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The electronic structure of yttrium has been calculated at the equivalent of 6000 general points in the
primitive Brillouin zone using the augmented-plane-wave method. The density of states and the Fermi
surface are presented. The topology of the Fermi surface is discussed, and experimental results for de Haas-
van Alphen measurements are predicted. Wave functions have also been calculated for each of the occupied
eigenvalues, and these were used to study the angular distribution of radiation resulting from positron
annihilation in the metal. Few experimental results are currently available for comparison with this work.

I. INTRODUCTION

HIS is a theoretical study of the electronic struc-
ture of yttrium. It is based on augmented-plane-

wave (APW) calculations using the original method
proposed by Slater. ' The electronic structure of yttrium
is interesting because of the s-d character of the energy
bands. The atomic configuration of yttrium is 4d5s',
and it has a hexagonal close-packed crystal structure.
It is very similar to the heavier 4f rare earth metals
which have atomic con6guration 5d6s' and the same
crystal structure. Yttrium, however, is not complicated
by either magnetic or relativistic effects, and by study-
ing it we gain valuable information to assist in the inter-
pretation of results for the rare earths.

The report begins in the next section with some pre-
liminary remarks on procedure. The ingredients of the
APW calculation are briefly discussed. . Following this
the results are presented in two parts: the Fermi surface
and the Fermi sea, The second of these includes results
which depend on the eigenvalues and wave functions
beneath the Fermi energy, such as density of states and
angular distribution of positron annihilation radiation.
In the 6nal section these results are discussed; this dis-
cussion is necessarily brief because of the unavailability
of related experimental results.

II. PROCEDURE

The electronic structure was determined by an APW
calculation using 22 reciprocal lattice vectors in the
wave-function expansion. The 22 reciprocal lattice
vectors were chosen by a convergence study at sym-
metry points. They represent the minimum set required
for accurate results throughout the 1/24 zone for
energies below the Fermi energy. They are listed in

TABLE I. Reciprocal lattice vectors used in APW expansion.

('P) =iK,+JK,+SK,
(200) (211) (210)
(i00) (ii1) (iio)
(000) (011) (010)
(100) (111) (110)
(200)

(101) (111) (110) (101)
(ooi) (011) (010) (001)
(101

partitioned into 25 triangular microzones. All of the
states in each of these microzones were represented by
a typical centrally located point. This established a grid
of 250 distinct points in the 1/24 zone. The eigenvalues
below the Fermi energy were determined to 5-place
accuracy at each of the 250 grid points using the 22
APYV expansion. The expansion coefficients were also
determined for each eigenvalue by inverting the secular
equations. The muffin-tin potential used in these cal-
culations was constructed in the usual manner from a
superposition of atomic potentials' including exchange
in the p'~' approximation. The APW sphere radius is

Table I.The lower half of the primitive Brillouin zone
is shown in Fig. 1. The reciprocal-lattice basis vectors
are

Kt= (2sr/c) es,

Ks ——(2sr/a%3) (v3et+ es),
Ks ——(4sr/av3) e, ,

where e~, e2, and e3 are unit vectors in the x, y, and s
directions, respectively. The lattice constants a and c
are listed in Table II.

The 1/24 zone is outlined by points of high symmetry
and is shown in Fig. 2. For this calculation the 1/24
zone was divided into 10 layers. Each of these layers was

FIG. 1. Lower half of primative
Brillouin zone for the hexagonal
close-packed crystal structure with
the 1/24 zone outlined by points
of high symmetry.

Tsar,z II. Some parameters used in the APW calculation,
in atomic units.

Lattice constants a = 6.871 (s, .u.)
c=10.89

APW sphere radius 2 = 2.858

*Work was performed at the Ames Laboratory of the U. S.
Atomic Energy Commission, Contribution No. 1813.

' J. C. Slater, Phys. Rev. 51, 846 (1.937).
' D. Liberman, J. T. Waber, and Don T. Cromer, Phys. Rev.

137, A27 (1965).
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given in Table II. The results obtained from the eigen-
values and wave functions are presented in the following
section.

f= 374.1X10'Xextremal area, (2)

where the area is in a.u. ' and the frequency is in gauss.

IlL RESULTS

I. Fermi Surface

The Fermi energy was determined by arranging in
increasing order the eigenvalues from the 250 points in
in the 1/24 zone. Because there are 3 valence electrons/
atom and 2 atoms/unit cell, the lowest 750 eigenvalues
are occupied (each one accepting two electrons of oppo-
site spin). The highest occupied energy was 0.474 Ry.
The energy of the lowest state at F was 0.137 Ry which
yields a bandwidth of 0.337 Ry.

Intersections of the Fermi surface with the faces of
the 1/24 zone are shown in Fig. 3. Intersections with the
10 planes indicated on Fig. 2 are shown in Fig. 4. The
Fermi surface consists of two pieces: an electron surface
centered along the FA axis and a hole surface at the
edge of the primitive zone centered along the EH axis.
If spin-orbit interaction is neglected, the two pieces of
Fermi surface are in contact along the base of the zone
outlined by symmetry points AHI. . For this reason it is
convenient to display the Fermi surface using the
double-zone representation. By referring to an orbit on
the electron (hole) surface we shall mean that the orbit
encloses an electron (hole) region in the double-zone
representation.

A model of the hole region in this representation is
shown in Fig. 5. In the extended double-zone scheme
the hole region resembles an underground cavern. The
various levels of the cavern are connected by small
vertical shafts in the Qoors and ceilings along the A.H
axes. Alternate levels of the cavern have nearly Qat
Qoors and, ceilings joined by thick cylindrical columns
along the FA axes. On the other levels the columns are
much bigger and the walls are Quted; the ceilings and
Qoors are marked by occasional depressions. It will be
convenient in the discussion of orbits on the Fermi
surface to designate these two different levels in some
manner. Let us designate as level A the upper level in
Fig. 5. The lower level with the Quted walls and irregu-
lar Qoor and ceiling will be designated as level B.A cast
of the floor (or ceiling) of level 8 is shown in Fig. 6. It
is easier to visualize some orbits on the Fermi surface
by considering this portion of the electron surface. The
vertical shafts connecting A levels with B levels along
the EH axes are only partially shown in Fig. 6 at the
corners and in the center of the 6gure.

In the following paragraphs some of the extremal
cross sections of the Fermi surface and some possible
orbits will be discussed. The cross-sectional areas are
related to de Haas —van Alphen frequencies in the in-
verse magnetic field by

~Ml CROZONE

Fro. 2. 1/24th zone showing calculation mesh for general points.

It will be convenient to refer to de Haas —van Alphen
frequencies instead of the corresponding extremal area.

There are four extremal areas perpendicular to the
(0001) direction (along FA). There are two extremals
on the cylindrical columns in level A: one (call it n)
around the midsection and the other (call it P) corre-
sponding to layer 4 in Fig. 2. There is a third extremal
(call it y) around the midsection of the fluted column
in level B. These three orbits are on the hole surface.
The fourth extremal perpendicular to the (0001) direc-
tion (call it 6) is on the thin vertical shafts of the elec-
tron surface. These shafts extend between the two
levels A and B. The de Haas —van Alphen frequencies
corresponding to these extremal areas are given in
Table III. The shape of the orbits is shown in Fig. 7.

Perpendicular to the (1010) direction (along FM)
there is an extremal orbit which runs along the Qoor of

FIG. 3. Intersections of the Fermi surface with faces
of the 1/24 zone.
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FrG. 4. Intersections of the
Fermi surface with the planes
shown in Fig. 2.

level A from a point along the ML axis toward the verti-
cal shafts along the EH axes. The orbit passes down
these two adjacent vertical shafts and across the ceiling
of level B.This hole orbit is designated by e. With fields
suKciently large for magnetic breakdown the most
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FIG. 5. Model of the hole region in the double-zone representation.

TABLE III. de Haas —van Alphen frequencies predicted from
the Fermi surface of yttrium.

Magnetic field
direction

Orbits
Designation Type

Frequency
(10' 0)

(0001)

(1010)
(1120)

19' from (1120)
to (1010)

E.

8
K

X

hole
hole
hole

electron
hole

electron
electron
electron

hole
electron

46
35

149
3.1

33~
115
30
56

204
75

26 and 39 also possible.

probable orbit would have a frequency of 33)&10' G.
For low 6elds the spin-orbit splitting on the basal plane
APL would restrict the orbits to a particular zone and
two different frequencies would be possible: 26& 10' 0
for the erst zone orbit and 39X10 0 for the second
zone orbit.
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There are also open orbits in planes perpendicular to
the (1010)direction. One of these runs along the (1120)
direction (along IK) across the floor of level A connect-
ing points on the 3fl. symmetry axes without passing
through the EH axes. The other open orbit perpendicu-
lar to the (1010) direction runs along the (0001) direc-
tion. In the high-Geld limit this orbit extends down the
cylindrical column in level A (along the intersection of
the Fermi surface with the IXHA plane) and into
level 8 along the vertical shafts centered along the EH
axes. The orbit continues along the Quted columns in
level 8 and through the vertical shafts into level A
again. Without magnetic breakdown the orbit would
still be open but restricted to passing only through
level A or level 8.

There are several closed orbits perpendicular to the
(1120) direction (along I'E). There is an electron orbit
which passes along the Qoor and ceiling of level A
between neighboring cylindrical columns. This orbit
(call it t') follows the intersection of the Fermi surface
with the I'3fLA plane. A similar electron orbit (call it g)
exists on level 8.This orbit is easily pictured around the
middle of the "arms" of the electron surface shown in
Fig. 6. The corresponding de Haas —van Alphen fre-
quencies are given in Table III.

There is another extremal orbit on the "arms" of the
electron surface. This orbit is designated as 0 and passes
over four peaks as indicated in Fig. 6. Also there is an
extremal hole orbit which passes along the Qoor of
level A, down two vertical shafts which are symmetri-
cally located with respect to the VII axis, down the
walls of the Quted column in level 8, through the
vertical shafts in the Qoor and across the ceiling of
level A. This orbit is designated by a. As can be seen in
Fig. 7, it is a large orbit. It is possible, however, that
this orbit will not be experimentally observed. There
are not many neighboring orbits with approximately
the same area because of the limitation that the orbits
pass through the small shafts linking the two levels.

There is one additional extremal orbit which should
be mentioned. Consider an axis approximately 19' from
the (1120) direction toward the (1010)direction. There
is a plane perpendicular to this and passing through the
symmetry point M which cuts across four peaks of the
electron surface. This orbit is designated as X and is
shown in Fig. 6. The expected de Haas —van Alphen
frequency for this and the other extremal orbits are
given in Table III.

There are two open orbits in a plane perpendicular
to the (1120) direction. They both extend along the
(1010) direction and pass through adjacent ML axes
One of these passes along the floor (and ceiling) of
level A and the other similarly in. level 8.

2. Fermi Sea

The density-of-states curve is shown in Fig. 8. We
see that for the lower energies the density of states is
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FIG. 6. Model of a portion of the electron region in the
double-zone representation.

generally less than the free-electron value. At the higher
energies the more narrow d bands contribute a large
number of states, greatly increasing the density of states
above the free-electron values. At the Fermi energy the
density of states is 26.8 electrons/atom Ry. This y'ields
an electronic specifj. c-heat coeKcient of y=11.2X10 '
cal/mole deg'. In the same units the free-electron value
is 3.46)& 10 ' and the experimental result is 24.4&(10 '.'
The factor of 3.2 between the APW and free-electron
results is due to the d-band contribution. The factor of
about 2 between the experimental and APW results is
presuinably due to the electron-phonon interaction. An
APW calculation by Dimmock and Freeman4 for
gadolinium gave 7= 10)&10 4 cal/mole deg~. This was
also found to be 3 times larger than the free-electron
value and smaller than experiment by about a factor of
2. This points out the strong similarity between the
electronic structures of yttrium and the heavier 4f rare
earths. A further similarity can be seen in the density-
of-states curve for gadolinum given by these same
authors. 4

The electronic structure can also be observed in the
angular distribution of positron-annihilation radiation
from the crystal. This has been calculated using the 22

FIG. 7. Shapes of extremal orbits on the Fermi surface.

'H. Montgomery and G. P. Pells, Proc. Phys. Soc. (London)
78, 622 (196i).' J. 0. Dimmock and A. j. Freeman, Phys. Rev. Letters 13,
750 (1964).
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resulting angular distribution of annihilation radiation
is given in Fig. 11.
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Fzo. 8. Density-of-states curve for yttrium. Solid line is APW
result, and broken line is from free-electron model.

APW expansions for the electron wave functions and
the Wigner-Seitz model for the positron wave function.
The theoretical aspects of the method are discussed in
the Appendix. The Anal result is given in Eq. (A16). &n

the free-electron (free-positron) model only thefirst
term in this equation would be present. The other two
terms can be thought of as subtracting from. the free-
electron result the contributions from inside the APW
spheres and replacing them with the more realistic
orbital nature of the electronic wave function in the
ion-core region. These terms also take into account the
repulsion of the positron from the screened nuclear
charge. This effect can be seen in Fig. 9 where the nu-

merical solution for the positron wave function is shown.
The overlap between the electron, positron, and

photon wave functions in the ion-core region is given by
Eq. (A15). Typical results of this l-dependent function

(they also depend on the characteristic energy) are
shown in Fig. 10. It can be seen that the contributions
from large momenta and large arguments are relatively
small. This enables us to truncate the inner summation
over K in the second term of Eq. (A16). Only the 19
reciprocal-lattice vectors nearest a particular g were
included. In the third term only the 19 reciprocal
lattice vectors nearest the origin were included. The

IV. DISCUSSION OF RESULTS

There are no experimental results available which
relate directly to the Fermi surface of yttrium. Correla-
tion with experiment is possible only for the angular
distribution from annihilation radiation. The experi-
mental results of Williams and Mackintoshs are shown
in Fig. 11.There is agreement on the two main features:
the photon yield for small momenta drops sharply
below the free-electron parabola, and this is followed
by a hump due to the d-band contributions. The experi-
mental results are for holmium, but we have already
seen the strong similarity between yttrium and the
heavier 4f rare-earth metals. This similarity is even
more evident in our preliminary unpublished results on
the Fermi surface and density of states in holmium. "
The similarity between these experimental results and
the theoretical calculation is very gratifying for two
reasons. It shows that electron-positron correlation
(which was neglected in the calculation) apparently
removes from the experimental results very little of the
information about the electronic structure. The agree-
ment also lends support to the other theoretical results
and indicates that at least the general features of the
Fermi surface should be correct.

It is, however, possible that some of the more subtle
features of the Fermi surface will have to be modiied
when experimental data become available. The most
sensitive region is at the edge of the zone near the sym-
mentry points H and I.The energy bands in this region
are very Rat, and small changes in the potential would
be strongly rejected in the shape of the Fermi surface.
It is possible, for instance, that the vertical shafts along
the EH axes are not present. This would result in the
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FIG. 9. Numerical solution of positron @rave function in yttrium.
Eigenvalue is 0.791 Ry.

-20—

Fro. 10. Typical results for the function T~(p) de6ned
by Eq. (A15).

5R. W. Williams, T. L. Loucks, and A. R. Mackintosh,
Phys. Rev. Letters 16, 168 (1966).

"Footnote added in proof. Reference 5 contains more recent
theoretical results on holmium and experimental results for
yttrium.
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1.0

FzG. 11. Angular
distribution of radia-
tion from two-pho-
ton positron annihi-
lation. Solid line is
present result for
yttrium (c-axis orien-
tation); dashed curve
is free-electron (free-
positron) parabola;
dot-dashed curve is
experimental results
for holmium (Ref. 5)
(c-axis orientation).
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FIG. 12. Hypothetical unit
cell showing coordinate system
used in the Appendix.

outside the spheres, and

APW(k) =4m e'"'&'~'& P 2j&(kR)

ZONE ~
== ZONE 2 =- ZONE 3~

Z COMPONENT OF MOMENTUM

The probability that an electron with wave vector k
will annihilate with -a thermalized positron and yield a
photon pair with center-of-mass momentum y is pro-
portional to'

F (p,k) = P(k, r)P~(r) e '&'d'r—(A1)

where the integration is over the entire crystal. Here
tt (k,r) and P+(r) are the electron and positron wave
functions, respectively. In the usual rectangular slit
apparatus all photon pairs with a particular component
of center-of-mass momentum are measured, and the
yield is proportional to

-absence of the low-frequency de Haas —van Alphen
signal from the 8 orbit (See Fig. 5). Absence of these
shafts would also eliminate the e and I(, orbits as well as
the open orbit perpendicular to the (1010) direction
which runs along the (0001) direction.

inside the sphere at r„+e.Solutions of the radial
Schrodinger equation (regular at the origin) in the sphe-
rically symmetric electronic potential are denoted
U&(p). The dependence on the characteristic energy is
suppressed for convenience. In I'ig. 12 we show r„as
the lattice vector to the vth unit cell. ~ is a vector
pointing to the center of the APW sphere of radius E..
The radial coordinate centered on the APW sphere is
denoted by p. The expansion coefficients in Eq. (A3)
are determined in the usual manner from the variational
principle. The secular determinant is solved for the
eigenvalues, and for each of these the expansion co-
efficients are determined by inverting a set of simul-
taneous nonhomogeneous equations.

Since the APW's are based on the muffin-tin po-
tential, it is natural to approximate the positron wave
function in a similar potential. In the present calculation
a muffin-tin potential was constructed for the positron

+3O

+20

dp, dp„gF(p,k), (A2)
+IO

where
tt (k,r) =P Q, (g,k)APW(k+g),

APW(k) =e'"'
(A3)

(A4)

6 S. De Benedetti, C. E. Cowan, gl. R. Konneker, and
H. Primakoff, Phys. Rev. 77, 205 (1950).

where the summation is over all occupied states.
In order that our method will be applicable to metals

with energy bands of s-d character, the electronic wave
functions are approximated by a linear combination of
APW's. We write this as
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Fzo. 13.MuKn-tin potentials. Broken line is electronic potential
(with exchange) and solid line is positronic potential (without
exchange).
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kz Pz kz

SECOND ZONE

FIRST
BRIL LOU IN
ZONE

SECOND ZONE

FIG. 14. Cross section
of hexagonal close-
packed reciprocal lattice
with s direction taken
along the c axis.

using the same APW sphere as for the electrons. The
exchange contribution was not included in the positron
potential. The two muon-tin potentials are shown in
Fig. 13.In the region of constant potential (adjusted to
zero) the positron wave function is taken to be unity.
Inside the APW spheres it is the ground-state solution
to the radial Schrodinger equation (regular at the
origin) which satisfies the following boundary
conditions:

P~(R) =1 and P'~(R) =0. (A6)

The numerical solution for the positron wave function
is shown in I'ig. 9.

Next let us consider the volume integral in Eq. (A1).
Both the electron wave function and the positron wave
function have diferent forms inside and outside the
APW spheres. It is therefore convenient to express the
integral over the crystal as the sum of two contributions,
one from inside (V;) and one from outside (Vo) the
spheres. The contribution from outside the spheres is
found by extending the form of the wave functions in
this region throughout the entire crystal I cali this Vo

(crystal)) and subtracting the resulting contributions
from the regions inside the spheres Lcall this Vo

(spheres)). Equation (A1) can then be written

where the structure factor is given by

cell

S(K)= P e' '
spheres

(A12)

Using P+(p) to designate the numerically tabulated
positron wave function inside the spheres and taking
Eq. (AS) for the electron wave function, the contribu-
tion to the volume integral from inside the spheres is
given by

crystal

V,= P
spheres

2 e(a,k)4+(p)4~e*'"+"""+'
g

Ui(p)xg i'j, (ll+glR)
ltn U((R)

)(Yq *(k,)Y~ (p)e '&'d'r, (A13)

where kg is the unit vector along k+g. Expanding the
plane wave in spherical harmonics and using the
orthogonality relations between these functions, this
becomes

U()
T)(P)=Sr RP~(r) j)(Pr) dr.

U)(R)
(A15)

Equation (AS) can now be written (N has been
dropped)

V;=N p, px e(g,k)s(k+g —p—Ky(K)
XQg (2t+1)j)(lk+glR)T((p)P((k, p) . (A14)

For convenience the function T&(p) has been de6ned by

F(y,k)=
I V(y, k)l , (A7) V(p, k) =Op Qg e(g,k)8(k+g —y)

where

V(y, k) = V,+Vo(crystal) —Vo(spheres) . (AS)

Using P+(p) = 1 for p &~R and Eq. (A4) for the electron
wave function, it is easy to show that

Vo(crystal) =NQO Pg e(g,k)8(k+g —p), (A9)

where E is the number of units cells in the crystal and

Qo is the unit-cell volume. Using the same form of the
wave functions inside the spheres we And

crystal

Vo(spheres) = p p (ge,k) &'e+»g'd'r, (A10)
spheres g

where the integration is over a typical sphere. By
changing variables (See Fig. 12) this integration can be
centered on the spheres, and we 6nd

Vo(spheres) =N pz QK e(g,k)

4~R'j&(ER)
&(b(k+g —p—K)S(K) —,(A11)

Il"

+P, e(g,k) PK 8(k+g —y —K)S(K)

&&2 (»+1)j~(lk+alR)T~(p)& (k, p)
—Z e(g,k) g s( +g—p —K)s(K)

4 R~j, (RR)
(A16)

The delta functions appearing in Eq. (A16) can be
used to eliminate the two integrations and the z com-
ponent of the k summation indicated in Eq. (A2) pro-
viding that certain restrictions are placed on the re-
ciprocal lattice expansions P(g) and g(K). As an
example let us consider the hexagonal close-packed
crystal structure. The reciprocal lattice consists of
evenly spaced planes of hexagonal grids perpendicular
to the c axis. In Fig. 14 we show a cross section of this
reciprocal lattice with the z direction taken along the
c axis. For p, in the Erst zone (0 &~p, ~& ~/c) we can take
k.=p, . The erst term in Eq. (A16) then contributes to
N(p, ) in Eq. (A2) only if g, =0. The integrals over p,
and. p„eliminate the corresponding components of the
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delta function. The second and third terms in Eq. (A16)
can also be simplified. They will contribute to E(p,)
only if g, =E', and p;= k,+g,—It; for i =x and y. Thus,
for each term in the summation P (g) it is only neces-
sary to sum those reciprocal lattice vectors which have
the same s component. Similar remarks hold for p, in
the higher zones. By choosing k, and p, so that they
differ by appropriate reciprocal lattice vectors, it is
only necessary to consider k, in the erst Brillouin zone.
For instance, with p, in the second zone, it is possible
to take p, =k,—2sr/c (See Fig. 14). The 6rst term in

Eq. (A16) contributes to 1V(p,) in this case only if

g,= —2sr/c. The second and third terms contribute only
if E,=g,+2sr/c (the same relationships for p, and p„
given above still holding).
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Computer Simulation of Vacancy Migration*
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An idealized model for a vacancy in a crystal lattice which permits vacancy migration is presented. It con-
sists of a linear chain of atoms together with a substrate potential, with piecewise linear force laws between
nearest-neighbor atoms and between atoms and substrate. The predictions of the Vineyard equilibrium rate
theory are calculated explicitly for this model. A computer simultation procedure is described which repro-
duces some, although not all, of the statistical characteristics of thermal equilibrium. The jump rates
observed in the simulation agree reasonably well with those predicted by the Vineyard theory.

1. INTRODUCTIOÃ

HE process of thermally activated defect motion
in crystals presents a many-body problem of con-

siderable complexity. Its analysis requires (1) idealiza-
tion in the formulation of the mathematical model, in
particular regarding the nature of the interatomic forces
and (2) simplifying assumptions regarding the statistical
aspects of the process. In a direct comparison of a given
theoretical prediction with experiment it is frequently
dificult to separate discrepancies due to the idealiza-
tions of the 6rst class and those due to the assumptions
of the second.

In the present work we have undertaken the com-
puter simulation of the behavior of an idealized crystal
model. Since the interatomic force laws of the model
are precisely de6ned, there is no uncertainty in the
observed behavior to be attributed to this account, and
attention may be focused on the statistical aspects of
the problem.

Among the extensive theoretical treatments of defect
motion in crystals two distinct approaches, character-
ized in the literature generally by the terms equilibrium
and dynamical theories, may be distinguished. For a
description and comparison of these two types of
theories, the reader is referred to the literature' on the
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subject. We have chosen here to make a comparison of
the prediction of the equilibrium theory for an idealized
model, from the many-body viewpoint presented by
Vineyard, ' with the computer simulation results for the
same model. The most serious question which has been
raised regarding the Vineyard equilibrium theory refers
to the statistical aspects of the process during the period
in which the system has left the potential well and is
surpassing the saddle point. ' Accordingly, in the com-
puter simulation, the statistical criteria to be satisfied
were prescribed only for the period in which the system
was in the neighborhood of the well; the statistical
aspects of the motion when the system left the well
were then determined by the dynamics of the model
and could be observed. Also observed were the jump
rates, and these were compared with those predicted
for the model by the Vineyard theory.

The plan of this paper is as follows: The crystal
model employed is described in Sec. 2. It consists of a
linear chain of atoms containing a vacancy together

F. Seitz and D. Turnbull (Academic Press Inc. , New York, 1960),
Vol 10, p. 71; P.. G. Sbewmon, Dgusion in Solids (McGraw-Hill
Book Company, Inc. , New York, 1963).

~ G. H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).' S. A. Rice, Phys. Rev. 112, 804 (1958). The author states his
view as follows: "A major point of departure between Vineyard's
treatment and that presented herein is that Vineyard's treatment
is in the sense of transition state theory and still makes use of
the assumption that the state at the top of the col is su%ciently
long-lived to permit the definition of thermodynamic functions.
The author cannot prove or disprove this assumption, but his
personal prejudice is that it is not accurate for the case of
di6usion. "






