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Doppler-Shifted Cyclotron Resonance of Helicon Waves in Single-Crystal Aluminum
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Results are presented of measurements of Doppler-shifted cyclotron resonance (DSCR) of helicon waves
in single-crystal aluminum with the magnetic field and helicon propagation along the $100$ and L110$
directions. The Gaussian radius of curvature of the Fermi surface in the second zone is measured at the point
where the surface normal is along L100$. The experimental value for the radius of curvature is 0.99&0.03
times the free-electron value, in agreement with the expected value. For L110), it is shown that DSCR
absorption edges at an elliptic limiting point on an arm of the third-zone Fermi-surface "monster, " and on
6nite orbits involving a large fraction of the electrons on the second-zone surface, are expected to occur
almost simultaneously. The difhculties associated with interpretation of the data when Gnite-orbit absorption
edges exist are discussed. It is shown that beyond an estimate of the $110]curvature, which is in surprisingly
good agreement with the calculated value, a more precise interpretation of the (110$data cannot be justified.
The merits of the helicon DSCR method for Fermi-surface studies are discussed, and it is concluded that
in general useful information can be obtained only on very pure samples with co,~ 100, where m, is the
cyclotron frequency and r the conduction-electron relaxation time.

I. INTRODUCTION

HEN a magnetic field is applied to solids at low
temperatures such that ~,v&&1, where co, is the

cyclotron frequency and v the relaxation time of the
conduction electrons, the solid becomes transparent to
a class of electromagnetic waves (magnetoplasma
oscillations) called helicons. Recently, these helicons
have been utilized to obtain information about the
electronic structure of solids. Ever since their prediction
in 1960,' and their discovery in 1961,' helicon waves
have been the subject of numerous investigations, both
experimental and theoretical. '

The erst use of the Doppler-shifted cyclotron reso-
nance (DSCR) of helicon waves was proposed by
Stern, 4 who showed that information about the Fermi
surface at single points should be obtainable for
relatively simple surfaces. Investigators have obtained
information about the Fermi wave number in poly-
crystalline samples of sodium, potassium, and indium.
The purpose of this paper is to present the first detailed
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results of DSCR helicon studies in single-crystal
aluminum along the L100] and L110j directions.

The local and nonlocal helicon theory is brieQy
presented in Sec. II. Section III contains a discussion
of the experimental apparatus and sample preparation.
The experiment results are presented in Sec. IV, and an
interpretation of the single-crystal-aluminum data is
given in Sec. V. Some conclusions concerning the
general applicability of the DSCR-helicon method to
Fermi-surface studies is given in the final section, VI.

II. HELICON THEORY

A. Local Regime

For pure metals and high magnetic fields such that
~,7))1, an electromagnetic "window" is opened up for
the propagation through metals of circularly polarized
electromagnetic waves (helicons) having the sense of
polarization of the cyclotron rotation of the metallic
conduction carriers. In the "local" regime, where the
helicon wave number q and electronic mean free path
l satisfy the condition q/(&1, the helicon propagates for
all frequencies below cu. and the helicon dispersion
relation for infinite cv,v. is

copyse
2

8
Here co is the helicon frequency, e is the number of
carriers per cubic meter, po is the magnetic permeability
of free space, e is the electronic charge and 8 is the
applied static magnetic field. In a real metal with
magnetoresistance and finite 7, the helicon amplitude
is decreased by e ' in a distance of tt/sr wavelengths,
where st= RNB/p(B). Err is the Hall constant and p(B)
is the resistivity of the metal in the field B. For a free-
electron gas, where p(B) =p(0), st= ca,r. If the rnagneto-
resistivity of the metal is appreciable, the helicons are
more heavily attenuated, having a damping length
inversely proportional to the total resistivity of the
metal.
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In the local limit, the propagation "window" is for
all en&co„but nonlocal effects become important as the
frequency is increased. The upper frequency limit of the
transmission window is lowered by these nonlocal
effects, which will now be discussed.

B. Nonlocal Regime (DSCR Theory)

The attenuation of helicon waves with frequencies
co(to, is small in the local regime (ql«1), provided the
metal is sufGciently pure and the magnetic field suffi-
ciently strong that co,r))1. As the wavelength of the
helicon wave is decreased, however, the nonlocal region
(q/& 1) is entered, and a critical wavelength is reached,
below which the helicon wave attenuation is extremely
strong, even in the limit of m, v. —+ ~. It is just this
property which permits the use of helicons in obtaining
information about the Fermi surface. '

The physical reason for this nonlocal attenuation is
a Doppler-shif ted mechanism. A given band of electrons
on the Fermi surface has an average velocity 8& along
the direction of the Geld B.If the helicon wave number

q is along 8, the electrons do not see an electromagnetic
disturbance of frequency co set up by the helicon, but a
Doppler-shifted frequency

(2)

If co' happens to coincide with the electron cyclotron
frequency or„absorption of energy out of the helicon
wave by the conduction electrons will occur. This
phenomenon is called, Doppler-shifted cyclotron reso-
nance. From a consideration of ~~ averaged around. an
orbit, it can be shown that the DSCR absorption
condition is'

B/q = (A/2sre) BA/Bkts, (3)

where A is the area enclosed by the cyclotron orbit and
k~ is the electronic wave number along B.Other groups
of electrons on the Fermi surface can also contribute to
the absorption process, and in fact, an absorption edge
will be reached when the last group of electrons which
satisfy' (3) are in resonance. The absorption edge
(Kjeldaas edge) can be seen to occur whenever the
absolute value of (3) is a maximum. Experimentally, it
is generally easier to Gx co and sweep B.In this case, the
DSCR absorption occurs for 8 lower than the absorp-
tion ed.ge GeM B~, while for 8)BJ; no group of carriers
is able to undergo DSCR. For a spherical Fermi surface,
the last group of electrons in DSCR are those able to do
the most Doppler shifting of the helicon frequency;
that is, those having Hg= vp, the Fermi velocity. Thus,
the DSCR edge occurs on the "point" orbit whose

'Equation (2) is true strictly speaking only in the limit of
co,~ —+ Do, so that the helicon has a uniquely defined wave number
q. For finite co,~, the problem must be solved self-consistently. See
Ref. 10.

7 P. B. Miller and R. R. Haering, Phys. Rev. 128, 126 (1962).
J. Kirsch, ibid. 133, A1390 (1964).' Reference 4. The relation between es and BA/Bhs is given by
W. A. Harrison, Phys. Rev. 118, 1190 (1960).

normal is along B.For a general elliptic limiting point,
the DSCR edge condition is

~~/V~= (&/e) (pips)'", (4)

where p~p2 is the product of the two principal radii of
curvature of the Fermi surface at the point whose
surface normal is along the Geld J3. The product p~p2 is
called the Gaussian radius of curvature of the surface.
For a spherical surface, p~=p2 ——kg, the Fermi wave
number. Thus, for relatively simple surfaces the curva-
ture may be obtained point-by-point, providing J3+ and
q~ can be measured.

It may happen that the surface has its greatest value
of

~
BA/Bkii

~

not at a point orbit, but on a finite orbit.
For example,

~
BA/BJ'tis

~
has a maximum value for the

inQection-point orbit of a Fermi-surface "neck, "when
the Geld is along the neck direction. ' It has been shown
that the possibility of absorption edges occurring on
finite orbits can add considerable complication to
DSCR data evaluation. "

For convenience, we summarize here the results of
Ref. 10 pertinent to our discussion:

(1) For Fermi surfaces having axial symmetry about
the magnetic field direction, Imo (q) is found to have a
delta-function dependence at the Kjeldaas edge for a
finite-orbit case in the limit of co,r~ oo. Here o. (q) is
the nonlocal, wave-number-dependent helicon con-
ductivity function. An inGnity does not occur in
Imo (qs) for a point-orbit edge.

(2) Because of the infinity in Ima(qz) for the finite
orbit case, the helicon dispersion relation is double-
valued, e.g. , two wave numbers exist for a single
frequency. q is double-valued for all co for inGnite u, 7-,

but only for a limited region for Gnite co,v. The point-
orbit case also exhibits a double-valued behavior, but
only over a small range of co even for co,~ —+ ~.

(3) The peak in the resistive part R of the sample
surface impedance occurs at q and 8, where the ~
versus g' curve has a maximum and the helicon group
velocity is zero (Boo/By=0). This does not coincide with
the Kjeldaas-edge wave number qE.

For a spherical Fermi surface and inGnite co,~, a
fixed-frequency experiment will yield a measured edge
field 8 about —,"% lower than the Kjeldaas edge Bit.
This difference is generally within experimental error.
For Gnite-orbit edges, on the other hand, the difference
can be appreciable. For the Gnite-orbit model chosen
(the spin-density wave Fermi surface predicted for
potassium by Overhauser"), tt is 14% lower than q@.
Since the difference gz —

g can only be calculated if the
details of the Fermi-surface topology are known, care
must be exercised in interpreting DSCR data obtained.
by the surface-impedance method.

s A. 3. Pippard, The Dylamtcs of Comdtcctsol Electroas (Gordon
and Breach Science Publishers, Inc. , New York, 1965), p. 129.

MJ. C. McGroddy, J. L. Stanford, and E. A. Stern, Phys. Rev.
141, 437 (1966). J. C. McGroddy and J. I. Stanford, Bull. Am,
Phys. Soc. 10, 384 (1965).

"A. W. Qverhauser, Phys. Rev. Letters 13, 190 (1964),
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III. EXPERIMENTAL PROCEDURES

A. Apparatus

The experimental apparatus is similar to th t d
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irect y related to the Fermi-surface curvature.
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utilizing the low-frequency standing-wave helicon
resonance" in a sodium plate. The solenoid is not com-
pensated, and has Geld inhomogeneities on the order of
1% within the working volume.

The helicon frequency was measured to better than
0.1%%uo with a BC-221 frequency meter for the sodium
work, and to better than one part in 104 on an electronic
counter in the aluminum work. .

B. Sample Preyaration

(i) Sodium

The experiment was initiated using sodium metal for
the following reasons:

RF RF

OS C AMPLIFIER
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(1) sodium has a relatively low magnetoresistivity,
(2) high-purity sodium was available,
(3) the Fermi surface of sodium is thought to be very

nearly spherical, so that theoretical and experimental
results can be easily compared.

The high-purity sodium metal was graciously given
to us by C. E. Taylor of the Lawrence Radiation
Laboratory, Livermore, California. Checking the resid-
ual resistance ratio (R.R.R.) by the method of Bean,
DeBlois, and Nesbitt, "we obtained a value of R.R.R.
~6500 for this material. This high purity yields
or, 7 40 in 10 kG, and together with its relatively low
magnetoresistivity, is sufficient to allow easy helicon
propagation.

The specimens used were in the form of polycrystal-
line plates, approximately 1)(10)&10mm' in size. The
metal is pressed into the shape of a slab of required
thickness between two glass microscope slides, being
kept continuously under dry mineral oil to reduce
oxidation of the surface.

(ii) 2/umiuum

The aluminum was Cominco grade 69 material, ob-
tained in the form of ingots. A sample spark-cut from
the ingot showed a residual resistance ratio 7000 by
the Bean, DeBlois, and Nesbitt method. The value of
cv, v-, estimated from the decay of low-frequency helicons
in this material, is on the order of 15 for 10 kG.

Single crystals in the L100] and $110]directions were
prepared by the following procedure: Single crystals
were selected from the Cominco ingots, x-ray oriented,
and samples were spark-cut to minimize sample strain.
The samples were on the order of 1&(10&(10mm'. In
order to obtain appreciable helicon fringe heights, the
samples have to be fiat and parallel to much better than
a helicon wavelength in the sample. For 100 kc/sec and
10 kG, X~SX10 3 cm in aluminum.

The L110] crystal was chemically handlapped and

"J.R. Houck and R. Bowers, Rev. Sci. Instr. 35, 1170 (1964)."C.P. Bean, R. W. DeBlois, and L. B. Nesbitt, J. Appl. Phys.
30, 197' (1959).

FIG. 2. Block diagram of helicon DSCR experiment
with phase-sensitive detection.

electropolished with the following technique" to insure
parallelness of the two sides and to minimize "rounding
oQ" in the polishing process. A Lucite block has a
cylindrical hole drilled through it perpendicular to one
face. A right-circular cylindrical aluminum piston is
machined to slide snugly in the cylindrical hole. The
sample slab is now cemented onto one end of the piston,
making electrical contact with it. A piece of Teflon cloth
is fastened over an ordinary aluminum plate. The
sample can now be moved across the TeQon cloth,
riding up and down on its guide piston as the sample
becomes polished.

For chemical handlapping, a medium concentration
of H20 and CuCl2 is poured on the TeQon cloth. For
electropolishing, a 50% ethyl alcohol, 40% HsPO4
and 10% gly'cerine (by volume) solution is used. The
piston and the TeQon-covered plate become the two
electropolishing electrodes across which the electro-
polishing potential is applied.

It was later discovered that the L110] axis was not
quite normal to the sample ( 2' off). However, the
experimental data shows no difference within experi-
mental error whether 8 was along $110]or the normal
to the sample. The $110] crystal was 1.13+1% mm
thick at room temperature. The other two dimensions
were approximately 9 mmX14 mm. A thermal con-
traction correction of 0.4% between room temperature
and 4'K used by Chambers and Jones" was also applied
here, for both the $110]and [100]crystals.

The L100] crystal was found to be suKciently smooth
to see large fringes without electropolishing, so that it
was only chemically handlapped. The 6nal surface
roughness, seen under a microscope, was estimated to
be about 2X 10 ' cm. The L100] axis was aligned along
the sample normal to within 1'. Its average thickness
at room temperature was 0.40&1%rnm, while its other
dimensions were about 8 mm&(10 Dun.

"We are indebted to Professor I. F. Koch for showing us this
method."R.G. Chambers and B. K. Jones, Proc. Roy. Soc. (London)
A270, 417 i1962l.
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jt:V. EXPEMMENTAL RESULTS

A. Sodium

An experimental curve for sodium using phase-
sensitive detection and an rf frequency of 3 Mc/sec is
shown in Fig. 3. The experimental value for the edge is

17.5&0.3 kG.

B~ 17.7 kG. —— (6)

As discussed in Sec. II, a more detailed analysis
reveals that the measured edge will occur about —,"~/o

below B~. Hence, the expected value for co,r —+ ~ is
17.6 kG, agreeing favorably with the experimental

Despite the fact that sodium suGers a partial marten-
sitic phase transformation from a bcc to a hcp structure
below about 30'K, any distortions of the Fermi surface
will remain unobservable by the helicon DSCR tech-
nique, which measures only the largest Fermi surface
curvature for a given direction of magnetic field. Since
the two phases coexist, the large curvature of the
spherical Fermi surface in the bcc phase will be the first
absorption edge reached. The helicon wave ceases to
exist below B~ because of the extremely heavy attenu-
ation encountered inside the edge, and thus no lower
edges will be observed by the helicon DSCR method.

For a spherical Fermi surface it is possible to calcu-
late BE for a given co. Using a lattice constant of
4.225A and one electron per atom, one obtains for
cu/2s. =3 Mc/sec,

value (5). This is expected since the Fermi surface of
sodium is thought to be very nearly spherical, and
co,7. 45 for our sodium at this field. Similar results
confirming the spherical surface of sodium have been
obtained by Taylor' using a different technique (the
surface-impedance method) with helicon DSCR.

With the surface-impedance technique, B and ~ may
be determined, but not the helicon wavenumber q. The
value of q is then calculated from the known dispersion
relation connecting ~ and q for a spherical Fermi surface.
However, the calculation is complicated for non-
spherical Fermi surfaces, and in fact, has been published
for only one other case, that of cylindrical symmetry. "
Since the Fermi-surface curvature is related to BE and
qz, and not BJ, and ~z, the beauty of the surface
impedance technique is marred by difficulties of inter-
pretation for more complicated Fermi surfaces.

In contrast, the interference fringe technique allows
a direct measurement of q and thus in principle this
method can be extended to any general Fermi-surface
shape. Figure 4 shows an experimental (interference
method) and theoretical plot of q' versus B ' for 3
Mc/sec in sodium. In the local regime (&v,))qvp), Eq.
(1) shows that q' is proportional to B ' for fixed—o;. As
B is increased, nonlocal behavior occurs as the absorp-
tion edge is approached, and q' deviates from its simple
B ' dependence. Both of these regions are displayed in
Fig. 4. It can be shown that

q' Imo (q,B)

q')...y Imo. (O,B)
(7)

where o(q,B) is the n.onlocal helicon conductivity func-
tion. For a spherical Fermi surface and co,v —+ ~,

Imo. (q,B) (q)
=f1 —

I

Im~(O, B) t B)

O

5

Cl

B~ I7.5&.3 kG

MAGNETIC FIELD 8

where the function f has been given by various in-
vestigators. "We have solved Fq. (7) self-consistently
by numerical means to obtain the theoretical nonlocal
q' dependence on B—' as shown by the solid line in Fig. 4.
The agreement with experiment is seen to be good. The
small region of double-valuedness in q' for given B near
the edge, discussed in Sec. II, is also shown on the
theoretical curve. At the wave number q, the peak in
the surface resistance occurs" (infinite slope on the q'
versus B ' graph). It is here that the helicon has zero
group velocity, and can enter into strong resonance with
the exciting fields at the sample surface.

B. Aluminum

Representative experimental curves for both the
L100) and the L110] single-crystal aluminum samples

I zG. 3. Tracing of helicon fringe derivative curve obtained with
phase-sensitive detection apparatus for Na metal at 3 Mc/sec and
4.2'&. Sample thickness: 0.58 mm.

» C. S. 13arrett, Acta Cryst. 9, 671 (1956).

' Reference 10. Also, see S. Rodriguez and A. W. Overhauser,
Phys. Rev. 141, 431 (1966).

+ See, for example, Refs. 7 and 10 and J. J. Quinn and S. Rodri-
guez, Phys. Rev. 133, A1590 (1964).
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are shown in Figs. 5 and 6. The scale and zero is not the
same for all the curves, and the fringe amplitudes are
generally on the order of millivolts on the xy-recorder
graphs, after ampli6cation of 10' to 10'. The helicon
fringes and edge are more dif6cult to observe in alumi-
num than sodium, so that lower frequencies (30—300
kc/sec) were used to partially compensate for the
greater ordinary (non-DSCR) attenuation in aluminum.
For a given co,7, the damping per wavelength is 6xed,
so that lower attenuation results when there are fewer
wavelengths in the sample (lower frequency).

From the data, the number Ã of helicon half-wave-

lengths in the sample thickness, and thus the helicon
wave number q, can be determined. The dispersion
relation (1) is used for B))B~, where the helicon be-
havior is local. The value of q for any lower 8 is then
obtained by counting fringes down in field. The exact
value of the Hall constant, RrI ——1/ee, to be used is a
function of X. Discrepancies on the order of 5%% be-
tween the expected theoretical value 1/ee and the
experimentally determined value obtained from low-

frequency-helicon experiments were at 6rst conjectured
to be due to many-body effects."However, the theoreti-
cal work of Legendy20 has since shown that the dis-

crepancy is resolved when boundary effects are ade-

quately taken into account. Our data substantiate this
result. When X is large (& 10), boundary effects are not
important, and we 6nd we must not use the value of

XII determined from low-frequency-helicon experi-

ments, but 1/ee, the infinite-sample value, in order to
obtain agreement with our data. On the other hand, for
/&10, boundary sects are expected to be important,
and the low-frequency-helicon value for E& does indeed
6t our data in this region.

The plot of q' versus 8 ' in Fig. 'f(a) clearly demon-

strates the nonlocal nature of the DSCR region for
$100] Al. A similar plot for the $110] direction shown

in Fig. 8 shows little deviation from the local behavior

qE (calc.)
-q (calc.)

6xl

.OI .02 .03 .0
8-' (KG ')—

FxG. 4. Theoretical and experimental plot of the square of the
helicon wave number q versus inverse magnetic Geld 8 '. The
theoretical. 'curves (solid lines) were calculated by a self-consistent
method described in the text. They illustrate the local and non-
local regions q (where the peak in surface resistance and zero
helicon group velocity occur), and the Kjeldaas edge wave number
ge. The experimental points are for Na metal at 3 Mc/sec and
4.2'K. Sample thickness: 0.58 mm.

and, in particular, is not near the region with infinite
slope. Theoretical calculations" have indicated that the
in6nite slope should be reached before the Kjeldaas
edge is reached. Thus an experimental criterion to test
if the measurements have approached the Kjeldaas edge

I4

B (KG)

(a)

l2

B ( Kilogauss)

(b)

FIG. 5. |'a) Tracing of direct transmission helicon fringes for single-crystal aluminum at 4.2'K. Sample normal and magnetic Geld are
along L1G07. Sample thickness: 0.40 mm. (b) Tracing of typical phase-sensitive detection curve. Same sample as in 5(a).

~ C. R. Legendy, Phys. Rev. 135, A1713 (1964)r.
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FxG. 7. (a) Plot of the square of the number of half-wavelengths E in the sample thickness versus 8 . E is proportional to the helicon
wave number g. The helicon frequency is 15p kc/sec and the $1ppg Al sample is p.40 mm thick. (b) Plot of edge frequency versus edge
6eld for Llpp] Al. The solid line is drawn through the data points and corresponds to a B@rcvs'~' dependence.

Helicon frequency
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0.97&0.05

the Brillouin-zone boundaries are relatively far away,
leaving the cap practically undistorted. Recall that only
the absorption edge with the largest curvature will be
seen in helicon DSCR studies because the helicons are
so heavily attenuated inside an absorption edge. Thus,
the [100] absorption edge is expected to occur at the
elliptic limiting point of the second zone "cap,"and to
have a curvature close to the free-electron value. Since
the third-zone curvature is smaller, its absorption edge
will lie lower in 6eld than that of the second zone, and
is not expected to be seen.

We define a normalized curvature parameter

fit=
I BA/Bkg

I
/2s k

which for an elliptic limiting point becomes

(10)

For a spherical surface, pj.=p2 ——k~, and (R has the value
unity.

The experimental data yield the following values of
61 for the [100]direction of aluminum:
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t
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B' (KG')

INFLECTION
POINT

This yields a result of

g, =0.99ao.OS

Fxe. 8. Plot of the square of the number of half-wavelengths
in the L110j sample thickness versus 8 ' Nis proport. ional to the
helicon wave number q. The helicon frequency is happ kc/sec andthe L11pj sample thickness is 1.13 mm.
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for the L100j direction in aluminum, in good agreement
with the expected value of unity.

5-
FREE ELECTRON VALUE

5.0-

IOO Al "cap"

2.5

gA

Bka

1.5

1.0

0.5

0.2 0.4

Frs. 9. Plot of
~ BA/Oker versus ka for $1001 and L110j AI. A

is th, e area enclosed by a cyclotron orbit and kz is the electronic
wave number along the Geld. P is the $100) diameter of the Bril-
louin zone.

B. L110$ Aluminum

The $110jAl data have a different low field behavior
than that of the L100$ Al and the polycrystalline-Na
data.

The following characteristics, consistent throughout
the data, may be enumerated for the

l 110) direction:
(1) With highest gain, the helicon fringes are not

seen to disappear at an inQection point, although an
inQection point is found at lower 6elds.

(2) The structure in the vicinity of the inflection
point varies in Geld approximately' as the cube root of
the helicon frequency. This is the same behavior as that
observed for L1007 Al and polycrystalline Na, and is the
expected behavior for an absorption edge. (See the
Appendix. )

(3) The helicon behavior is found to be still essen-
tially' local down to the field for which the fringes dis-

appear, in contrast to the t 100$ data (see Fig. 8).

Especially from (3), we see that the helicon waves

disappear well before the absorption edge is reached in

1
110) as contrasted to the $100j direction. In order to

understand this diBerence with respect to crystallo-
graphic orientation, we now investigate the properties
of the aluminum Fermi surface when the magnetic Geld

lies along L110$.With the field along L110), the limiting

point of the second zone is a saddle-shaped surface. A
saddle-shaped surface does not have a point-limiting
orbit, but rather a figure-eight orbit of low BA/Okapi, so
that the first absorption edge will occur for other parts
of the Fermi surface.

Other second-zone orbits which are likely to have an
observable absorption edge are those for which BA/Bkn
has a maximum value. Jones" has given plots of the
area 3 enclosed by a cyclotron orbit as a function of
electronic momentum along the 6eld, for the 6eld lying
along L100$ and L110] in Al. We have numerically
differentiated these curves to obtain the BA/Bkn curves
shown in Fig. 9.

For the fmld along $100], the greatest value of
BA/Bkn for the second zone, aside from the "cap," is
about 77'Po of the free-electron curvature, 2skp. Since
only the absorption edge with the greatest curvature
will be seen by the helicon DSCR method, this lower
curvature will not be observed. The observed edge
occurs on the "cap" as discussed above.

In contrast, the second zone along L110] has no
"cap," but a saddle-point of low BA/Bkn. Hence, any
absorption edge due to second-zone carriers must come
from other orbits. Figure 9 reveals the unsuspected
result that a large fraction ( 50%) of the orbits on the
Fermi surface have the same value of BA/8k', and that
this value is higher than that for any of the other
second-zone orbits. The value of the curvature pararn-
eter for these orbits is calculated from the derivative
curve to be

R=0.52~0.02.

An absorption edge will occur because of these
electrons on finite orbits, unless a higher curvature
exists on the third-zone surface. Even if (12) is slightly
lower than the largest value found, it would not be
surprising to see vestiges of the orbits reRected in the
sample surface impedance, since such a large fraction of
the carriers come into cyclotron resonance simul-
taneously.

tA"e must next ask whether a curvature greater than
(12) exists in the third zone. The largest curvature will
occur on an arm of the third-zone surface, and has the
free-electron value in the SOP% modeP' of Harrison.
However, when the lattice potential is included, the
curvature is reduced. The minimum radius of curvature
p2 lies in a plane perpendicular to the intersection of the
two Brillouin-zone boundaries that cut out the third-
zone arm, and is strongly affected by the effects of the
lattice potential. The maximum radius of curvature of
the arm, p&, on the other hand, is not affected at all by
the two aforementioned Brillouin zone boundaries, and
only weakly affected by other boundaries farther oG in
k space. To 6rst approximation it will retain its free-
electron value, k p.

Ashcroft" has utilized the latest de Haas —van Alphen
data to calculate the principle cross section of the third-

~a. K. Jones, Ph l. Mag. 9, 2&7 (19|4).



DOPPLER —SH IF TED CYCLOTRON RESONANCE

zone arm for aluminum. We are indebted to Dr.
Ashcroft for very generously supplying us with more
extensive data from his machine calculations on
aluminum. From this data we have calculated p2 and
find:

ps= (0.31&0.01)kp. (13)

24 G. L. Korin, Zh. El~sperim. i Teor. Fiz. 41, 281 (1961)
t'English transl. : Soviet Phvs. —JETP 14, 201 (1962lg.

Taking p~—k p to first order, the curvature parameter
for the elliptic limiting point on the third-zone arm is
found to be

e.=—0.55. (14)

Thus, comparing (12) and (14), we find that the
maximum value of the curvature parameters for the
second and third zones is practically the same. The
absorption edges for the finite second-zone orbits and
the elliptic limiting point third-zone orbit are therefore
expected to occur almost simultaneously. It is just this
property' of the aluminum Fermi surface with the field
along [110] that we envoke as an explanation of the
observed differences compared to the [100] direction.
Calculations show that the real part of the effective
conductivity for helicolis for a point-orbit edge rises
with finite slope from zero at the edge, since the first
electrons contributing to the absorption are the small
number on a "point" orbit. However, for a finite-orbit
edge, a much larger number of electrons, on a finite
orbit, first contribute to the absorption edge, and the
real part of the conductivity suffers a discontinuous
jump from zero to a large value as the absorption edge
is reached. 4 '4 The effect of finite co,~ is to smear out the
absorption edge. It will be seen that the magnitude of
the attenuation near the edge (B&B~) due to finite
co,7-, will be much larger for the finite-orbit edge than
for the point-orbit-edge case. For a finite-orbit edge
such as in [110]Al, where such a large fraction of the
carriers come into resonance simultaneously, the effect
will be even more pronounced. This is in agreement with
the observed differences in the Al data: Along [110],
where the finite-orbit edge is expected to occur, the
fringes are not seen down to an "edge, "but disappear
as they enter the nonlocal region. The [100]direction,
with an elliptic limiting-point-orbit edge, allows fringe
detection down to the edge. We conclude that this
difference is a manifestation of the diRerent characteris-
tics of finite- and point-orbit edges.

For low values of cv, v-, it is difficult to accurately
determine 8 because the experimental coil-sample
configuration does not reQect either the purely resistive
or purely reactive change in the sample surface imped-
ance, but some combination of both. For low ~,~,
where the structure in 8 and X is much less pronounced,
care should be exercised (as discussed Sec. II) in assign-
ing the exact location of 8 within the observed struc-
ture. The best method for low ~,v is that used here in
the [100]Al case: observation of helicon fringes down

to, and their disappearance at, a structure (in this case
an inflection point).

Because of the above discussion of the effects of low
cu,r on the edge structure (o~,r 10 here), together with
the fact that the [110] fringes damp out before the
edge, we do not attempt a precise edge and curvature
determination for [110].We propose that the inflection
structure is a reQection in the rf coil impedance of the
sample surface impedance changes due to the DSCR
edge phenomena. As discussed in Sec. II, this structure
occurs at 8, not B~. For a finite orbit edge, the differ-
ence may be considerable, so that we do not assign Bz
to the inflection point in the [110]data, as was the case
for [100], because of the strong contrast in Fermi-
surface topology expected between [110] and [100].
Instead we can only assign 8 to the eicieiIIy of the
inQection structure.

While it is not possible to obtain the exact value of
the edge from our [110]data, it is possible to estimate
the order of magnitude of the [110]curvature. If the
edge is taken at the inQection point and the value of q~
estimated by extrapolation from the local regime, the
[110]data for 30 to 300 kc/sec yield a value

e-0.56 (15)

in surprisingly good agreement with the expected values,
(12) and (14). The closeness of the agreement is cer-
tainly fortuitous, considering the approximations
involved.

VI. CONCLUSIONS

The properties of the aluminum Fermi surface were
studied with the magnetic field along [100]and [110].
For [100],it was shown that the expected edge should
occur on a "spherical cap" with Gaussian curvature
close to the free-electron value. The experimental value
obtained was 0.99&0.03 of the free-electron radius of
curvature, in good agreement with theory.

For [110]Al, we have shown that an elliptic-limiting-
point orbit edge on an arm of the third-zone Fermi-
surface "monster, " and a finite-orbit edge due to finite
orbits involving a large fraction of the electrons on the
second-zone surface, are expected to occur almost
simultaneously. For this reason and the fact that co,v. is
low ( 10) for these edges, the [110]data are more
complicated and interpretation is dificult. We have not
attempted a precise interpretation for [110], beyond
showing that an estimate of the [110]curvature is in
surprisingly good agreement with the expected edge
values. Because of the uncertainties involved with a
finite-orbit-edge case and low co.v, a more precise
interpretation is neither warranted nor justifiable.

If material with suKciently high co,v-, on the order of
100 or more, can be obtained, the helicon-interference-
fringe method should allow measurement of both q
and qz, the latter being directly related to the Fermi-
surface curvature. If only q or B is obtained, as in the
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surface impedance method, caution must be exercised
in interpreting the data, since the difference between
these quantities and those directly related to the Fermi
surface curvature, q~ and Bg, is not expected to be
insignificant when finite-orbit edges are involved.

Although the helicon DSCR method can yieM valu-
able Fermi-surface information, the technique is not
very useful when high magnetoresistance, low co.r, and
complicated Fermi surface topology are present. Thus,
it is not likely that it will replace the more proven,
general techniques such as the de Haas —van Alphen and
magnetoacoustic methods for Fermi surface investi-
gations, though it could supplement these techniques.
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APPENDIX

carriers on an orbit defined by the intersection of the
Fermi surface and the plane k,=constant may be
represented by a Fourier series, so that the current from
the whole Fermi surface (FS) due to E; is

dJ'=
Fg 7L=O)

&~)e. ~~~c E pe~(p. ~ ~o+rlijt (19)

Note that open orbits, by their very nature, do not have
a cyclotron period and thus cannot generally be repre-
sented by (19). We thus restrict ourselves to Fermi
surfaces having no open orbits for the direction of 8
chosen.

Taking the nonlocal behavior into explicit account
by integrating over time from —~ to 0, we And

A;, i") (k,)E;p
dk,

i (q8,—or —rm, )—1/7

where we have taken s=8..3.

In general, co, is a function of k, :
o), (k,)= eB/m*(k, )=g(k,)B. (21)

With the definition 0,,=J,/E;p at t=O, plus the fact
that co(&cv, for helicons in metals,

q'= or/M pi~ (q), (16)

Proof that the absorption-edge Geld is proportional
to the cube root of the edge frequency in the limit of
GOc7 ~ ~ ~

From Maxwell's equations, the general helicon dis-
persion relation neglecting the displacement current is

Thus,

dk,

~'r'") (k.)g '(k )
&& . (22)

P(q/B) (8.(k.)/g(k, ))—I)+ i/~„r-

where o. (q) is the conductivity appropriate for helicons.
In the DSCR region, 0 is in general nonlocal in nature
and wave-number —dependent.

Because the condition co«co, is realized in experiment,
the condition for DSCR helicon absorption is, from (2)

COc= $8~. (17)

At the absorption edge, 8/r= (8/r), =ir/rr. With the
definition o),=eB/m*, as q

—+ q~ the edge condition
becomes

(eB@//r/ 'v~) = or@//p Imp (q@) . (18)

5 A. B. Pippard, Rept. Progr. Phys. 23, 1'76 (1960).

The dependence of 0(qs) on B may be found by
extending the impulsive method of Pippard" to include
nonlocal effects. We calculate the current component
dJ;set up by an impulsive electric field E;=E;oe'«' "')dt
in the presence of a steady Qe)d 8 along the s axis. A
factor e'I' is included to account for electron-lattice
scattering at times t(0, where ar, f))1 so that w is the
average scattering time around a given orbit.

For a general Fermi surface, the motion of a group of

where
Im~' (o q) I -.--=—(1/B)G(&)

i= q/B.

Imp. (O,q&) = —(1/B//) G (P&) .
This result, combined with (18), yields

B~~cog'~',

(25)

(26)

which was to be proved. It is good to reiterate the
conditions upon which (26) is contingent:

(1) Any general Fermi surface, so long as there are
no open orbits for the direction of B chosen.

(2) or, p —r op.

The diagonal terms of 0. are required by symmetry to
be even functions of B. As co,r —+ ~ the oG-diagonal
terms dominate since the diagonal terms are at least of
order B '. At the absorption edge, Eq. (3) shows that
i takes on the value

i e ——(2rr e/k) (( p)A/Bk/3 (,„)—', (24)

which is dependent only on the topology of the Fermi
surface. Thus,


