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Generation of Ultrasonic Second and Third Harmonics Due to Dislocations. P
A. HIKATA AND C. ELBAUM

Brown University, Providence, Rhode Island
(Received 16 August 1965)

By representing the eRective-tension term of a dislocation (string model) as a power series in displacement
gradients, and retaining the Grst nonlinear term, expressions for the amplitudes of the second and third
harmonics of an ultrasonic wave introduced into a solid containing mobile dislocations are obtained. In the
case of the second harmonic, a lattice term, a dislocation term, and a cross term contribute to the amplitude
and all three terms can be of comparable magnitude. In the case of the third harmonic, in a solid containing
a reasonable density of mobile dislocations, the dislocation contribution to the amplitude is dominant and
usually lattice sects can be neglected. Except in special circumstances, it is dif5cult to separate the three
terms that contribute to the amplitude of the second harmonic, and dislocation dynamics, therefore, are
more easily studied through the generation of third harmonics.
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~HEN a sinusoidal ultrasonic wave of a given fre-
quency and of sufficient amplitude is introduced

into a nonlinear or anharmonic solid, the fundamental
wave will distort as it propagates, so that the second,
third, and higher harmonics of the fundamental fre-
quency will be generated. In many solids the non-
linearity of the stress-strain relation (deviation from
Hooke's law) may arise from two causes. One is the
anharmonicity of the lattice which is a characteristic
of all solids, and the other is the contribution of the
nonlinear part of the stress-strain relation for disloca-
tion displacement; this cause applies to solids in which
glide motion of dislocations is produced by small
stresses, i.e., to most metals. The remainder of this dis-
cussion refers to the cases for which both contributions
are present.

Generation of the second harmonic in 2S aluminum
(the main cause for this case may be attributed to the
lattice anharmonicity) has been reported by Breazeale
and Thompson. ' On the other hand, the dislocation
contribution to the generation of second harmonics in
high-purity aluminum single crystals was demonstrated
by Hikata et al. ' ' It should be emphasized here, how-
ever, that for the generation of the second harmonic
the stress-strain relation must be nonlinear, as well as
not symmetric with respect to displacement gradients.
In the case of dislocations, therefore, the displacement
from the equilibrium position should be diferent for
equal positive and negative values of stress. This con-
dition may be achieved, for example, by applying a
static bias stress in addition to the ultrasonic wave,
assuming that the dislocations are straight at the outset.
The static bias stresses usually required for this pur-
pose are in the range 10'—10' dyn/cms; these stresses

*This work has been supported, in part, by the Research and
Technology Division, Air Force Command, U. S. Air Force.

~ M. A. Breazeale and D. 0. Thompson, Appl. Phys. Letters 3,
77 (1963).

'A. Hikata, B. B. Chick, and C. Elbaum, Appl. Phys. Letters
3, 195 (1963).' A. Hikata, B.B.Chick, and C. Elbaum, J. Appl. Phys. 36, 229
(1965).

have no measurable eBect on the coefficients of the
anharmonic terms of the lattice. ' 4

In the case of the third harmonic, however, the condi-
tion of nonsymmetry is not required. A synirnetric
(nonlinear) stress-strain relation is suKcient to generate
the third harmonic; in other words, the bias stress is no
longer necessary for dislocations to generate the third
harmonic. In the case of the second harmonic, the
absolute value of the thermal expansion coe%cient is a
measure of the lattice contribution, ' and in the cases
studied so far, the lattice contribution and the disloca-
tion contribution were found to be of comparable
magnitude. Thus, in order to study experimentally
either lattice or dislocation anharmonicity it is neces-
sary to separate the two eGects. On the other hand, the
lattice contribution to the third harmonic is found to be
a factor of 10 or more smaller than the dislocation con-
tribution to the third harmonic (the dislocation con-
tribution is comparable for the second and the third
harmonic). Therefore, by investigating the third har-
monic, it should be possible to obtain detailed informa-
tion on dislocation motion under stress without the
complications of the lattice contribution.

In Refs. 2 and 3, the generation of the second har-
monic has been analyzed on the assumption that the
increase of potential energy of a dislocation is propor-
tional to the increase of its length. Although the
analysis was successful in explaining most of the ex-
perimental results, the eGect that the dislocation
oscillation is damped was not taken into account.
Under the same assumption Suzuki et u/. 4 have treated
the problem using the vibrating-string analogy for dis-
locations and have incorporated the effect of disloca-
tion damping on the amplitude of the second harmonic
generated in the specimen. In the following analysis, the
latter treatment is extended to the case of the third
harmonic with some modifications and rednements.

4 T. Suzuki, A. Hikata, and C. Klbaum, J. Appl. Phys. 35, 2761
(1964).

~ J. M. Ziman, E/ectrons and Phonons (Clarendon Press,
Oxford, England, 1960), p. 152.
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EQUATION OF MOTION

When a stress wave is propagated along a solid con-
taining dislocations, the dislocations will oscillate
causing additional local displacement and strain in the
solid. If one denotes the longitudinal displacement of an
infinitesimal element of a solid in the x direction by I,
then

where Ao is a static bias stress, A 1, A2, and A3 are the
amplitudes of the fundamental, the second, and the
third harmonic waves, respectively, 282 and 3b3 are the
phase angles of the second and the third harmonics
relative to the fundamental wave, respectively, and k
is the wave vector. It is assumed here that dispersion is
negligible. The boundary conditions are

u= u~+up
& at x=0,

Ay= A yp (the amplitude of the induced
fundamental wave),

32=23=0.

where u~ is the displacement of the lattice, and Nd is the
displacement due to the dislocation motion. The one-
dimensional form of the equation of motion for the
displacement I in the x direction is given by

82Q 82 80
p =p—(ui+ug) =—,

83 BP Bx 3,, A,&&A,.

Since the nonlinearity considered here is not expected
to be large, one can assume that

1

where p is the density of the undeformed material, 0 is
the applied stress, and t denotes time. It is convenient
for us to use the differentiated form (with respect to x)
of Eq. (1)

B~ (Bu~ Bud) 8'o
+

atp k ax ax) ax'
(2)

Thus, the problem is now reduced to expressing pju~/Bx
and Bud/Bx as a function of stress o and to solve Eq. (2)
with respect to r. In the present case, however, a
sinusoidal wave of frequency co is introduced at one end
of the specimen (at x=0). As the wave propagates, the
wave form will be distorted due to the nonlinearity of
the solid. Therefore, at a distance x, the stress 0. should
be expressed in terms of the harmonics of the funda-
mental wave, i.e.,

o =A p+ A y cos(pot kx) +A p cos2—((at—kx —8p)

+A p cos3(opt —kx —Bp), (3)

Thus, if one expresses both sides of Eq. (2) in terms of
the harmonics, a comparison of the sine and cosine
terms of the corresponding frequencies will provide sets
of equations which determine the amplitudes of the
harmonics.

EXPRESSION FOR But/Bx

The one-dimensional relation between stress cr and
displacement gradient Bu~/pjx of a solid, correct to the
square terms is given by'

Bu~ fBut) '
cr =Eg +a(

ax ax)

where El is the second-order elastic constant and u is a
combination of the second- and third-order elastic
constants. Thus,

~Ql 1 8
=—o — o'+.

8$ El E1

Ap a t' AP) Ay a
i A, '+ i+ —(2A,A q+A iA p cos28p) cos(opt —kx)

Zg'& 2 J
Ap a(

AqAp sin28p sin(pot —kx)+ —cos28p —
~

2ApAp cos25p+
~

cos2(o&t —kx)
3 E, E,'k 2)

a 8
+ —sin28p — 2A pA p sin28p sin2(&ot —kx)+ —cos38p (2ApA p cos38p+A qA p cos28p) cos3(opt kx)—

~1 E18 -~1 E$

As u
+ —sin38p — (2A pA p sin38p+A qA p sin28p) sin3(&pt —kx) . (3)

-El E13

EXPRESSION FOR Bug/Bx

The linear case of small-amplitude dislocation oscillations under the inQuence of an externally applied
oscillatory stress was treated, using the string analogy, by Koehler and later by Granato and I ucke. ' In these

' L. D. Landau and E. M. Lifshitz, Theory of E/asticity (Pergamon Press, Inc. , New York, 1959), p. 115.
~ J. S; Koehler, Imperfections in 1Vearly Perfect Crystals (John Wiley k Sons, Inc. , New York, 1952).' A. Granato and K. Lucke, J. Appl. Phys. 27, 583 (1956).



ULTRASONIC SECOND AND THIRD HARMONICS. I

FIG. 1. Bowed-out
dislocation g =f(ri)
axis coincides with the
straight-line conlgura-
tion of the dislocation
before bowing out. b,
Burgers vector.

o

In the string model, a line segment ds of a dislocation
line has an energy Voids with

VL W.(& '/&')+ W. (& '/b') =W.(1—m cos'8) . (8)

location Here, b& and b&& are the components of the Burgers vec-
tor h perpendicular and parallel to the segment, and 0
is the angle between h and ds (Fig. 2), and

m = (W.—W,)/W, .
treatments' ' the line energy is assumed to be inde-
pendent of the position and orientation of a dislocation.
In fact, however, even in an isotropic material, the line
energy of an edge dislocation differs significantly from
that of a screw dislocation. ' " It follows that, in
general, the line energy of a bowed-out dislocation
(under an external stress) is not constant along the
dislocation line. In the case of an anisotropic solid,
the energy difference between edge and screw disloca-
tions could be quite large as pointed out by Foreman, "
and de%it and Koehler "

The present study is concerned with nonlinear effects
for which the assumption of small displacement ampli-
tudes does not apply. Under such conditions, one has to
take into account the effects of both the variation of
the line energy along dislocations and the higher order
terms in (r)$/r)tl) (for definitions of $ and t) see Fig. 1).

In order to obtain the equation of motion of disloca-
tions, one has to establish first the differential equa-
tion determining the equilibrium configuration of dis-
locations under the inAuence of a static stress. For this
purpose, we follow the calculation carried out by
Leibfried" and extend it to the nonlinear case by re-
taining the higher order terms of (r)//r)tl) in the ex-
pansion of the energy expression Lsee Eqs. (10)
and (11)).

The line energy of a dislocation (per unit length) in an
isotropic material has been calculated and is given by

&:;:„:]

pb' 1 E.
5',= — ln-

4x1—v E,

for edge dislocations and

W, = (pb'/47r) ln(R/R, )

for screw dislocations. Here p is the shear modulus, v is
Poisson's ratio, b is the absolute value of the Burgers
vector, R, is an effective core radius (in the order of b),
and R is an effective external radius. Typically, R/R.
is about 10' and the logarithm therefore is in the order
of 10. Since 8' is only logarithmically dependent on
R/R„ the exact value of R/R, is usually thought to be of
minor importance.

In the following we will refer to a straight dislocation
line along the g axis as the original and stable position.
The dislocation motion is governed by the change in
energy caused by deviations from the straight line. The
slip plane is taken as the $ti plane and the dislocation
line is defined by $= f(r)) (Fig. 1). Then, by using Eq.
(8) the following is obtained:

X (1—m cos'(0~ —0~')) —(1—m cos'0~) j.
Here, f'= r) (/r)t), and 0~ —0~' = 0 is the angle between the
line segment and Burgers vector, and the meaning of
0' and 0~' is explained in Fig. 1. Introducing tanO"'= f'
we obtain

m
V= dt) W, (1+f")'I' 1— (cos'0'

1+ /s

+2f' sinO~ cosO'+ f' sin'0~) —(1—m cos'0) . (10)

The integrand of (10) can be expanded in powers of f'.
If one keeps terms up to the fourth power in f', the
result is given by

V= dry W.$ 2mf' sinO~ cos—O~

+-,'(1+m cos'0~ —2m sin'0~) f"+f" sinO~ cosO.

—s(1+3m cos'0' —4m sinsO~) f'4j. (11)

If the dislocation is pinned at q=0 and g=L, the
deviations from the straight configuration should be the
same for equal positive and negative stresses. In other
words, V should be synimetrical in terms of f'. There-.
fore, in Eq. (11) the terms containing f' and f" should
vanish.

The equilibrium condition for the line segment L,
can be obtained from a variational principle; i.e., the
total energy O'= V—V, should be an extremal, where

' R. M. Stern and A. Granato, Acta Met. 10, 92 (1962).
"A. J. E. Foreman, Acta Met. 3, 322 (1955)."G. de Wit and J. S. Koehler, Phys. Rev. 116, 1113 (1959)."G. Leibfried, Qak Ridge National Laboratory Progress

Report No. ORNL 2829, 1959 (unpublished).

Fro. 2. Definition of b~~ and bq.

b„
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FIG. 3. Stress-displacement relationship of screw and edge disloca-
tions (schematic); straight lines give linear approximation.

V, is the work done by the external force and given by

V, =7b f(v)A,

—-', W,f"(1+-,'f")= b

or, since W,/3= ,'t1b', -
st b'f'(1+—sf")= rb

For a screw dislocation (O'=0),
(4/3) W.f"(1 (9/-4)f") = b-

—2trb'f" (1—(9/4) f")= rb.

(13)

(14)

~'A. Hikata, B. B. Chick, and C. Klbaum, U. S. Air Force
Technical Report AFML-TR-65-56, 1965 (unpublished).

and ~ is the resolved shear stress in the glide plane and
in the slip direction. The equilibrium condition becomes

bw=b(v —v,)=o,
or, according to the Euler-Lagrange equation,

d 88' BS'
=0

drt Bf' Bf
The result is then

f"W,)(—1+m cos'0~ —2m sinsO&)

—ss(1+3m cos 0' —4m sin 0')f' j= rb. (12)

If one assumes that the line energies of edge dis-
locations and of screw dislocations are equal, i.e.,
m=O, then Eq. (12) becomes

—W f"(1—-'f")= rb)

which is the case treated in Refs. 2—4, and 13. If one
assumes further that the higher order term is negligible,
the equation reduces to

W,f"=rb,—
which is the case of the linear approximation treated by
Granato and Lucke. Even in an isotropic material, m
is not equal to zero, and is given by

m=) =-'s (p, Poisson's ratio) .

Thus, for an edge dislocation (0'=)r/2), Eq. (12)
reduces to

Equations (13) and (14) reveal two important features:
(a) The linear term of Eq. (13), ——,'t1b'f", is sr of the
linear term of Eq. (14), —2trb'f". This means that for a
small applied stress, the displacement of an edge dis-
location is approximately four times larger than that of a
screw dislocation. Therefore, for a small oscillatory
stress, it is expected that the contribution from edge
dislocations is predominant for the quantities such as
attenuation and velocity change, provided that the
density and loop length of the two types of the dis-
locations are similar. ' " (b) The nonlinear term in Eq.
(13),—ss f"is negative, while that of Eq. (14), +(9/4)f"
is positive. This means that, the stress-displacement re-
lation for edge dislocations is hardening (as the applied
stress increases, a larger stress increment is necessary
to produce a given amount of displacement), while the
stress-displacement relation for screw dislocations is
softening (see Fig. 3). Of course, the deviation from a
linear stress-displacement relationship, whether it is
softening or hardening, is the source of the harmonic
generation.

The nonlinear relation between a static stress and
the dislocation displacement of a pinned dislocation
leads to the following equation of motion of a disloca-
tion under the inhuence of combined static and oscilla-

tory stresses:

t'clP '(~'P
+B—c

I I

—c'I —
I I I

=bR~, (»)
its at (ag'i (agi 'Eags)

o is given by Eq. (3),
2 = rrpb' (effective mass of dislocation per unit length),
8 is the damping coefficient,
C= W.(11m cos'0' —2m sin'0')

3 (1+3m cos'0~ —4m sin'0~)
C'= ——

2 (1+m cos'0' —2m sin'0~)

m and 0 are the quantities defined in the previous
section,

b is the Burgers vector,
It' is the resolving shear factor converting the axial

stress to the shear stress in the slip plane and in
the slip direction.

The terms A(8'$/cits) and B(8$/ctt) represent the inertia
force and frictional force of a dislocation per unit
length, respectively. The nonlinear differential Eq. (15)
can be solved approximately by iteration. First, utilizing
the Fourier expansion of bRo, one obtains a solution $1
for the linear approximation of Eq. (15) (i.e., the equa-
tion without the nonlinear term),

$1 $10+$11+$12+ $18 )
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where

4bRAoLo2

x'C

4bRAg ~ 1 1

1 (2m+1)1rrj
sin

o (2m+1)s Lp

with
M~= {cols —(2')s)'+(2cpd)s

tan 282„=
cp„'—(2')'

with

As. p 2m+15 '~'

(2m+1)1rtf
+sin cos(Mr kx —81„—),

Lo

5„=(cp„s—cp') '+ (ted) ',
„=(2m+1) (m/Lo) (C/A) "'

tan 81~=tot/(M —M )

8=8/A,

4bRA2 ~ 1

bs

with

Apr p 2m+1 T„'Is

(2m+1)m tf
X»n cos3(ppt —kx —8s—8s„),

Lo

2' —{pp
2 (3(p) 2) 2+ (3ps') 2

tan353„——
GO~

—
GO

519
Am p 2m+1M '"

(2m+ 1)s.ri
&& sin cos2(ppf —kx —8s—8s~)

Lo

In the following analysis, only the erst terms (v=0) of
each infinite series are taken into account. " Inserting
f= $1+ps into Eq. (15),where ts is the iterated solution,
and retaining those nonlinear terms containing only
$1, one obtains the equation

8'ps 8&s ci'&s /ci4) ' ti'6)
+a —c = —CC'i

ap @ ags hagi agsi

CC'
P ~ q '/ 3~tf

sin -+sin—
I
{ApP+A 1Q cos(cpf —kx—atp)

4 &Li k L, Ii

where
4bRL, 2

+A sIC cos2(ppf —kx —8s—esp)+As J cos3(tot kpp bs 8—sp) ) '—
&

—(17)

4bR

an(i

Q= , E=
m'C AmSo'I' Am% oz(

Ax To'I'

Neglecting the term sin(31rti/Lp)" and retaining the terms up to the third harmonic in the right-hand side of Eq.
(12), one obtains the solution ts,

$2 (2p+ $21+$22+ $28 p

where
mg L2

bp =k sin— LA psPs+ sA pPA tsQ')
Lo x'C

CC'/~q4

4 Q,i
'

1
b,=k stn— L{-'A,sQs+3A, sP'A, Q) cos(cpf —kx—281p)+3A PA1QA E cos( f ks—28 —28 )),

L, ASo~&2

14The displacement of the modes corresponding to n&O decreases very rapidly with increasing e and may be neglected for the
purposes of this calculation."When the term sin(3sg/Lp) is retained various parts of the solution are multiplied by numerical factors of order unity.
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1
',o=k sin— P'AoPAroQ'cos2(cot —kx—8»—Sop)+3Ao'P'AoE cos2(o&t k—x B—o 8—op)7,

Lo AMO'I'

~n 1
(op ——k sin— LoA "Q'cos3(cA —kx —8»—8pp)+3A p'P'A pJ cos3(cot kx—6p——28op)

Lo AT()' '
+3AoPArQAoE cos3(cot—kx —o(Rap+2&2+2I520+3~3p)) J.

Thus, after one iteration, one obtains for the solution of Eq. (15),

'=6+6,
where b and Po are given by expressions (16) and (18).

Once ~ is obtained in terms of p, Buz/8x can be calculated by the following relation:

Bug Ãbq
(dg,

Bx Lo 0

(2o)

where g js the effective dislocation density and g is a factor converting the shear strain to the longitudinal strain.

AMPLITUDE OF THE SECOND AND THIRD HARMONIC

I"serting the expressions (3), (5), and (20) into Eq. (2) and equating separately the sine and cosine terms of each
harmonic, the following relations are obtained:

(d'Ag/d, ') —k'Ag= —p~'[(Ag/Eg) —(a/Ey')(2ApAg+AgAo cos25 )+gQA cos8,
+kg(1/AS ' '){(oA&'Q'+3Ap'P'A~Q) cos28~p+3ApPA~QAoE cos2(8o+8po)}7, (21)

2k(dAg/dx) = —pa&'[ —(a/Eg')ArAo sin28o+A&Qg sinb»+k(g/ASo'")
X{(oA1Q+3Ap'P'A&Q) sin24p+3ApPAxQApE sin2(So+Sop)}7, (22)

(d'Ap/dx') cos28o —4k(dAo/dx) ssn28o —4k'Ao cos28o

= —4p(o'[(Ao/E&) cos28o —(a/E&')(2ApAp cos28o+(Az'/2))+Aping cos2(bp+8pp)

+k(g/A~o'"){-'AoPA 'Q'cos2(8 +8 )+3A 'P'A E os2(8,+28 )}7, (23)

(d'Ap/dx') sin28p+4k(dAo/dx) cos28o —4k'Ao sin28,
= —4p~'[(Ao/E~) sin28o —(a/EP)(2ApAo sin28p)+EAog sin2(So+pop)

+k(g/A"o"') {oAoPAi'Q'»n2(~10+'20)+3Ao'P'ApK sin2(8p+2bpo) }7, (24)

(d'Ap/dxo) cos38p —6k(dAp/dx) sin38p —9k'Ap cos38p

= —9pru $(Ap/E&) cos38p —(a/E&')(2A, Ao cos38o+A&Ap cos28,)+JApg cos3(pp+ppo)+k(g/ATp~io)

X{4Ai'Q' cos3(4o+'oo)+3Ao'P Ap'cos3(~p+2~oo)+3AoPAiQAoE cos(b»+28o+2b, p+3b, p) }7, (25)

(d'Ap/dx') sin38p+6k(dAp/dx) cos3bo —9k'Ap sin38p

= —9pco $(Ap/Ez) sin38p —(a/E')(2AoAp sin38p+A&Ao sin28p)+ JApg sin3(go+pop)+k(g/Apollo)

XhA "Q'»n3(~»+~op)+3Ao'P'Ap»in3(~p+24o)+3ApPAyQAoE sin(pro+2$o+2$oo+3$pp)}7 (26)
where

g=21Vb g/n. -

In Eqs. (21) and (22), the terms containing Ao are much smaller than the terms containing A~, furthermore, in the
present study the term containing A ~ is negligible compared with the term containing A z. these terms are, there-
fore, neglected. After these approximations one obtains as the solutions of Fqs. (2]) and (22),

with
Ag=Aio

n'=(p~ g/2k)LQ sinbgp+(3k/AS»o)A opoQ sjn2$&o7

2g 3h
&&'=p"' Ap+g Q co»»+ -Ap'P'Q cos28»

-Ej E13 A SO'~2

(2g)

where A qo is the amplitude of the induced oscillatory stress at @=0.
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The expression (28) represents the attenuation of the fundamental wave. Since k=4o/p and g=(E/p)'~o (e is
the velocity of sound in the material), the first term of the expression (28) can be written

ngo =4XEgboqRcood/v Am. oSo, (3o)

which agrees with Granato and Lucke'so results. The second term of the expression (28) represents the effect of bias
stress on the attenuation. Although it increases with the square of the bias stress, its contribution to the attenua-
tion turns out to be negligible in the stress range of interest here.

From Eq. (29), one can derive the velocity change of h% of the fundamental wave,

(Av/o) =(a/E~')A p
—-,'E4g{Q costa+ (3h/ASp'")A ooP'Q cos2bqo} .

From Eqs. (23) and (24), the amplitude Ao of the second harmonic can be obtained;

a 3 hg p(g2 g
—2a

sin28o —— ApPQ' sin2(bo —h~p —8») A&o'
k

with
no= (pop'g/k) {Esin2boo+(3h/AMo'")A Po'E»n4b}»,

where the following relation should also be satisfied:

(31)

(32)

(33)

doAo/dx'= L4k' —4pco'{ (1/E&)—(2a/E&')A p+Eg cos28op+(3hg/AM '~o)A 'P'IC eos4bop}fr4o

+4poo'{(a/2E~') cos28o o(hg/AMp ~ )ApPQ eos2(bo —bop —Boo)}Ay. (34)

If one compares the expression for uo LEq. (33)j and that of the fundamental wave n& LEq. (28)j, it is easily seen
that n2 is equivalent to the attenuation of an independent wave propagating with a frequency 2'. This means
that since dispersion is assumed to be negligible, the following relation between k and e2 should also hold,

4ho ~2o=4p4ooL(1/El) (2a/Ego)Ap+g{E eos2820+(3h/AM 1/2)A opoIt eos48»}j ~ (35)

Substituting the expressions (32) and (35) into (34),
one obtains the following relation for the phase angle b2

between the fundamental and the second harmonic
wave:

From Eqs. (25) and (26), the following expressions
for the amplitude A3 and the attenuation n3 of the
third harmonic can be obtained:

0,'3—3Qy

3 p4oog hQ'Agoo sin3(bo —
bgo

—boo) e—'&*—e—~4~

a/2E~ (3h/A Mo'~') A pP—Q' cos2(b4o+ 8op)
tan262— . (36) 8 h ATp'~2

(3h/AMo ~ )AoPQo sin2(bio+~20)

, (38)

If one neglects the dislocation contribution to the
second harmonic, the phase angle becomes,

3pco g 3h
ao= — J srn383o+ Ao'PoJ sm68op

2 k ATo'~
(39)

2bo =a/2. where the following relation should also be satisfied:

On the other hand, if one neglects the lattice contribu-
tion, 2(.bp —bop —bop) is very close to vr/2. Thus, one can
express the amphtude of the second harmonic with
reasonable accuracy as follows:

d2A 28
9k2—9')2 —— A p

Eg Eg3

r 3h
+g~ J cos3bop+ Ao'PoJ cos68oo

~
Ao

l A To'~' )
poP

A, = LX'+ V' —2XI' cos2(bop+ 82o))
k

Q2—2cLy

where

g
—2 &1&—g cr2& —L(9/4) pop'(gh/A To' ~')Q' cos3(bp —big —83o)jA P .

XA,' (37)
(4o)

X=a/2EP,
I'= 48%b4R'qC'A o/~'A'S, M

furthermore, in the case where cop)&40) the factor

cos2(ho+ boo)

can be replaced by

(ooo'/SoMo'I ) (ooo —54pod') ~

As in the ease of the second harmonic, expression (39)
indicates that the third harmonic generated in the solid
attenuates in the same manner as an independent wave
of frequency 3' introduced into the solid. This leads to
the following condition determining the phase angle 383
between the fundamental and the third harmonic wave:

tan3(bo —84o—boo) =6k/(uo+3~g) .
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FIG. 4. Variation of the factors P and C' with orientation angle 0.

Since the right-hand side of the above equation is a very
large quantity, 3(8s—its —use) is positive and very
close to 7r/2. Thus, one can express the amplitude of
the third harmonic with reasonable accuracy as follows,

simply because the terms in powers higher than the
square of the displacement gradient are not taken into
account in the expression (4). Although for the lattice
part the magnitude of the cubic term relative to the
linear and the square terms is not known at present, it is
reasonable to assume that in most solids the lattice
contribution to the third harmonic is negligible, at
least near room temperature, where the temperature
dependence of the thermal expansion coeKcient is
small. Thus, the third harmonic observable near room
temperature can be considered to be predominantly
due to the nonlinear motion of dislocations.
(b) The amplitudes of the second and third harmonic
are proportional, respectively, to the square and cube of
the amplitude of the fundamental wave as long as the
dislocation loop lengths remain constant.
(c) At x=0, the amplitude of the harmonics is zero. As
the fundamental wave propagates along the x axis, it
starts generating the harmonics. However, both funda-
mental and harmonic waves suBer attenuation. The re-
sulting initial build-up followed by a decay of the
amplitude of the second and third harmonics as a func-
tion of propagation distance x are represented, re-
spectively, by

&2po)2lYb4qE. 'CC'~ xo' e '~"—t, ~"
Ag ——

kA4$0'~2TO'~21. 04 n3—3o.~
(41) and

(e ~" e~"—)/(us 2ui)—

(e sniz e —
arne)/(u —3u )

(42)

(43)

It should be emphasized that expression (41) represents
the contribution of dislocations only to the third har-
monic and that the lattice contribution is neglected.

DISCUSSION

In the following, several signihcant consequences of
the above expressions are presented:

(a) There are two contributions to the second harmonic,
one arising from the lattice anharmonicity which is rep-
resented by the first term of the expression (37), the
other arising from the nonlinear dislocation motion
which is represented by the second term of the expres-
sion. In addition, the existence of the phase angle
2(brs+bse) between the two components leads to the
cross term in expression (37). The factor I' is a function
of dislocation density, of bias stress (internal or ex-
ternal), and of loop length (which in turn depends on
bias stress), while X is independent of the bias stresses
in the range considered here and is a constant for a
given solid and mode of wave propagation. In general,
a separation of the two contributions is quite difhcult
because of the cross term in expression (37). Under
certain circumstances, either X or Y is dominant and
the cross term is unimportant. A separation of the two
terms is also possible, of course, when 2(8ts+ 8ss) = (s./2)
(8M and ass depend on loop length).

In the case of the third harmonic, the lattice con-
tribution does not appear in the expression (41).This is

Each factor has a maximum at a distance (xs),„and
(xs),„given by the following relations

ln(2ui/us)
+2 II1SX (cm), (44)

ln(3ui/us)
(xs) .„= (cm).
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FIG. 5. Amplitude of the third harmonic A3 and attenuation of
the fundamental wave ur for edge, screw, and s./3 dislocations as
a function of loop length. (Arbitrary units for A 3 and cy1.)

(d) Since C appears in the factors S,, Me, and T,, the
magnitude and the sign of the harmonics depend on the
values of C and C', which are, of course, a function of
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FrG. 6. Amplitude
of the third harmonic
A3 and attenuation
of the fundamental
wave aI averaged
over the range 0(O~
&90'. (Arbitrary
units for Ap and a~.)
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the orientation angle 0". In Fig. 4, the factors

and
P= C/W, = 1+m —3m sin'0"

3 (1+3m—7m sin'0~)
C'= ———

2 (1+m—3m sin'0')

are plotted as a function of 0', taking m= p= '&(p js
Poisson's ratio). As can be seen, C' changes its sign at
approximately 0"=67.5 deg. This means that the har-
monics generated by the dislocations whose orienta-
tion angles (see Fig. 4) are in the range 0(0~(67.5 deg
are opposite in sign to the harmonics generated by the
dislocations whose orientation angles are in the range
67.5'(0~(90'. In the case of the second harmonic, the
applied static stress Ao is, in fact, a parameter to indi-
cate the degree of deviation of a bowed out dislocation
from its straight-line configuration. Therefore, regard-
less of whether the static stress is tension or com-
pression, the absolute value lupi should be used in
evaluating the expression (37). Thus, except for the
factor C', the quantities that appear in the dislocation
contribution are all positive. The contribution of the
dislocations may be of the same or opposite sign as the
lattice term, depending on the relative signs of X and
F', as well as on the sign of (happ'

—5pppd') —see Eq. (37).
In the case of the third harmonic, the absolute value
should be used in evaluating the expression (41).

The factor P(as well as C) also depends on the angle O~.

The larger the value of C, the smaller is the correspond-
ing dislocation displacement for a given stress, as dis-
cussed in the previous section. Since the amplitude of
the harmonics depends strongly on the dislocation dis-
placement, it is expected that the dislocations with
smaller C values will generate larger harmonics, if other
factors are identical.

In all cases the dislocation contribution depends not
only on loop length but also on orientation, i.e., the
angle 0. Therefore, the expression (41) should be cal-

culated using appropriate distributions of both dis-
location orientation and loop length. Since the informa-
tion on the distribution of orientation and loop length is
very scarce, in the following, the 0' and loop-length-
dependent part of the amplitude Ap (disregarding the
attenuation factor)

CCI/g 8/22' 1/21 4 (46)

is calculated numerically for edge, screw, and pr/3
dislocations as a function of loop length I0, for a single
loop and using the following values, 2=7.6X10 "
g cm &=5X10 4 dyn sec cm m=2m'X10 sec
P', =1.2pb p=3X10" dyn cm ' b=3X10—s cm The
results are given in Fig. 5. As can be seen, the maxi-
mum amplitude of the third harmonic arising from edge
dislocations is considerably larger than that arising
from screw or ~/3 dislocations. In this figure, the at-
tenuation of the fundamental wave n~ is also plotted
for the three types of dislocations. In each case, the
loop length for the maximum amplitude of the third
harmonic coincides approximately with the loop length
corresponding to the inQection point in the attenuation
curve. The maximum of the third harmonic, therefore,
corresponds approximately to the transition between
underdamped and overdamped behavior. The condition
determining the loop length for the maximum ampli-
tude A3 is given by

tpp/or 1.12(d/cp) '/'.

In plotting Fig. 5, the absolute values are taken for
the third-harmonic amplitude A3. As mentioned earlier,
the amplitude A3 for dislocations whose orientation
angles 0~ are in the range 0( 0™&67.5' are opposite in
sign to those whose orientation angles are in the range
67.5'( 0'(90'. Therefore, cancellations of amplitude
A3 will take place when the dislocations in the two
ranges operate simultaneously. To see this effect, a
simple average of the expression (46) over the range
0& 0'&90' was calculated as a function of loop length
using the same numerical values as given above. The
results are shown in Fig 6. The cancellation occurs
approximately at the loop length of 1.9X10 4 cm.
%hether this effect becomes significant or not de-
pends, of course, on the orientation distribution of
dislocations.

In view of the difhculties in separating the lattice
and dislocation contributions in the case of the second
harmonic, dislocation dynamics are studied more easily
through the generation of third harmonics. It should
also be emphasized that in order to study lattice
anharmonicity by means of second-harmonic genera-
tion, it is necessary to eliminate the dislocation
contribution.


