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The results of an experimental study of the residual resistivity, specific heat, and magnetic susceptibility
of dilute solid solutions of nickel in beryllium are presented. The addition of small amounts of Ni to the Be
host metal gives rise to large changes in all three quantities. The residual resistivity due to the impurities is
found to be 10 nQ cm per at.% Ni, and each Ni atom contributes 1.15 states per eV to the total density of
states at the Fermi level as measured by the linear term in the low-temperature specific heat. Susceptibility
measurements indicate that there is no localized moment on the Ni, but the addition of Ni gives rise to a
large change in the temperature-independent susceptibility. Comparison of the susceptibility and specific-
heat results indicates that the added susceptibility is enhanced relative to the added state density arising
from the Ni impurities. The Anderson theory of localized transition-atom impurity states is developed for
the case of five-fold orbitally degenerate d states, and the equivalence of the Anderson approach and the
scattering approach is demonstrated from the theory of resonance scattering. It is shown in this manner that
the Anderson theory can be made consistent with the Friedel sum rule. Using the Anderson model the
residual resistivity, specific heat, and d-state contribution to the susceptibility are calculated for dilute
alloys where the host-metal density of states is a function of energy. The experimental results are found to be
consistent with theoretical expectations and are used to determine magnitudes for the parameters of the
theory. It is found that there are between 8 and 9 d electrons on each nickel atom, in agreement with the
Friedel sum rule. The virtual level width is determined to be 0.4 eV, and the Coulomb-exchange quantity
(U+4J) is evaluated as 7 eV. Analysis of similar data on Cu:Ni alloys yields values for these quantities
which are fully consistent with the results obtained from the Be:Ni data.

I. INTRODUCTIOH

OCALIZED impurity states in metals have been
- & a subject of considerable interest in recent years.

Stimulated by the discovery of the systematic occur-
rence of localized electron magnetic moments on Fe
atoms dissolved in second row transition metals, '
Anderson, ' Wolff, ' and Clogston4 developed theories of
localized magnetic states in metals. The Anderson
theory is based on the effect of s-d mixing on the
localized magnetic states of iron group atom impurities.
The essential feature of the theory is the formation via
this s-d mixing of virtual bound states within the host
metal conduction band. Such virtual bound states were
first introduced into the theory of dilute alloys by
Friedel' who approached the problem using the tech-
niques of scattering theory. Although the points of view
are somewhat different the results of the Anderson and
Friedel-type theories are essentially equivalent. Having
described the localized electronic states of the impurity
by virtual bound states, the question of the existence
of a magnetic moment resolves to determining the con-
ditions under which the virtual states for electrons of
spin o- are nondegenerate with those of spin —0.. Under
these conditions (rse,)Q(na, ), and a net magnetic
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moment exists localized on the impurity site. The
essential parameters needed to characterize such a
virtual level are its width 6, and its energy relative to
the Fermi energy, Ez —Ep. The parameter which
determines whether the final state is magnetic is, in
the case of a fivefold degenerate d state, the quantity
(U+4J) where U and J are the Coulomb and exchange
integrals between two electrons localized on the im-
purity atom in the metallic environment.

In this paper we present the results of an experi-
mental study of the residual resistivity, specific heat,
and susceptibility of the dilute alloy system Be:Ni. The
experimental results are found to be consistent with
the predictions of the Anderson theory, and their inter-
pretation in terms of this theory allows the determina-
tion of the three parameters A, Ee' Er, and (U+4J). —

In the next section we give a description of the ex-
perimental results of measurements of residual re-
sistivity, specific heat, and magnetic susceptibility for
dilute solid solutions of nickel in beryllium. Following
this we summarize the Anderson theory for orbitally
degenerate d states. The equivalence of the Anderson
approach and the scattering approach will be demon-
strated in an explicit fashion, and it will be shown that
the Anderson theory can be interpreted in a manner
consistent with the well-known Friedel sum rule. The
residual resistivity, specific heat, and magnetic sus-
ceptibility are considered in Secs. IV and V. Using the
Anderson model, the specific heat and d-state contribu-
tion to the susceptibility are calculated for dilute alloys
where the host metal density of states is a function of
energy. The results are compared with experiment and
used to determine magnitudes for the parameters of
the theory.
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Fro. 2. Honda-plot of the measured susceptibility as a function
of magnetic field for the 2.2 at.% Be:¹alloy. The susceptibility
extrapolated to inanite field is —0.81&(10 '/g. The small slope
results from trace amounts of precipitated ferromagnetic impurity.

state densities and Debye temperatures) the 0.5 erg/sec
heat leak would not be a limitation. The data for the
three samples measured are shown in Fig. 1. As seen
from the small scatter of the points in the figure, the
coefficient of the linear term is obtained with an ac-
curacy of somewhat better than 2%.

The specific heat results shovr the expected electronic
contribution (linear in T) and lattice contribution (Ts)
as shown by the linear dependence of C/T versus T'
in Fig. 1. Examination of the Ggure indicates that no
significant change can be detected in the very small co-
efficient of the T' term as compared with pure Be.
The linear term shows a relatively large and easily de-
tectable increase with the addition of Ni impurities.
This increase is not unexpected and clearly gives in-
formation on the added state density at the Fermi level
resulting from the addition of the transition atom
impurities.

The absence of an observable change in the T' term
is at Grst thought somewhat surprising since the mass
of the Ni atom is much greater than that of the Be
atom. This interesting result may be understood from
the follovring argument. As a result of the large mass
difference one vrould expect localized phonon modes to
appear at an energy

NICKEI CONCENTRATION (AT. PERCENT)

0-0.5 .5
I

1 l.5

-LO—

small in the liquid-helium range ( e ").At high tem-
peratures such modes would contribute to the specific
heat although separating this contribution from the
normal Debye background might prove difficult.

The susceptibility was measured by the Faraday
technique using a calibrated inhomogeneous field md a
sensitive electronic balance. Measurements vrere taken
as a function of magnetic Geld, and the results plotted
on a Honda-type graph of X versus 1/H. The extrapo-
lated value to infinite II gives the true susceptibility,
and the slope of the line measures the residual ferro-
magnetic moment due to contamination, precipitation,
etc. Typical data for the most concentrated alloy, 2.2
at.% Ni, are shown in Fig. 2. The total susceptibility
is diamagnetic as a result of the large diamagnetic
susceptibility of the host metal. "Assuming that the
small slope arises from precipitated Ni, one concludes
that only about 10 s of the total 2.2 at.

%%uoN i present
is in the form of Ni metal. This negligible amount of
precipitated Ni gives some indication of the homo-
geneity of the alloys. The susceptibility shown in Fig. 2
is temperature-independent. Similar data were obtained
for the more dilute alloys. The susceptibility for pure
Be was obtained from an appropriate average of the
parallel and perpendicular susceptibilities" assuming a
random array of crystallites in the arc melted alloy.
The small temperature dependence of the average sus-
ceptibility of pure Be disappears with the addition of
increasing amounts of Ni. The dominant feature of the
data is therefore a large and, to within the experimental
accuracy, linear change in susceptibility with increasing
concentration of Ni impurities as if each Ni atom
contributes a large paramagnetic susceptibility to the
alloy. The room temperature susceptibility as a func-
tion of Ni concentration is shovrn in Fig. 3.

The specific heat and magnetic susceptibility results
are summarized in Fig. 4. Both X/p, ' and the true density
of states as determined directly from the specific heat
data are given as a function of impurity concentration
for dilute solutions of Ni in Be. A diamagnetic correc-
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E
I

—
I

ke& 450'K
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where m is the Se mass, N' the Ni mass, k the Boltz-
mann constant and O~& the Be Debye temperature.
Because the mass difference is so great one would
expect these modes to be quite narrow. Consequently
their contribution to the specific heat at lovr tempera-
tures vrould be of the Einstein form and exponentially

Fzo. 3. Gram susceptibility of Be.Ni alloys as a function
of Ni concentration.

~ B. L. Varkin, L. M. Dmitrenko, and L. V. Svechkarev, Zh.
Eksperim. i Tear. Fiz. 40, 670 (1961) I English transl. : Soviet
Phys. —JETP 13, 468 (1961)g.
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tion has been made to the susceptibility such as to give
the true density of states for pure Be. The results
therefore indicate an enhancement of the added sus-
ceptibility due to the nickel impurities with an enhance-
ment factor approximately equal to 6. In presenting the
results in this manner, it is assumed that the host metal
susceptibility is not changed with the addition of the
nickel impurities. This point will be discussed at some
length in following sections.

The residual resistivity of a similar set of dilute
alloys was measured by the standard four-terminal
technique. The samples were in the form of wires, 2
mm in diameter and 3 cm in length to which leads were
attached with indium solder. Data were taken above
4.2'K by boiling off helium and following the slow
temperature rise with a copper-constantin thermo-
couple. The final results have an estimated error of
10'%%uo due principally to uncertainties in sample dimen-
sions and surface irregularities. Figure 5 shows the
temperature-independent residual resistivity observed
at lour temperatures plotted as a function of alloy com-
position. For a concentration of 1 at.% Ni, hp
= j.0 pQ cm.

These results, although somewhat larger in rnagni-
tude, are qualitatively similar to those obtained from
solution of transition atom impurities in other metals
as reviewed by Friedel. ' In the following sections we
attempt to give a detailed interpretation of the experi-
ments in terms of the more quantitative Anderson
model.

Pre. 4. True den-
sity of states as
measured by speci6c
heat and apparent
density of states as
measured by sus-
ceptibility for dilute
alloys of Ni in Be.
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III. THE ANDERSON THEORY AND
RESONANT SCATTEMNG

We consider the case of a transition atom impurity
with degenerate d orbitals dissolved into a simple
metal. This degenerate case was studied brieQy by
Anderson' in the appendix to his paper and more
thoroughly by Yosida et a/. "We shall review the theory
here since the results will be needed in later sections,
and in order to explicitly make a connection with the

20

Fxo, 5. Residual
resistivity of~Be.Ni
alloys as a function
of the concentration
of nickel impurities.
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scattering approach to the problem. The Anderson
Hamiltonian for the localized transition atom d orbitals
and the host-metal conduction electrons takes the form

where

(2)

E4=Q E„'C,tC,+ (U—J) Q C,tC,CN, tC,
ttsgn, o

+Up C,tC C,tC „(3)
H,g=Q(Vg Cl„tC„.+V I,C .tCI, ).

B, and B'q are the Hamiltonians for the conduction
electrons and the d electrons, respectively, and H, &

represents the s-d mixing interaction. The Ct and C are
the usual creation and destruction operators with sub-
scripts k denoting the conduction electron wave vector,
0. denoting the spin, and m or n labeling the various d
orbitals. E~ are the host-metal conduction electron state
energies and E ' are the d-state energies in the metal.
U and J are the Coulomb and exchange integrals as
defined above, and V g, is the admixture matrix element
between d states and conduction-electron states.

The solutions to the above Hamiltonian are readily
obtained using the Green's function technique as shown
by Anderson. In the degenerate case considered here the
coupled Green's function equations take the form, in
the Hartree-Fock approximation

00

ATOMIC % Ni IN 8e (e—EI.)G~ ~ =br ~++ Vg, „G g .

'~K. Yosida, A. Okijo, S. Chikazumi, Progr. Theoret. Phys.
Kyoto 33, 559 (1965). The resulting Green's functions for the virtual d levels
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and conduction-band states are

G '= e—E„.—P =L~—E-—&(~)] ' (9)

Pm~ Vmk
~

Gmm
Gs~'= (~—EI,) '+-

(.-E,)
(10)

In decoupling Eqs. (5) through (8) we have used the
identity

V„gVI, )V 1~'

~—~I

the proof of which follows by writing the quantity on
the left in the form of a matrix element

LVE1/(~ —II )3Vj '
Vis the admixture interaction and II, is the host elec-
tron energy operator. The operator in the brackets
must have the lattice symmetry and thus is invariant
under all the operations of the point-symmetry group.
Since the d-function spherical harmonics form bases for
representing these operations, nondiagonal matrix ele-
ments of the operators vanish. "The d-state energies are
given by

in E,. Thus, the total number of occupied states
introduced by the impurity is

The d-state density at the Fermi level is, in the non-
magnetic case,

10
pg(Er) = ——ImGgg(E, )

10 A(Eg)

(E~-E.) +A (E~)

(17)
sin' (s.1V/10)

=10
~A(Er)

E —Eg
JV ='JV g,g JV O—=P E„,'= Qc—ot ' . (15)

( )

We assume throughout the paper a complete fivefold
orbital degeneracy so that E,=Ed for all m. This
assumption requires that any crystal field splitting be
less than a virtual level width and is in agreement with
experiment as discussed by Yosida et al."In this case,
Eq. (15) reduces to

jv~ —jv~
X=S P X,'=—g cot '

A(Er)

E .=E '+ (U—J) Q 1V .+U Q X .. (11)
num n

N is the occupation number for the level mo-, and
Z(e) is the self-energy of the interacting system. The
total number of electrons at T=O'K is given by

E...=P 1Vp.+P 1V,

j gy

Img de
ko'0

1—(&/d )~()
Im Q dc. (12)

mo g
—E Z(g)—7I 0

Assuming an energy-dependent host-metal density of
states p(e) and writing

Z(e) = AE —iA(e), (13)

where A(e) =m(V'), p(e)/2 is the width of the virtual
level, Eq. (12) becomes

1
p(e)de —— Im P —lnge E„.+id(~)]d—c

0 7l 0 m, o' dq
(14)

+ma +f
=Xp+—Q cot—'

m m~ A(Er)

+tot

where the real part of the self-energy has been included

"M. Tink, ham, Group Theory used Quarts MecharIics (Mc-
Graw-Hill Book Company, Inc. , New York, 1964), p. 80.

The resulting system is characterized by a set of
virtual levels in the continuum. In the nonmagnetic
case the parameters needed to describe these virtual
levels are the width, A(Er), the number of occupied
states introduced by the impurity, JV Lor equivalently
(Ed, Er)$, and the i—ntegrals U and J defined above.
Physically, one expects E to be simply the number of
d electrons initially on the transition group atom when
outside the metal in order that the system be locally
neutral.

I.et us re-examine the transition atom impurity prob-
lem from the point of view of scattering theory. When
an impurity atom of higher nuclear charge is substituted
for an atom of the host metal, a number of outer elec-
trons corresponding to those shells whose atomic en-
ergies lie within the host-metal conduction band will be
de-localized and go off into the conduction band. Conse-
quently, there will result an excess charge Ze at the
impurity site. The electrostatic field around the im-
purity will locally perturb the metal, and the conduction-
electron wave functions must be recalculated as solutions
of the Schrodinger equation for motion in the self-
consistently screened impurity potential. Although the
carrying out of such a first principles calculation would
be extremely difficult, in the spirit of the I'riedel-
Anderson model we expect to find virtual bound states
at energies E~ within the conduction band. When a
conduction electron approaches the impurity site with
an energy near E& it will be caught and resonantly
scattered before going o6 once again. In general if the
host metal is treated in the nearly free-electron approxi-
mation, the solutions outside the region of the impurity
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=&'+ ot 'E(~"—)/~()3,
(19)

where g~' are the nonresonant phase shifts resulting from
potential scattering.

As a result of the above scattering process, charge
accumulates in the vicinity of the impurity and. locally
screens the impurity potential. Friedel has considered
this screening process in detail and derived a self-
consistency condition relating the phase shifts to the
perturbing charge difference Z. The Fried. el sum rule'5
is thus generally valid and requires that

1Z=- Z Z(2~+1)n~(~r), (20)

where the phase shifts are to be evaluated. at the Fermi
energy, EI. Using Eq. (19) for the phase shifts p&, the
sum rule becomes

We show in Appendix A that to a good approximation in
real metals the nonresonant phase shifts are small rela-
tive to the resonant term and may be neglected. Conse-
quently, the above reduces to

5Z=- 2 cot- I-(~. -~,)/~(~, )j. (22)

L. D. Landau and E. M. Lifschitz, Quantum 3fechanics
(Addison-Wesley Publishing Company, Inc. , Reading, Massa-
chusetts, 1958), p. 440.

"C. Kittel, Quantum Theory of Solids (John Wiley k Sons,
Inc. , New York, 1963), p. 112.

potential are simply phase-shifted outgoing spherical
waves as would be expected on the basis of scattering
theory. For incident energies far from the resonance
energies the phase shifts are small, and are the result
of simple potential scattering. However, for energies
near the resonance energy, the particular phase shift
corresponding to the angular momentum / of the reso-
nant state will be large. Such resonance scattering is
well known in nuclear physics, and in fact the corre-
sponding phase shifts were erst calculated by Breit
and Wigner" for the compound nucleus problem. The
Sreit-Wigner formalism gives the result

gP"'"'"'= cot—'L(EO—e)/a(e)g,

where Eo is the resonance energy corresponding to a
virtual bound state with angular momentum / and
width h. In the case of the transition atom impurity,
1=2 and Eo——E~ are the energies of the virtual d
states with spin 0-. We shall assume a 6vefold orbital
degeneracy but allow E&' and E& to be different corre-
sponding to a possible magnetic state for the impurity
atom. Thus,

The quantity on the right is recognized as the Anderson
expression for the number of localized electrons in the
orbitally degenerate case as given in Eq. (16) above,
so that

Z=SQ N, ', (23)

'6 J. Owen, M. K. Browne, V. Arp, and A. F. Kip, J. Phys.
Chem. Solids 2, 85 (1957).

%'. M. Lomer, Progress in 3fetaI Physics (Pergamon Press,
Ltd. , London, 1959), Vol. 8, p. 284.

where E,' is the total occupation number common to
each of the virtual levels of given spin. To this approxi-
mation, the electrons in the virtual bound states at the
impurity site exactly neutralize the excess charge and
consistency with the Friedel sum rule is achieved.

The conclusions are therefore obvious. The total
number of electrons localized near the transition atom
impurity in the metal is determined only by the excess
charge Z, and thus increases uniformly as one goes
across the 3d series from Ti to Ni. The above arguments
justify the intuitive expectations that the number of
d-electrons is determined by charge neutrality and
indicate that the Anderson resonance energies must be
self-consistently calculated within the metal. The Ander-
son theory can in the above manner be made consistent
with the Friedel sum rule despite earlier comments to
the contrary.

In the case of solution of transition group atoms into
simple metals where the above theory may be expected
to be valid there is considerable evidence that Eq. (23)
holds. In particular, when the transition atom possesses
a magnetic moment, e.g., Mn in Cu or Fe in Cu, the
moment is very close to the free atom spin only value"
so that S=Z. We shall give evidence below that the
condition holds in the nonmagnetic case as well.

Examination of the Anderson theory indicates that
for the Friedel self-consistency condition to hold in
different host metals the unperturbed d-state energies
E ' must effectively track the Fermi energy. The physi-
cal mechanism by which this takes place is clearly of
interest. If 8 'did not have the proper value, the excess
charge would have to be screened by the conduction
electrons. Such a process would necessarily be at the
expense of the conduction electron kinetic energy. An
estimate of this screening energy may be obtained from
studies of vacancy energies in Cu" which indicate that
it takes approximately 1 eV per charge for such screen-
ing. The over-all energy of the system can therefore be
minimized if the "atomic energies" E ' are made to
track the Fermi energy by a self-consistent calculation
within the metal. The real part of the self-energy also
shifts the d-state energies somewhat, and may contribute
to this e6ect.

In following sections we calculate the residual re-
sistivity, specific heat, and susceptibility due to the
transition atom impurities with the above ideas in

mind, and compare the results with experimental ob-
servations as described in Sec. II.
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IV. RESIDUAL RESISTIVITY

The treatment of the impurity problem from a reso-
nant scattering approach suggests that the transition
atom impurities will strongly affect the conduction
electron mean free path and thereby change the residual
resistivity. For a nearly free electron metal the re-
sistivity is given by

cient indicating that the conductivity arises from holes
at the top of the s band, and that only of the order of
10%%u~ of the total number of valence electrons are
effective in conductivity. Using this information to-
gether with the measured density of states and an
effective mass equal to the thermal mass, one finds
from the measured value of 10 pQ-cm per at. 'Po E,

m* 1Ag=-
rse' v (Er)

(24)

1 2m'
Lk Z ~mG»'(Ex)-' j,

r(Ef)
(25)

where 6~I, is the conduction electron Green's function
in the presence of an impurity and is given by Eq.
(10). Equation (2S) for 1/r(Ep) assumes the e; im-

purities scatter independently; a good approximation
at low concentrations. To lowest order,

Gkk (&) = (C Ek) Z ~
+ k~ G (e) (26)

from which the residual resistivity is determined as

AR= —
~ ~

g sin'mE, '.
e &~ahp)

(27)

p is the host metal density of states at the Fermi level.
In the case of a free-electron approximation for the
host metal the above result reduces to that of the
Friedel partial-wave analysis. ' For the nonmagnetic
case X,'= X/10 and Eq. (22) reduces to

20';/ m*
y

~ I~eap) &10)

Substitution of the host metal parameters e, m*,
and p into this expression allows a determination of
sin'(n. X/10) from the measured residual resistivity.

In the present case of Be as the host metal, it is clear
that a free-electron treatment is a very crude and in-
accurate approximation. The two s electrons per atom
lead to a 6lled s band, and were it not for a small amount
of overlap with higher bands, divalent Be would be an
insulator. Detailed band structure calculations" con-
6rm these expectations and give a Fermi surface in
close agreement with experiment. In addition Hall
eBect measurements" give a large positive Hall coeK-

~8 T. Loucks and P. H. Cutler, Phys. Rev. 333, A819 (1964);
134, A1618 (1964).

~9 C. Kittel, Introduction to Solid State Physics (John Wiley R
Sons, inc. , New York, 1961), p. 298.

where e is the number of carriers per unit volume, m*

and e their effective mass and charge, and 1/r (E~) the
collision frequency at the Fermi surface. For n; im-

purities, the spin-averaged collision frequency is

corresponding to X=8.7. The resistivity measurements
therefore indicate that the number of d electrons per
nickel atom is between 8 and 9 in rough agreement with
the Friedel sum rule and that the anomalously large
resistivity due to Ni in Be is the result of the small
number of carriers in the Be conduction band.

We take special note of the fact that to within the
experimental accuracy the residual resistivity is a linear
function of the Ni concentration. This strongly sug-

gests that the addition of the small concentrations of
Ni does not significantly change the number of carriers,
but only aGects their relaxation time. This is not sur-

prising in view of the above result for S which indicates
that each nickel atom contributes between one and two
conduction electrons to the Be conduction band. Since
the number of carriers is thus almost unchanged we may
expect that the host metal contribution to the specific
heat and susceptibility will be unaltered, so that any
changes observed in these quantities may be attributed
to the localized states on the impurity atom. s.

V. SPECIFIC HEAT AND MAGNETIC
SUSCEPTIBILITY

A. Syeci6c Heat

The increased density of states at the Fermi level
resulting from the added impurity atoms will clearly
alter the low-temperature specihc heat of the metal. In
the following paragraphs we calculate the alloy speci6c
heat when the host metal density of states is energy-
dependent.

The internal energy associated with the nearly free
electrons of the host metal, since they are assumed non-

interacting, is

where f(e) is the Fermi-Dirac distribution function.
The internal energy associated with the "d" electrons
is more complex because of the interaction term. One
must take care not to include this interaction energy
twice. To see how the contribution to the internal
energy from the d-electron part of the Hamiltonian
must be calculated we assume, initially, that there is
no s-d mixing; i.e., Vg,g=0, and consider the simple case
of a nondegenerate orbital. Under these conditions the
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Eq. (31) for p;
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where Xq is the number of occupied d states on the
impurity. Noting Eq. (11) for E „one finds for the
specific heat the particularly simple result

7r2

C=Ch.,t+ O'Tp, (Er—),
3

(37)

with p; as defined in Eq. (31) given by

(Er E~) dP (Er)—.;="(E,) 1-
P (Ef)

(38)

E&) dP(Er) ((i,
P(Er)

(39)

the increase in the linear term of the specific heat
measures directly the total d-state density at the Fermi
energy, P&(E&) as defined in Eq. (17). This inequality
will hold for simple metals where the density of states
is slowly varying as a function of energy. For the noble
metals as hosts the above inequality will surely hold.
In the particular case of interest here, the host metal
density of states does vary with energy as a result of the
nearly filled s band of Be."Detailed band-structure
calculations have been performed with the result that
the Fermi energy occurs almost precisely at a minimum
in the density of states. "The value of the Fermi energy
determined by these calculations is quite accurate as a
result of using the equality of the number of electrons

It is to be noted that the above expression differs
from Anderson's' Eq. (59) for the specific heat. The
anomalous term in the Anderson expression arises from
improper handling of the interaction terms in the
Hamiltonian.

From Eq. (37) for the specific heat we see that the
addition of dilute impurities to the host metal will
result in a change in the linear term in the alloy specific
heat. In the simple case where

and holes as the criterion for determining the Fermi
energy. Thus, if the gross features of the calculated
density of states curve are correct for Be, it would
appear that the inequality (39) holds. In what follows
we shall assume this to be the case, so that the specific
heat becomes

7r2

C=Ch.,g+c O'T—pd (Er),
3

where c is the impurity concentration. We have argued
above in connection with resistivity results that the
host metal contribution to the linear term in the specific
heat will be unchanged by the addition of small con-
centrations of nickel impurity atoms. The experimental
results were described in Sec. II. From Fig. 4 we see
that there is experimentally an easily observable in-
crease in the density of states. Attributing this increase
to the added d-state density one finds, using Eq. (40)

p~ ——i.15 states per eV per Ni atom.

The accuracy of the specific-heat measurements is
quite good ((2%) and judging from the scatter of the
data points about the straight line of Fig. 4, the over-all
accuracy of the above value for Pz is of 10%. Applying
Eq. (17) for pp

sin'(vrE/10)
pg= i0

and taking the value for sin'(mX/10) determined from
the residual resistivity one finds

S=O.4 eV.

Furthermore, using the expression for the level width
A=7r(U'), p/2 one finds (U'), 3(eV)', a somewhat
small, but not unreasonable, value.

B. Magnetic Susceytibility

The magnetic susceptibility of the system may be
calculated directly from the occupation numbers of the
localized up and down d electrons. The orbital moment
is found to be quenched by the s-d mixing interaction
rather than the crystal field as discussed in detail by
Yosida et u/. "However, there will in general be an
induced orbital moment due to the spin-orbit coupling
which comes in second order and can be expressed as a
change in g value, hg. hg has been estimated by Yosida
et al."to be of the order of 0.2 and therefore constitutes
a negligibly small correction to the susceptibility. We
shall assume that the host electron susceptibility is not
altered by the addition of the transition atom im-

purities. As argued above, this assumption appears to
be valid at low Ni concentrations since each Ni con-
tributes between one and two electrons to the Be con-
duction band and leaves the number of carriers un-

changed to within the experimental accuracy. The
change in the population resulting from the application



LOCALIZE D I M P URI TY STATES IN M ETALS 467

of a magnetic field H in the nonmagnetic case is, for a
single impurity,

bN+ bN—= ——Q(bE~ bE—)

VI. DISCUSSION

One concludes from the interpretation of the experi-
mental results in terms of the Anderson model that the
quantity

(U+4J)/a»1
Ef 1—(&/«)~ (~)

Im dE.
(~—E-—&(~)7'

in the system Be:Ni with the magnitudes of the in-
dividual quantities as given above. This conclusion
rests on two fundamental assumptions:

p~7

bN+ bN =p—Hpg+(U+4J) (bNg+ —bNg ).—
10

(43)

Because of the Anderson compensation effect bg+ —bX
=bN~. —bNq Lsee Anderson's Eq. (47)j and the e-
state contribution to the susceptibility is

p
X,= (bN,—+ bN, —)a

p p&
=w p&(E/) ~

1—(U+4J)pg/10

where z is the enhancement factor defined by the
above equation. The total susceptibility for a concen-
tration c of impurities is therefore

x= ~host+& gIt pd ~'
Note that in the degenerate case the Anderson criterion
for formation of a magnetic state is equivalent to re-
quiring that the denominator of Eq. (44) vanish, at
which point the zero-temperature susceptibility diverges
as expected on physical grounds.

The experimental results for dilute solutions of E; in
Be were described in some detail in Sec. II. Figure 4
shows that the increase in susceptibility due to the
addition of Ni impurities is enhanced by comparison
with the true change in density of states as obtained
from specific heat. From this figure, assuming the
Anderson model as described above, one finds

g '= 1—(U+4J) (pg/10) =0.16,

with p~ ——1.15 states per eV per atom of Ni. Combining
these results one obtains

U+4J 7.3 eV.

The limits of error on the above value for (U+4J)
seem to be set by the homogeneity of the samples them-
selves rather than on the susceptibility and specific-
heat measurements as indicated by the deviations of the
experimental points from the indicated straight lines.
However, the above value appears to be accurate to
about 10%; or in the range 6 to 8 eV.

The corresponding energy shifts are

bE~g=&pH+(U J) Q—bN g+U Q bN p. (42)
num

(i) The host-metal density of states is slowly varying
at the Fermi level.

(ii) The host-metal specific heat and susceptibility are
unchanged when a small concentration of nickel im-
purities is added.

Both of these assumptions appear to be valid as
argued above, and small effects will not alter the final
conclusion. The most serious error undoubtedly arises
from assumption (ii) since the large diamagnetic sus-
ceptibility of pure Be may be sensitive to small changes
in the number of electrons or holes. In fact, one possible
indication of this maybe the disappearance of the small
temperature dependence of the average susceptibility
found in pure Be with the addition of Ni. It is impossible
to be quantitative in this regard, but we note that an
error in the d-state contribution to the susceptibility
and consequently the enhancement factor p, by as much
as a factor of 2 only reduces the value of (U+4J) to
6.1 eV which is within the estimated limits. Further-
more, we shall see that analysis of data for the Cu: Ni
system leads one to the same conclusion concerning the
magnitudes of (U+4J) and h.

A similar experimental study of dilute Cu:Ni alloys
was made some time ago."2' In connection with ideas
of this paper copper is a simple host in that the density
of states at the Fermi level is certainly slowly varying,
and the host susceptibility is insensitive to small changes
in the number of electrons. One clear disadvantage is
the partial d character of the conduction electrons at
the Fermi surface resulting from the filled Cu d band
which lies of the order of 3.5 eV below the Fermi
energy. Measurements of residual resistivity" for Ni in
Cu give hp=1. 25 pQ-cm/at. % Ni. If one substitutes
the appropriate parameters for Cu (m* 1, v=1/atom
and the measured density of states) into Eq. (28), the
result is

sin'(~N/10) =0.1
or X=9 electrons again in agreement with the Freidel
sum rule. Unfortunately, specific-heat data at Ni con-
centrations below 10% Ni in Cu are not available
making an estimate of p& somewhat dificult. Analysis
of the existing data" indicates a value for p~ of about 1
state/eV per Ni atom which applying Eq. (17) gives a
value for 6 of about 0.3 eV. Finally, the enhancement
factor is estimated from susceptibility and specific-heat

22 I.inde, Ann. Physik 15, 219 (1932).
~ E. Pugh and F. M. Ryan, Phys. Rev. 111, 1038 (1958).
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data to be about" 3 yielding a value of (U+4J) of
about 6 eV. The results for Cu: Ni are thus fully con-
sistent with those obtained from the Be alloys.

The resulting value of (U+4J) is to be compared
with a free-atom value of more than 20 eV.'4 However, a
significant reduction in the metal is not surprising. In
particular, there are two obvious mechanisms by which
the Coulomb and exchange integrals may be reduced in
the metal: firstly, simple screening by the nearby con-
duction electrons, and secondly, by many-body correla-
tion eGects. Although a detailed estimate is dificult,
a reduction by a factor of 3 to the observed value due
to screening alone does not seem unreasonable. The role
of correlation awaits further theoretical work although
recent attempts to include two-body eGects in the local-
ized moment theory" as well as the theory of ferro-
magnetic metals" predict a relatively large reduction
of the eGective U and apparently overestimate the
correlation.

Finally we return to the basic question of the appli-
cability of the Anderson model and its solution in the
Hartree-Fock limit to real alloys. The model, although
admittedly schematic, contains the essential physics of
the problem, and provided that it is interpreted in a
manner consistent with the Friedel sum rule should be
applicable to alloys where the host metal is not a transi-
tion metal. For transition metal hosts, where the band
electrons are d-like, the situation is undoubtedly more
complex as evidenced by the recent work of Jaccarino
and Walker. '~ However, even assuming the basic model,
the Hartree-Fock approximation must be examined, for
in the limit of large U/A a self-consistent average
Coulomb interaction may be a poor approximation.
Attempts to take many-body eRects into account" indi-
cate that correlation may significantly alter the theo-
retical conc1usions. However, until a solution of the
correlation problem including the full d-state degeneracy
is achieved, the effect of correlation in the real system
will remain unclear.

APPENDIX A

The potential scattering phase shifts at the Fermi
energy arising from a central potential V(r) of range a
are given by"

"""=—(j ')/(j + )—
~ R. E. Watson, Phys. Rev. 118, 1036 (1960)."J.R. Schrieffer and D. C. Mattis, Phys. Rev. 140, A1412

(1965)."J.Kanernori, Progr. Theoret. Phys. (Kyoto) 30, 275 (1963).
~7 V. Jaccarino and L. R. Walker, Phys. Rev. Letters 15, 258

(1965)."E. Merzbacher, Quantum Mechanics (John Wiley tk Sons,
Inc. , New York, 1961), p. 234.

where the spherical Bessel functions j& and n& are to
be evaluated at the argument k~c. Here k~ is the Fermi
momentum. Solving for g~' one inds

tangte = jt/ttt.

For a Thomas-Fermi potential, V(r)= (Z/r)e ", and
most metals kpa(&1. In copper, for example, kp ——0.4
X10 cm ' and g=0.55X10 cm. When k~g&&1

(lt a)' (k a)'+'
tang)' ———

(2l+1)!!(2l—1)!!
(p a)st+1

(2l+1)!!(2l—1)!!
Substituting into the Friedel sum rule we find

2 (kt a)"+' 5 Ee. Ef-
Z= ——Q +—P cot—'

e. t L(2/ —1)!!j' rr ~ D(Ef)
or

5 Eg,—Ef 2 2
Z= —P cot-' —(le pa) ——(kpa)'—

A(E,)

Since kgu is small

5 Eg,—EfZ= P cot-'
A(E,)
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