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Optical Modes of Vibration in an Ionic Crystal Slab Including Retardation.
I. Nonradiative Region*
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The optical modes of vibration in an ionic crystal of Qnite thickness are found for wavelengths long com-
pared to the interionic spacing. Retardation of the Coulomb interaction between the ions is included by solv-
ing the complete set of Maxwell's equations for the electromagnetic 6elds. Only the nonradiative modes,
which have exponentially decreasing Qelds outside the slab, are discussed. The theoretical dispersion curves
for various classes of modes in selected thicknesses of LiF are shown and are compared with the dispersion
curves occurring without retardation.

I. INTRODUCTION
' 'N a previous paper' we determined the long-wave-
~ ~ length optical-mode frequencies for an ionic crystal
slab, neglecting the effects due to the retardation of the
Coulomb interaction. The frequencies were determined
as a function of the wave-vector component k parallel
to the slab (Fig. 1), rather than the three-dimensional
wave vector it as in the case of an infinite crystal. We
found that the longitudinal modes are all at coL, the
usual k 0 longitudinal optical (LO) frequency in an
infinite crystal, and that a series of transverse modes are
at cor, the usual transverse optical (TO) frequency. In
addition there are two optical branches having ex-
ponential s dependence inside the slab. The frequencies
of these "surface" modes are at orT and coL for k =0,
move together as k increases, and approach a frequency
between tor and toL when k)) to/Tc.

We have now extended the calculation to take account
of retardation. The dispersion relation for long-wave-
length phonons in an infinite crystal, when retardation
is included, no longer consists of two parallel straight
lines (to=coL, co=coT), but is given by the expression
k'= ego'/c', where e(co) is the frequency-dependent dielec-
tric constant. ' This dispersion relation describes the
coupled phonon-photon system instead of simply the
phonon system alone. A similar coupling between
phonons and photons and a corresponding alteration of
the dispersion relation occurs in a slab. The finite
thickness of the slab, however, causes the modes to fall
into two classes: (1) nonradiative modes with expo-
nentially damped fields outside the slab, and (2) radia-
tive modes, with incoming or outgoing waves outside
the slab. In this paper we restrict ourselves to the
nonradiative modes, which, in the case of a crystal with
no intrinsic damping (e real), are true normal modes in
the sense that they persist forever after being initially
excited. The radiative modes are not true normal modes
since they are highly damped even when e is real. A
discussion of the radiative modes and their relation to

*Work was performed at the Ames Laboratory of the U. S.
Atomic Energy Commission. Contribution No. 1823.

' R. Fuchs and K.. L. Kliewer, Phys. Rev. 140, A2076 (1965).' M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Oxford University Press, London, 1954), Chap. II, Sec. 8.

the optical properties of the slab will be published in the
future.

In the following section we derive the dispersion rela-
tions for the nonradiative modes in the wavelength
region X&)ro where ro is the interionic spacing. The
treatment is similar to that of Sec. III in Ref. j.. By
using Maxwell's equations written in terms of macro-
scopic fields and polarization, the local electric field at
a given ion can be expressed as an integral over the
polarization at distant regions of the crystal. By writing
the equations of motion for the ions in terms of these
expressions for the local fields, integral equations for the
polarization are derived. The frequency-dependent di-
electric constant emerges at the end of the derivation.

In the Appendix we present an alternative derivation
of the dispersion relations. In this method, we initially
relate the field at a given point to the polarization at the
same point by the dielectric constant; there is no longer
an integral over the polarization at distant points. The
problem reduces to a very simple application of Max-
well's equations with the usual boundary conditions at
the surface of the slab. The equivalence of these methods
is closely related to the Ewald-Oseen extinction
theorem, ' which states that if one superposes the radia-
tion fields of induced dipoles in a dielectric and the field
of a primary plane wave, where all fields propagate with
the velocity c, the primary wave is cancelled exactly by
part of the dipole fields and the resultant field is a plane
wave propagating with the velocity c/Qs.

v E= —4~v P,
v B=o,

v sr E= —(1/c)(c)B/ctt),

v &B= (1/c) (ct E/et t)+ (4s/c) (BP/ctt),

(2 1)

' M. Born and E. Wolf, Principtes of Optics (Pergamon Press,
New York, 1964), 2nd ed. , Sec. 2.4.
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II. NORMAL MODES

In this section we investigate the optical modes of
vibration of the ionic crystal slab sketched in Fig. 1 for
wavelengths large compared to the interionic spacing.
The inclusion of retardation requires a solution of the
full set of Maxwell's equations which we write here as
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Z )i Working in the Coulomb gauge where V A=O, the
equations determining the potentials are

Z=Q

and

C(x,t)=— V P(x', t)
dS)

ix—x'i
(2.4)

1 B'A 1 (BC 4s BP
v'A ——

cs Bts c (Bt c Bt
(2.5)

FIG. 1.Diagram of the coordinate system and various parameters
used in discussing the ionic crystal slab.

and
p= —V.P,

J= (BP/Bt).

(2.2)

(2.3)

We shall in this section carry out the calculation via the
determination of the potentials A and C as ordinarily
dehned.

where E and B are macroscopic Gelds and P is the
polarization. The charge density p and the current
density J are clearly given by

Orienting the crystal such that the component of the
wave vector in the y direction is zero, we write P(x,t)
and C(x,t) as

P(x, t) =P(s)e'"**e—*"'

t (x,t) =C (x)e '"'.
(2.6)

(2 7)

The deterniination of the contributions to the electric
field from the scalar potential in the Coulomb gauge
when retardation is included is equivalent to the calcu-
lation of the electric field without retardation. The
latter has been carried out in detail in Ref. 1, so the
calculation will only be sketched here.

Using Eq. (2.4) the contribution of the bulk of the
crystal to the potential is

e(x) ~~ ———e"** $ik~, (s')+dP, (s')/ds' je'~

((~—*')'+(y—y')'+(s —s')'j'" (2.8)

Since the derivatives concern us here we need to evaluate, for example,

which is equal to

BC (x) —eik~x
haik~, (s')+dP, (s')/ds' j(x x')e'"*&*' *&d—'x'

t (*—~')'+(y —y')'+(s —s')'l"' (2.9)

BC (x) = —2~ie"**
dP, (s')-

e
—'~'-"~ ik,P,(s')+ ds'.

ds
(2.10)

After adding the surface polarization charge and integrating the bulk term by parts we find, inside the slab,

where

BC (x)

in

G(s,s')P.(s')ds' i—
(G, s)s=2 ske '*~* "~

G( ,s)s=2vr ke
~ &" *'

2' e
—~.&z—z &

)

G(s,s')P,(s')ds'

s'& s;
s&s'.

(2.11)

(2.12)

Similarly, we find

and

BC (x)

in

=0 (2.13)

BC (x)

BS in

a a

G(s,s')P, (s')ds' —i G(s,s')P.(s')ds'+4~P. (s) (2.14)

the last term in Eq. (2.14) arising from the special treatment necessary for the region s~s'.
In the present case the 6elds outside the slab are also of importance. [In the following equations, (2.15—2.28),

when discussing the fields outside the slab, the upper sign or symbol is to be taken for s&a, the lower one for
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contributions ares( —u.]The scalar potential c

out
Iz S ZSG s s')P, (s')ds'W4 G(s, s P,7

~I a
(2.15)

and
~S out

—~i&zx G(s,s')P, (s')ds'Wi
—a

C(s,s')P, (s')ds' (2.16)

out

=0. (2.17)

~ ~'
er the. vector potential. WritingLet us now consider t e. v

A(x, t) = s e'ikzsg iQ 8

s from Kq. (2.5), arethe equations for A (s), rom
(2.18)

and

ZCO' l~ ()I
&ds' J c

G(z,s')P,(s')ds'
4xia)

G(s,s')P, (s')ds'+ P (s), (2.19)

G(s,s')P, (s')ds'W— G(s,s')P, (s')ds', (2.2O)

where

The solutions of these equations are
~ =+(P 2 ~2/gm)1/2 (2.21)

ZC

A, (s) i; =C7e—&'+C4e &'—— G(s,s')P.(s')ds' G(z,s')P, (s')ds'

—f 0'(s,z')P. (s')ds', (2.22G'(z, s')P, (s')ds' — ', ', ' ' 2.22
CO a

A, (s)

where

&c kc„iout 9

C

G(s,s')P (s')ds'W
M a

G(s,s')P, (s')ds', (2.23)

a tz—z'tG'(s, s') = 2~+,e

s'&s,6'(s,s') =2~k,e—4
'—

—np(z —z')
~8

s and A, (s) becomeve the expressions for A„(s anconstants. Proceeding as above, e exand the C; are integration constan s. r

(2.2C)

GO

Cl6&"'—&-Ay(s) ~;.= Cg4e— G'(s, s')P„(s')ds', (2.25)

(C4i 'C4.() (2.26)

ZCa.(s) ~;„=C,4e-.o +C~,e.o*— G(s,s')P,(s')ds' —— G(s,s')P.(s') ds'

is- 4'+i (e o+i—
C )C4q

A(s) =
i e

out ll

k'c
z

0!p GD

G(s,s')P, (s')ds'W—

G'(s,s')P,(s')ds'+—

G(s,z')P, (s')ds'.

G'(s,s')P.(s')ds', (2.27)

(2.28)
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C

Cg= 2zinp—
0)

ik,
e '*' P (z')+ P (z') dz'

0!p

c ik
C10=22rinp e—'" P,(z') — P,(z') dz',

M Ap

so that the electric field components within the slab
become (we write E(x,t) = E(z)e'3**e '"')'

Having now equations for the potentials, it is a straight-
forward matter to obtain the fields. Applying the
boundary conditions B continuous, E, and E„con-
tinuous, and E,+42rP, continuous, at z=&43, gives
12 equations with 18 arbitrary constants. The require-
ment that V A=O means, however, that Cii=ik, CO/np,

C12 3k F10/&oy C3 3kxC1/430' C4 34C2/420) C14
= ik C7/ap arid. C]3= ik Cp/np so that we are left
with 12 undetermined constants.

Because of the manner in which the crystal was
oriented, the remaining equations split into two groups,
six associated with the x-s directions and six associated
with the y direction. We consider these two cases
separately. In addition, since we are considering the
nonradiative region in the present paper, o.p is real
or (k. ( )40/c.

x and z Directions

In order that the fields remain finite as
~

z~
—& ~, we

must have C2=C9 ——0. This in turn means C7=C8=0
and

where n is the density of ion pairs. Using Eqs. (2.6)
and (2.29) through (2.32), the equations for the polari-
zation are finally

G'(z, z')P.(z')dz'

and

+i G'(z, z')P, (z')dz', (2.33)

R,P.(z) = G'(z, z')P, (z')dz'

where

+i G'(z, z')P.(z')dz', (2.34)

R,= (ti/ne') (po p' 002) —42r/3—,

R,= (t4/ne2)(4002 —402)+82r/3. (2.35)

d'P /dz'= [n ' 42rp)2/R c'j—P (2.37)

The term in the brackets can be written, using Eq.
(2.21), as

For E, and E, not equal to zero, we can obtain a differ-
ential equation for P,(z) by differentiating Eq. (2.33)
twice and then replacing dP, /dz by the derivative of
Eq. (2.34). The result is

R,d'P, /dz'= (np R2+4m.np2

—42rk 'R /R, 162r2k '/R. —$, (2.36)

which can be simplified to

E,(z) =—

and

G'(z, z')P, (z')dz'

a

+i G'(z, z') P,(z') dz', (2.29)

k,'—(402/c2) (1+42r/R, ),
but 1+42r/R, is just the expression for the dielectric
constant without damping,

0= 1+(42rne2/ti) (4002—002—42rne2/3t4) '. (2.38)

E,(z) = G'(z, z')P, (z')dz'

+i G'(z, z')P (z')dz' —42rP, (z) . (2.30)

u(x, t) = P(x, t)/ne, (2.32)

Defining u(x, t) as the relative displacement of the
positive and negative ions,

u(x, t) =u~(x, t)—u (x,t),

the equation of motion within the slab is

t482u(x, t)/Btp= —t44002u(x, t)
+eLE(x,t)+42rP(x, t)/3j, (2.31)

where p is the reduced mass and cop is the mechanical
frequency arising from the short-range repulsive inter-
action. The term 4n-P/3 is due to the local field correc-
tion. Assuming, for simplicity, that we are dealing with
point ions (0„=1),

(2.39)n=+(k '—001'/c')' '

Eq. (2.37) becomes

and thus
d'P. (z)/dz'= a2P.(z)

P,(z) =Kie~'+Kpe

(2.40)

(241)

where E& and E2 are integration constants. From Eqs.
(2.33) and (2.34) we find, in addition,

ik, dP, (z)
P.(z) =— ik,

(K,e ~—Kpe—~) (2 42)

Using Eqs. (2.41) and (2.42) in the integral equations
(2.33) and (2.34) yields terms which depend on z via
e+ ' and e+ 0'. The terms containing the factors e+ '
cancel, while equating the coefficients of the factors
e+ o' to zero individually gives a pair of homogeneous,

Note that the dielectric constant has not been inserted
at any point, but has arisen naturally in the develop-
rnent. Defining
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F 2 The frequencies of transverse optical
surface modes, as a function of k„T.

IG.

quantity ATJ. (a) High-frequency modes; (h)
low-frequency modes.
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Suppose n is real. Then the upper sign yields

e= —(n/np) tanhna

with Ei——E2 and

"a" and "b" inshown b the sets of curves labeled a
of th l b thi 1 k I. h

linear equations in E& an 2. e c
Fig. 2 for three values o e sbe a solution is
kr= ppT/c.

co —+ 1.87S, a frequency corresponding
= —1. The most signihcant effect o re ar

no Xe '&e
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d o h d

for small values o,. i
high- and low-frequency sur ace mo

s shown in Fig. 2(b) of e .
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P (s) ~ i(k./—u) coshcrs.
h s the frequencies of both branc pp

z S s
T u )res onds to 4 —&AT. For t '

yhickcr stas e ow-The lower sign in (2.43) corr p
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d k 0 (2.47),

' lo' fl dL, o y
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we identify them as surface modes.

.44 and (2.46) determine the surface p, ~ —s cos
k d have been p ~coshk, s~1,P, ~ —s

LF. Ao
s a function of „an a
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al or arallel to the slab.re lac»g Eq. (2.3g) by esther norma or ppo a

the expression

and (2.47). If the thin slab is charact
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s. ( . 4) (2. 6) he high- and k,L&«L« .
s ecti el and ale only the frequenciesl -f uency surface modes, respective y,

0 P const) or (P, const, P, , as

ow- reque

(1960). are P,'H. Bilz, L. Genzel, and H. Happ, . yZ. Ph sik 160, 535
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localized at the surfaces, and P,«P for both the high-
and low-frequency modes. In the limit k &)kT the effects
of retardation vanish; i.e., the magnitudes of P, and
P, become equal, as they are without retardation.

The surface modes are transverse, in the sense that
the polarization is solenoidal (V P=O). It is, however,
interesting that these transverse modes interact with
conduction electrons as a consequence of both the Gnite
size of the slab and the inclusion of retardation. First,
consider the effect of the Gnite size. The electron-phonon
interaction energy is proportional toJ'P E „dsx, where
E „is the vacuum field of the condution electrons. If
V P=O, this volume integral vanishes only when the
crystal is inGnite; in a Gnite crystal the volume integral
can be transformed into the nonvanishing surface
integral —J'PP ds, where E „=—Vp. In particular,
this shows that electrons interact with the low-frequency
surface mode in a thin slab, for which P, predominates.
In addition, retardation directly causes an electron-
phonon interaction through the presence of the mag-
netic Geld.

The types of modes and the regions in the k,—co

plane where they occur can be shown conveniently by
drawing the curves tu=k, c(ere ——0) and tuQe=k c (et=0),
which define the boundaries of the regions (Fig. 3). The
nonradiative regions, with Gelds approaching zero ex-
ponentially at inGnity, are characterized by real cxo ol
k, ')oi'/cs; they lie to the right of the line ns=0 and
are labeled L~, I.j', 1.2, and E. The regions are further
distinguished by the value of tr. If n is real or k,') c0's/c',
there exist the "surface" modes which we have just
discussed; these lie to the right of the curve n=0 in the
regions X or I.s. Equations (2.44) and (2.46) imply that
solutions exist only if e(0 (region I.s); the regions
marked E, for which e)0, contain no solutions.

kx

kT

are without retardation. However, when k, approaches
its lower limit kT, then cv~orT, e~ —~, and o. —+~.
Thus ns becomes large, the polarization becomes

FxG. 3. Regions in the k„-co plane for which different classes of
transverse optical modes exist. The curves have been drawn for
LiF, in which raT=5.78&(10" sec ' kT=(dT/c=1. 927&(10' cin r

60=9.27, and e„=1.92. Radiative solutions exist in the regions R,
and nonradiative (localized) solutions, in the regions I. The.
subscripts 1 and 2 denote, respectively, sinusoidal and real ex-
ponential solutions inside the slab. There are no solutions in the
regions lV.

m=5
m=2

.99—

Fzo. 4. Low-frequency, transverse,
optical, xs-polarized modes for a
thig, slab with sinusoidal solutions
inside the slab. Note that this graph
shows only a very small portion of the
k, -co plane near co=coT and k =kT.

.985—

,99 l.OI

kg /kT

l

1.05
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with

e= (p/ns) tanpa, (2.49)

If, on the other hand, o. is imaginary, the solutions
inside the slab are oscillatory. The regions in Fig. 3 in
which oscillatory solutions exist are designated by L&
and Lr'. Thus, if we take n=iP, the condition (2.44) that
there be a solution becomes

l.o

I
I

/ rsvp
= k

&
C

/

20
I6

—12

IO

E,(s) cci sinps,

P,(s) ~ —(k,/P) cosPs,

and Eq. (2.46) becomes

e= —(p/np) cotpa,
with

(2.so)

(2.s1)

4)IN T

.6

p, (s) ~ cosps,

E,(s) ~ —i(k,/p) sinps. (2.52)

For LiF the solutions of Eqs. (2.49) and (2.51) which
lie in region L~ are shown for a thin slab in Fig. 4 and
for a thick slab in Fig. 5, defining thin and thick with
respect to the thickness corresponding to kTL= 1.These
modes correspond to the To modes which occur at AT
without retardation; with retardation the frequencies
lie below AT and depend on k,.' More explicitly, without
retardation the TO modes occur for p= m7r/L, i.e., there
is an integral number (m) of half-waves across the slab. '
With retardation the modes can still be labeled by a
positive integer m; however, P(m7r/L, so that there is
somewhat less than an integral number of half-waves
across the slab because of the existence of exponentially
decaying fields outside the slab. The modes with odd
and even values of ns are solutions of Eqs. (2.49) and
(2.51), respectively. From Figs. 4 and 5 it can be seen
that only the m=1 mode begins at k,=O, or=0; the
other modes begin at nonzero frequencies satisfying the
equation PL=(r/r —1)s on the line cv=k,c. If k,))kr,
t0 —+ ~r for all modes For a th. in slab (Fig. 4) the modes
with m) 1 are crowded closely near AT, but for a thick
slab (Fig. 5) they extend over the entire frequency
range below AT.

Equations (2.49) and (2.51) also have solutions in
region L&' (Fig. 6). The high-frequency sinusoidal modes
exist only when retardation is included. The m = 1 mode
begins on the line or =k c at the frequency or= 2.998or T

for which &=1, and the other modes begin at higher
frequencies satisfying the equation pI.= (m —1)rr. The
modes in a thin slab (kTI.=0.1) are difficult to show in
a figure having the scale of Fig. 6, since the m= 1 mode
follows the line or =k,c very closely, and the m =2 mode
begins at a relatively high frequency, or=32.88coT. A
thick slab, on the other hand, contains modes closely

spaced in frequency. Both the low- and high-frequency
sinusoidal modes in regions L~ and Lj' can be considered
as electromagnetic waves with an angle of incidence
within the slab greater than the angle for total internal
reliection, so that the waves are con6ned to the interior
of the slab.

The complicated behavior of the sinusoidal modes in
regions L& and L&' is partly a consequence of the fact
that or is shown as a function of k,. If we let k, be
the magnitude of the wave vector inside the slab
(k,'=k, '+P') and use Eq. (2.39) with n=iP, we find
that

k.'= co'e/cs, (2.53)

i.e., the or versus k, dispersion relation in the sinusoidal

0 I I I I I I I

0 .2 4 .6 .8 I.O I.2 I 4 l.6 l.8
k„/

Fn. S. Low-frequency, transverse, optical, xs-polarized modes for
a thick slab with sinusoidal solutions inside the slab.

' That all these modes have frequencies below AT can be seen as
follows: The equations for the surface modes were obtained con-
sidering R &0. If R =0, corresponding to co=coT, R,=4' and
(2.36) becomes 0=no'I„—k,s. This equation clearly has no
rigorous solutions. However, for k ))kT it is satis6ed approxi-
mately, indicating that the mode frequencies approach coT in the
high k limit.

I

IO II
I I I I I I

2 5 4 5 6 7 8 9 12

ka /kT

Fxo. 6. High-frequency, transverse, optical, xs-polarized modes
for a slab of intermediate thickness (kTI =s) with sinusoidal
solutions inside the slab.
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region is identical to that in an infinite crystal, as it
must be. From this point of view, the finite size of the
crystal makes the allowed values of co and k, discrete
rather than continuous and gives rise to standing waves
rather than traveling waves in the s direction.

If PL«1, the expressions (2.50) for the polarization
for the odd-m, modes become I', 0, P, const. This
limiting behavior occurs only for the low-frequency
m = 1 mode as k+ —& 0 and for the high-frequency m= 1
mode as k, ~ 2.998kT.

For all of the sinusoidal modes, just as in the case of
the surface modes, the ionic motion is transverse in the
sense that V P=O, but they can interact with conduc-
tion electrons because of the finite thickness of the slab.

Suppose that R,=O or M=~z, . Then, since R = —4m. ,
differentiating Eq. (2.33) yields

now that C6——C~7 ——0, from which C~5 ——C~6=0 and

2'"gd
e o'I' ds

ApC

2X'ZGD

&
—0;Os'P d&~

(XpC a

(2.62)

The electric field E„is given by

2' Q)

p
(Xp C a

2 2
G'(s,s')P„ds', (2.63)

so the equation determining the polarization becomes

2xo)'

dP /ds=ikN. . (2.54)
Rj'„(s)= G'(s, s')P„(s')ds'.

(Xp C

(2.64)

Assuming

P K ez7zzz+K e zkzz— For R WO, Eq. (2.64) can be converted to the differ-
ential equation

where k, is a parameter to be determined, we then have d'P„/ds'=n'P„ (2.65)

P =(k /k )(Kpe"~" K4e '~* )—z
Writing P„as

2.56
Pp ——Kpe"+Kpe—' (2.66)

~ikza ~~
—ikza (2.57)

Putting these expressions into the integral equations
(2.33) and (2.34) yields terms with a s dependence of the
form e~'~" or e+ O'. The terms containing e+ 0' cancel,
while equating the coefficients of e+'~" to zero yields
once again a pair of linear homogeneous equations for
E3 and E4. The condition that a solution exists becomes

n e We')

np e--We-1 ' (2.67)

and using this expression in the integral equation (2.64),
there results a pair of equations for E5 and Kq. The
condition that these equations have a solution is

Using the upper sign means 1=—(n/np) tanhna, (2.68)

cosk,a=0, or k,a=m7r/2, m=1, 3, 5. . (2.58) with Kp=Kp~ and

P,(s) ~ cosk,s,
P,(s) ~ i(k,/'k, ) sink, s. (2.59)

The slab is an integral number of half-wavelengths thick
and K3——E4, so that

1=—(n/np) cothna, (2.69)

with Kp Kp.z Clearly ——E—qs. (2.68) and (2.69) have no
solutions for o. real. However, if we again make the
replacement u=iP, Eq. (2.68) becomes

The lower sign in Eq. (2.57) corresponds to
1= (P/np) tanPa, (2.70)

sink, a=O, or k,a=m7r/2, m=2 4 6 . . . (2 60) while Eq. (2.69) becomes

The slab is again an integral number of half-wavelengths
thick and E4———E3, so that

P,(s) ~i sink, s,
P,(s) ~ (k,/k, ) cosk,s. (2.61)

Thus, as anticipated, these longitudinal optical modes
are identical to those without retardation.

y Direction

The treatment in this case is much like that for the
x-s directions and thus will be abbreviated. The con-
dition that the fields remain finite for ~s[~~ means

1=—(P/np) cotPa. (2.71)

Since R =0 implies I'„=0, there are no solutions with
CO= GOL.

Figure 7 shows the frequencies of these sinusoidal
transverse modes as a function of k, in the region I.~,

for a thick slab. The most significant difference between
the y-polarized and the xs-polarized modes shown in
Fig. 5 is that the dispersion curves leave the line co=k c
much more rapidly for the y-polarized modes, although
the starting points are the same. The y-polarized modes
in a thin crystal (k rL =0.1) are similar to the xs-polarized
modes shown in Fig. 4. However there is again the
difference, most significant for the m=1 mode, that the
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First consider longitudinal optical modes with ~=0
and op=a&L. From Eqs. (A4), (AS), (A6), and the con-
tinuity of B, it follows that 8=0 everywhere and E=0
outside the slab. Equation (A3) gives the result E„=0.
Since E and pE, are continuous at s=a, E,(a) =0 and
pE, (a) =0 E,(a) =0 or E,(a) AO. If we try E,(s) =A
Xcosk,z, Eq. (A2) gives E,(z)=i/1(k, /k, ) sink, s. The
condition E,(a)=0 implies k,a=mor/2 with ms=1, 3,
5, . If E,(z)=/1 sink, s, then E,(s)= —iA(k, /k )
&&cosk,z, where k,a=eor/2, no=2, 4, 6, . . . These
solutions are identical to those given by Eqs. (2.58)
through (2.61).

Now consider transverse optical modes, with &NO. If
B„and E, are eliminated from Eqs. (A2), (A4), and
(A6), the result is

and
dE,(.)/dz= —ik,E.(z),

d'E, (z)/ds' —n'E. (z) =0,

(A7)

(AS)

0
0 .8 l.0 l.2 l.4 l.6 I.B

k„ /kT

where co'=k, '—op'c/c'. The solutions to (A7) and (A8)
inside the slab are

FIG. 7. Low-frequency, transverse, optical, y-polarized modes
for a thick slab with sinusoidal solutions inside the slab.

—gczz~g —crz
7

E,= —i(k./n) (e-a e
—-) (A9)

dispersion curves for the y modes do not remain close
to the line co=k,c.

The s dependence of the polarization I'„ for the y
modes is similar to that of I', for the xs modes. Since
I'„ is parallel to the surface, however, the y modes
make no surface contribution to the electron-phonon
interaction.

g ~
—npz

E,= i(kg/np)/I e o', (A10)

where cop' ——k '—ops/c'. The requirement that E, and D,
be continuous at s= a yields the condition

Outside the slab, for s)a, we take exponentially de-
creasing solutions

APPENDIX: DETERMINATION OF THE
NONRADIATIVE MODES USING THE

DIELECTRIC CONSTANT

If the fields are written in the form E= E(z)e'&~*~"'~

and 8=8(z)e""~ "",Maxwell's equations become

dE„(s)/ds = (i/co)pB—,(s), (A1)

dE, (z)/dz ik~, (z) = (iop/—c)B„(z), (A2)

ik~„(z)= (ipp/c)B, (s), (A3)

—dB„(s)/ds = —(iop/c) pE.(z), (A4)

dB,(z)/dz ik,B,(z) =——(iop/c) pE„(z), (AS)

ik j3„(z)= —(iop/c) eE,(z), (A6)

where e = 1 outside the slab and e = e„+(pp —e„)/
(1—cv'/op T') inside the slab.

0. (e 'We ')
n, &e--We-) '

which is identical to Eq. (2.43). If n=ip, Eqs. (2.49)-
(2.52) follow immediately.

By combining Eqs. (A1), (A3), (A5), we find

d'E (s)/ds'+P'E„(s) =0, isa (a,
d'E„(z)/dz' nE„p(—)=z0, s)a. (A12)

1=—(P/np) cotPa for E„=sinPz,

1= (P/np) tanPa for E„=cosPs,

as in Eqs. (2.70) and (2.71).

(A13)

Taking solutions of the form E„=sinPz or E„=cosPs
for

~

s
~
(a, E„=/le o' for s)a, and using the continuity

of E„and 8, at a=a, we get the conditions


