z.e'" ""')-, (1o)

we can write

(G(k—I)). =1Vn(1—n)S(k —I),

where E=¹+X~,the total number of atoms in the
alloy. Using (11) we can now write (7) as

n(1—n) i Vip(k, l) i'S(k—1)
Ei(k) = r Eg—Ei

(12)

Since the periodic parts of the Bloch wave functions are
normalized to one over a unit cell,

i Vi2(k, l) i' is of order
one. It can be shown that S(k—I) is of order one, and
thus Ei(k) is of order n(1 —n) (i Vi2

i
2)/6, where

(i Vi2i') is an average value of
i V»(k, l) i', and 6 is the

width of the zero-order energy band. Regardless of the
value of the ratio of (i Vi2 i ')/6', when n is small enough
Ei(k) can be made a small fraction of A. This has led
various investigators to assume that therefore per-
turbation theory is valid in very dilute alloys. That
such is not the case has been pointed out by various
other investigators. ' What is required in order for
perturbation theory to be valid is that the ratio
(i Vi2i')/dP be small, regardless of the value of n.

To understand this, it is instructive to introduce the
concept of charging in an alloy and to calculate its value.
In general, the electronic states in an alloy have differ-
ent amplitudes in the vicinity of the different consti-
tuents. The different constituents in the alloy thus can
become electrically charged with respect to one another,
affecting the potential contributed by a given con-
stituent in the alloy. Since the amount of charging also
depends on the potential differences between the
constituents, a self-consistent solution is required. ' The
potential that we are using in our discussion here is
assumed to be the self-consistent one which includes all
charging effects. Such charging effects are not present
in pure metals because each atom is equivalent to
every other one.

since all the lattice points R& are equivalent and thus
we can pick the lattice point Rq=0. The angle brackets
enclosing the expressions in (8) denote the required
average, and 1V~ is the total number of type-1 atoms in
the alloy. From (6) one finds also that

(G(k—I)), =Pm(p, e'~~ '&' ')

The wave function in the alloy to 6rst order in V. is
given by

+a+El(Vs)lk+I/(Ek EI))~ (13)

where

p(k, l) = e'" +'&' "'U~(r) Ui,*(r)d'r,

Re means to take the real part, and the integration is
over the unit cell centered on R,. Similarly we find for
the type-2 atoms

1 ( 2a Vi2(k, l)p(k, l)S(k—I))
p2(k) =—

i
1——Re+, —

i
. (15)

E,-E, )
Remembering that n is the fraction of type-1 atoms in
the alloy, we see that even for dilute alloys i n or 1—n
very small], the fractional deviation from the average
value of 1/X of the charging about the impurity atoms
is of order (V»)/A. In order for perturbation theory to
be valid, this charge deviation must be small, and thus
(V»)/6 must be small regardless of the concentration
of the alloy. In fact, if perturbation theory is valid for a
dilute alloy, it will be even more valid for the same
alloy at higher concentrations.

We now will show that the Ei(k) calculated from
perturbation theory is correctly calculated only when
the charging effect is also correctly calculated from
perturbation theory. We will prove an even stronger
statement: whenever the charging can be calculated
correctly, even when perturbation theory is not valid,
the energy can also be calculated correctly. In fact the
charging effect is the cause of the change in the value of
the energy levels from E&. To show this we calculate
Jiffy((r)V, (r)gq(r)d'r within the unit cell of a type-1
atom and add up the contributions of all such type-1
atoms. This is the contribution to the potential energy
of the type-1 atoms. We do the corresponding calcu-
lation for the type-2 atoms. The sum of the contribu-
tions from the type-1 and type-2 atoms gives us 2E(k),
which is what we expect from the virial theorem. The
term Ei(k) in (2), (7), 'and (12) comes from the charging
effect. If the charging is zero, then Ei(k)=0. It is
interesting to note that even in a very dilute alloy the
impurities contribute the same order of magnitude to
Ei(k) as do the host atoms. This is because, although
there are 1Vn impurities, their charging effect from (15)
is of the order of (1—u)/E and their total effect is of the
order of n(1—u). There are cV(1—u) host atoms present,

The average amount of charge about the type-1 atom,
pi(k), can be obtained by integrating the absolute
square of Eq. (13) over the unit cell about the type-1
atom and averaging over such unit cells. Doing this we
obtain

1 2 (1—n) V„(k,l)p (k,l)S(k-
p (k)=- 1+ «Z I, (14)

E E,—E,
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but the charging effect on them is only of the order of
a/E and thus their contribution to Ei(k) is also of order
n(1—a). Thus, the charging effect on both impurities
and host have to be known to the same percentage
accuracy, and if perturbation theory is not valid for the
charging effect, it is not valid for the energy values
either.

This relation between charging and the energy of a
state in the alloy is simply the consequence of the virial
theorem and thus is valid in all alloys where the inter-
action between the ions and the conduction electrons
can be represented by a potential. This relation can be
used to estimate the charging in an alloy by measuring
the variation of the energy of a state with alloying.
Consider an alloy which can be treated by the tight-
binding approximation. Then the wave function in the
vicinity of an atom is the same independent of the state.
In this case the energy of a state is approximately
given by

E(o)=npiEi+ (1—n) p2E2) (16)

where p~ and p~ are proportional to the charge deposited
on each type-1 and type-2 atom, respectively, and
satisfy the relation

&pi+ (1—&)p2= 1.
Using (17) we can write (16) as

E(C2) Ei+ (1 &)p2E21

where E2~= E2—E~.
If there were no charging then pi ——p2

——1 and (18) would
become

E2(a) =Ei+ (1—~)E2i. (19)

There is a linear variation in Eo with concentration in
this case. In the case when charging is present p2 as is
shown by (14) and (15), varies with n, and we find a
nonlinear variation of E with n. From (18) and (19),
p2 is given by

(dE/d~)/ (dE &!da)=p2 (o)—(1—ir) dp2/do (20)

In a similar fashion we obtain

(dE/dn)/(dEO/dn) =pi(n)+ndpi/dn.

We also have

p2 (o)= (E(a)—Ei)i(Eo (o') —Ei)
Pi(~) = (E(~)—E2)/(E2(~) —E2) (22)

P2(~)/Pi(~) = i:(E(~)—Ei)/(E(~) —E2)j~/(~ —1)).
Although (18) and (20)—(22) are probably more ac-
curate for alloys in the tight-binding approximation,
they still can be used for any alloy to give an estimate
of the charging effect.

where

p(E) =
4x'V

Av=
i vs(k) i,

(23)

V is the volume of the alloy, and the integral is over the
constant-energy surface in k space, E=E(k). We
assume, following Jones, 4 that Ei(k) of (2) depends only
on Eq. Then, using Eq. (2), Eq. (23) becomes

p(E(k))= p (E.)(1—~E /» )

where p2(E&) is the zero-order density of states at Ez.
If the Fermi level in zero order is at E~, then in the
alloy it will be at E(k), and y, the coefEcient of the
linear temperature term of the low-temperature specific
heat, will be given by

7=yp(1 —aEi/BEg), (25)

since it is proportional to the density of states. Here yo
is the y in zero order.

Jones4 has also calculated on expression equivalent to
(25). His corresponding equation is different from (25)
since he is calculating something slightly different.
Jones compares y and y2 at the same energy, while we
have compared them at the same k. The assumption
that Ei(k) depends only on Ez means that the Fermi
surface remains the same size and shape in zero and
second order if the number of electrons per unit volume
does not change. In that case, then, we have compared

p and yo at the Fermi surface. The Fermi energy
changes by the amount Ei(k&), where k& is the Fermi
momentum, and if we add the change in y produced by
this shifting of E(k) we obtain exactly the same ex-
pression as given by Jones. Jones has stated that (25)
is valid for dilute alloys, but as we have shown in the
previous section, this is incorrect. Equation (25) is
valid only when perturbation theory is valid and then
for all concentrations.

Using the expression for Ei(k) given in (12) and
changing the sum into an integral we can write (25) in
the form

states have an energy given by (2) and a lifetime which
is second order in V,. This lifetime produces a width to
the energy of the 31och states which contributes a
correction to the density of states of fourth order in V,.
We will be neglecting this order and can therefore
neglect the lifetime effects on the specific heat. There-
fore the density of states of the alloy, to second order in
perturbation theory, can be calculated with the same
expression as used for pure metals with~E(k) given by
(2). We have then that the density of states per unit
volume is given by

1 dS

III. ALLOY PROPERTIES where
(v vo)/vo=«(1 ~)— (26)

We now proceed to calculate the specific heat of the
alloy. To second order in perturbation theory the Bloch (22r)2X BEg

i
V (k,l)i'S(k —1)

d2l. (27)
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In Eq. (26), only S(k—1) and n(1 —tr) could depend on
0.. For a completely random alloy with no short-range
order, S(k—l) = 1. When short-range order is nonzero,
S(k—1) will depend on this short-range order, but if the
short-range order parameters are independent of n, then
S(k—I), and thus E:, remains independent of a. The
specific heat of alloys depends on short-range order
through E.

In discussing the optical properties of alloys we can
no longer neglect the 6nite lifetime of the Bloch states.
This lifetime introduces an absorption mechanism for
light. For example, in the case when V„=O, the zero-
order wave functions are free-electron states. For V,=0
the optical absorption occurs only at zero frequency,
but when V,QO, this absorption is spread out in fre-
quencies about zero. An example of this phenomenon is
the Drude theory of the optical constants with a finite
relaxation time r for the electrons. When the frequency
of the light or is much greater than r, the optical con-
stants are the same as the case for v ~ ~, or V,=O.
This follows directly from the sum rule for oscillator
strengths. In an analogous fashion one expects that for
~v))1 the optical constants of an alloy with V„~O and
V,&0 will also be the same as those for the metal with
the same V„but V,=O. If V, is small compared with
interband energies, it will not produce any appreciable
mixing between bands, only scattering within the band.
Then an analogy with the free-electron case should
hold, and when co7))1, but ~ is less than interband
frequencies, the properties of the band with V, =O
should be seen.

Whereas according to perturbation theory the specihc
heat depends on both V„and V„optical measurements,
when cov))1 and V, is much less than interband energies,
depend only on V„and measure the same properties as
the "virtual" pure metal determined by V~ alone. In
other words, at high enough frequencies, V, is not seen
in optical measurements.

The alloy electron states to second order in pertur-
bation theory have a dc transport relaxation time given
by11

n(1 n) V—
I V»(k, l) IsI v,Z, [-t

2 hg

X (1—cosg)S(k—l)dSt, (28)

where rs is the relaxation time of an electron state k,
and dSt is an element of area in the Fermi surface at l.
Cylindrical symmetry in the scattering about k is
assumed. The relaxation time, and thus the residual
resistance, varies with concentration as rr(1 —n). This
result was erst given by Nordheim. 12

"N. F. Mott and H. Jones, The Theory of the Properties of
Metals and Alloys (Dover Publications, Inc. , New York, 1958),
Chap. 7.

"L.Nordheim, Ann. Physik 9, 607 (1931);9 641 (1931).
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FrG. 1. The coeScient y of the linear-temperature term in the
low-temperature specilc heat of Ag-Au alloys. The points are
from the experiment of Ref. 13.The straight line is the zero-order
value ye. The other curve is Eq. (26) with X=—0.33.

IV. Ag-Au ALLOYS

Since they may have small charging sects, Ag-Au
alloys look. like prime candidates for treatment by
perturbation theory. The experimental evidence proves
that this is the case.

The residual resistance of Ag-Au alloys" varies with
composition in agreement with Nordheim's formula
Eq. (28). Even stronger evidence comes from the recent
optical measurements of the polar-reQection Faraday
e8ect in Ag-Au alloys. " These have shown that the
Fermi-surface neck. contact with the Brillouin-zone
boundaries linearly from pure silver to pure gold. This
is what one expects from perturbation theory, as
pointed out in the last section. We will show that recent
speci6c-heat mesurements on Ag-Au alloys have the
form given by (26) and are consistent with the resis-
tance measurements. In addition, we will roughly
estimate the charging effect.

Recent speci6c-heat Ineasurements on Ag-Au alloys"
have given the results plotted in Fig. 1. The zero-order
ys in (26) varies linearly between pure Ag and pure Au
as shown in Fig. 1.The difference between the measured
y and 7s is consistent with the form in (26), as is shown
in Fig. 1, where (y —yo)/7s ———0.33 n(1 —a) is plotted.
An independent estimate of Z in (26) can be obtained
from measurements of the residual resistance p, by
using (28), which depends on the same

I Vts(k, l) ~' as
determine E. Table I gives the value of p/n(1 —rr)
determined from experimental data. From this, r can be
determined by p=rstV/Xe'r, where Z/V, the number
of electrons per unit volume, is given in the Table and
the free-electron mass is used for m. Approximating the
Fermi surface of Ag by a sphere, and assuming the

"A. A. Valladares and B. A. Green, Jr., Bull. Am. Phys. Soc.
10, 127 (1965); B. A. Green, Jr., and A. A. Valladares, Phys.
Rev. 142, 379 (1966).
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F(E)
FrG. 2. The gen-

eral form for F(E)
in Kq. (30) for a p (E)
symmetric about
E=0.

Here p, (e) is the density of states corresponding to
those states with s symmetry only. It is being assumed
that all of the electrons at the Fermi surface in Ag or
Au have s-like symmetry and that the potentials due to
Ag and Au ions are spherically symmetric. Then
V»(k, l) only couples to states I which have s symmetry.
This is a simplification that is not strictly true, since it
is known that the electron states near the necks in Ag
and Au have p-like symmetry. However, most of the
Fermi-surface states should be s-like. The important
thing is that none of the states at the Fermi surface,
with either p or s symmetry, couples via V~2(k, l) to the
d states below the Fermi surface. The importance of
this is explained in the next paragraph.

According to band calculations by Segall, " p, (e)
appears to have a shape symmetric about the middle.
To estimate F(E) we choose for p(e) the form

~(~)= l(&/E~) L1—(~/E~)'1, (3o)

where 2BJ: is the total width of the band, and the Fermi
level is at a=0. With this p(e), the function F(E) has
the form shown in Fig. 2 and is given by

P(E)= (1—e)ln
2Eg 1—g

(31)

where x= E/E&. At the Fermi energy, E=0, BF(E)/BE

TABLE L Values of parameters for Ag-Au alloys.

u/~(t —~)
(~/~)
1V/ V
&1~~2 I')
E+
+calo
+expt

3.6X10-7 am
5.9X101' sec '
5.9)C 1P»/cm'
1.2X10 ~ ergs'
SX10 "ergs—0.05—0.33

& References 11 and 16.

1 S. Segall, General Electric Research Laboratory Report
No. RL-2785 0 (unpublished).

~
V~2(k, l) ~' is a constant and that the electrons in Ag

have the free-electron velocity at the Fermi surface, we
obtain the value for (~ V~2~ ') given in the table.

Neglecting any short-range-order effects, we can set
S(k—l) = 1 in (27). Again assuming the

~
Vq, (k,l) ~' are

a constant, we can write from (27)

—&=[(~

V12 ~')/2N)a& (E)/8E, (29)
where " p, (e)de

P(E)=

is positive and thus E is negative, in agreement with
experiment. If the V~2(k, l) had appreciable values
between the states at the Fermi energy and the d band
below, then this would give a positive contribution to E
which would overwhelm the negative contribution from
the s and p electrons and would destroy any agreement
with experiment. As discussed in the previous para-
graph, Vq~(k, l) to the d band should be negligible.

Using the values of (~ Vq2~') and E~ in Table I we
estimate K to have the value —0.05. This has the same
sign as the experimental value but is about six times
smaller. In view of the crudeness of the calculation that
led to the numerical estimate for K, it may not be
surprising that there is such a large discrepancy from
the measured value. The portions of the numerical
estimate that are weakest are the somewhat arbitrary
assumption of p(e) in (30) and a constant value for

~
V~2(k, l) ~'. One expects that Vi2(k, l) provides scatter-

ing that is peaked in the forward direction. This would
then require a larger value for (~ Vq2

~

') to give the same
value for 1/r in (29). The necessary amount of peaking
in the forward direction to give agreement with experi-
ment is not unreasonable. Such an effect would also
make p, (e) in (29) effectively more peaked around the
Fermi energy because

~
V»(k, l)

~

would then couple
more strongly to the states closest to the Fermi energy.
Such greater effective peaking in p, (e) would also
increase the magnitude of K to give better agreement
with experiment. In view of these uncertainties it is felt
that the estimated and measured values of K are not in
disagreement. Certainly, the sign of K is correctly
predicted by the theory.

In the calculation of K we have not estimated or
included the effects of short-range order and many-body
effects. An estimate of the short-range order present in
Ag-Au alloys indicate that it probably has a negligible
effect on K.

Most authorities now believe that direct electron-
electron interactions do not appreciably change the
specific heat. In the case of the Ag-Au alloys, where the
electron states are not much different from those of
pure Ag and Au, the change in p due to alloying should
be a small percentage of the effect in the pure metals
and thus should be negligible. The electron-phonon
interaction can produce a large effect on y. However, in

Ag and Au there is evidence that the electron-phonon
enhancement of y is small from the close agreement
between the band, optical, and specific-heat masses. In
addition, the Debye temperature of the alloys deviates
only about 5'K„out of a Debye temperature of about
200'K, from a linear interpolation between pure Ag and
Au. Thus the deviation from linearity due to alloying
should be a small fraction of the total phonon effect and
is probably much less than 1% and negligible.

Finally, we estimate the charging expected using (14)
and the same model as in estimating E. Equation (14)
contains the new quantity p(k, l). Again, a detailed
calculation is required to accurately determine p(k, i).
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FIG, 3. The d-band optical-absorption-edge energy versus
composition for the Ag-Au alloy system. The data are taken from
Refs. 10 and 17.

A rough estimate can be obtained by assuming U&(r) is
a constant; this gives p(k, l) =0.6. Then about 0.2 of an
electron charge is transferred between the silver and the
gold. As Mott" points out, goM should have a more
attractive potential, so that the Au ions have the
greater electronic charge about them. This estimate is
in agreement with the estimate of Roberts, Becher,
Obenshain, and Thomson" who also measure that the
s-type charge on Au varies linearly with n. Equations
(14) and (15) are in agreement with this variation. The
charging due to the s states is relatively small, e.g., for
states at the Fermi surface in Ag-Au alloys it is much
less than 0.2, since F(E) is zero there; but the same is
not true for the d-band states. We use the relation
between charging and the energy variation of a given
state with alloying given in (22) to estimate the charg-
ing in the d band of Ag-Au alloys. In Fig. 3 is plotted
the energy of the initiation of the optical absorption in
Ag-Au alloys based on the measurements of Refs. (10)
and (12). This energy is the depth of the top of the
d-band below the Fermi energy. Neglecting the vari-
ation of the Fermi energy itself, Fig. 3 then gives us
E(n) in (22). Analysis of these data using (22) gives that

pAE/pA11= 3 6 (32)

throughout the entire concentration range, i.e., the
d-electron state at the top of the band deposits about
3.6 times the electronic charge on a Au ion that it does
on a Ag ion. Clearly, this situation cannot be treated by
perturbation theory. It has been shown' that when a
band is filled, as in the case for the d band in Ag-Au
alloys, there can be no net charging effect. Thus the
greater charge deposited on the Au by the top d-band

"N. F. Mott, Proc. Cambridge Phil. Soc. 32, 281 (1936)."L. D. Roberts, R. L. Becker, F. E. Qbenshain, and J. 0.
Thomson, Phys. Rev. 137, A895 (1965).'' P. R. Wessel, Phys. Rev. 132, 2062 (1963).

state has to be compensated by other states which
deposit more charge on the Ag atoms. The behavior
found in the d band of the Ag-Au alloy system is what
is expected theoretically, ' since the top of the d band
of Au is closer to the Fermi surface than is that of Ag.

V. SUMMARY AND CONCLUSION

The exact wave function in a nonperiodic system is

very complicated and for that reason is not very useful
for obtaining a simple physical understanding of alloys.
This paper points out that charging is a simple physical
concept with which many alloy properties can be under-
stood. Perturbation theory breaks down when the
charging is large, and in the extreme case where the
wave function has an amplitude on only one or the other
constituent the band structure breaks up into two
separate ones, each one depending on only the proper-
ties of one constituent. 2' In dilute alloys this cor-
responds to bound states being formed. The concept of
charging makes it intuitively straightforward to pass
from the bound-state to the perturbation-theory limit.
In intermediate-type alloys the charging is large but
there is appreciable amplitude on all constituents. In
this paper it has been shown that charging is small when

(~ V~s~ )/6 is small and vice versa. This is equivalent
to the criterion found in the tight-binding approxi-
mation. '

The energies of the states in the alloy are directly
understood in terms of charging. It has been shown that
the energy change produced by the nonperiodic part of
the potential is directly related to charging by the
virial theorem. In fact a measurement of the variation
of the energy of a given state as a function of alloying
is the most direct way to measure charging in this state.
Charging has another important effect. In general, it
changes the ion potential of a given constituent in the
alloy from its value in the pure state. ' Such an effect
must be included in any quantitative theory of
alloys.

Jones' has given a perturbation calculation of the

specific heat of alloys. We point out that perturbation
theory is valid only when the charging or (~ V» I )/6 is
small and not necessarily when the alloy is dilute.
Jones's theory cannot be applied to alloys for which
AZ/Z&1, where hZ is the valence difference between
the two constituents and Z is the smallest valence of the
constituents, because then one expects the charging to
be big in order to satisfy approximate charge neutrality.
Thus Jones's theory should not be applicable to n-

brasses and other noble-metal alloys that satisfy the
Burne-Rothery rules. Experimental measurements on
the residual resistance and the polar-reQection Faraday
effect of Ag-Au alloys indicate that the properties in the
vicinity of the Fermi surface of these alloys can be
treated by perturbation theory, in agreement with the
charging criterion. It has been shown that Jones' s

theory as applied to Ag-Au alloys does explain the
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specific-heat measurements. It would be useful to have
measurements over a greater concentration range to
verify more accurately the n(1 —n) dependence of the
deviation from the linear interpolation.

Whereas the properties of the Ag-Au alloys in the
vicinity of the Fermi surface can be calculated by
perturbation theory, the experiments show that the
properties of the d-bands cannot be treated by per-
turbation theory. The charging effect is large there.
Each d-band state shows large charging effects, but
because filled bands cannot have any net charging, ' the
actual change of the d-type states in the vicinity of each
ion must be small. In the tight-binding approximation
the total wave function of the solid with a completely
filled band is always the same, independent of the
amount of charging. In the more general case there
could be some change in the wave function, depending
on how large the charging is in individual states, but
probably this is small. In Ag-Au alloys, since they can
be treated in the tight-binding approximation, the
total d-type wave function around each constituent
should be closely the same as in the pure states, and
these wave functions should accurately contribute the
same to the potential "seen" by the s- and p-electrons
as in the pure metals. Thus, the large charging in the
individual d-band states does not change the fact that
the electrons near the Fermi surface can be treated by
perturbation theory.

If V»(k, l) is small compared with interband energies,
and the angular frequency of light is Inuch greater than
the relaxation time of the electrons produced by
V»(k, l), the optical properties of the alloy measured
are those produced solely by the periodic part of the
potential. The alloy "looks" optically like a pure metal
with a periodic potential equal to the average potential
in the alloy.

Specific-heat measurements, on the other hand, are
affected by both the periodic and nonperiodic parts of
the potential, and caution is needed in interpreting
these measurements in terms of the density of states of
the pure metals. Especially for the transition metals,
measurement of the specific heat of alloys of two
constituents with different valences has been used to
infer information about the density of states of the pure
metals assuming the rigid-band approximation. The
applicability of this procedure to alloys that can be
treated by the tight-binding approximation has been
discussed elsewhere. "In this paper we have shown that
even for alloys that can be treated by perturbation
theory the alloy specific heat differs appreciably from
that of the pure metal or of the "virtual pure metal"
determined by the average potential. For alloys where
perturbation theory does not apply —probably including
all alloys of noble metals with atoms of larger valence —,
we cannot expect any simple relationship between the
specific heat of the alloy and the density of states of the
pure noble metal. Certainly, a rigid-band model should
not apply. There may be those who are disappointed
by such a prospect. However, disordered alloys need not
apologize for such a "shortcoming. "After all, they, as
examples of systems with no long-range order, are ex-
tremely interesting in their own right. By measuring
their properties, it is not unreasonable to expect to
determine simply the properties of alloys themselves!
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