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Theory of Localized Magnetic States in Metals

A. C. HzwsoN
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The problem of determining the conditions for the occurrence of localized moments in dilute alloys on the
basis of Anderson's model is re-examined. From a coupled set of Green's-function equations an approximate
solution is found which includes the electron correlation in the impurity levels and which passes over to
the exact solution in the limiting case of an isolated impurity. The Hartree-Fock theory is obtained only if
the Coulomb repulsion U is relatively small. When U is large the correlation effects are important, and
magnetic states are found only if the energy shift caused by the impurity-band electron scattering satis6es
certain fairly restrictive conditions. Possible modifications when the degeneracy of the impurity levels,
the intra-atomic exchange interactions, and the electron interactions in the host metal are taken into
account are qualitatively discussed.

I. INTRODUCTION

A CONSIDERABLE amount of information has
been amassed in recent years on the magnetic

properties of dilute alloys. Much progress has been
made since the susceptibility measurements of Matthias
et a/. ' from which the presence of moments, localized
around the impurity sites in some alloys, was originally
deduced. Neutron-diffraction techniques' have enabled
the moments to be observed directly and their distribu-
tion around the impurity to be calculated.

The theoretical problem of describing these magnetic
states is exceedingly dificult. Calculations have so far
been made in the Hartree-Fock theory and have been
based on some simple model of an alloy which abstracts
just those features that are essential for a description
of a moment. One model, proposed by Wold, ' describes
electrons in a single band which are perturbed by a very
short-range impurity potential. This is applicable when

the states of the impurity are similar to those of the
host metal as, for instance, is the case for iron impurities
dissolved in palladium. An alternative model, used by
Anderson, 4 is for an alloy in which the impurity has an
inner d level within the continuous energy spectrum of
the conduction band for the host metal as, for example,
nickel impurities dissolved in copper.

In an eGort to overcome some of the limitations of
the Hartree-Fock theory we consider an alternative
approach to the problem which we shall base on
Anderson's model. ' The total Hamiltonian is

where Cl,.t and Ci„are the creation and annihilation
operators for the free-electron states with momentum
k, energy ek, and spin o.

The Hamiltonian describing the impurity is

&a= To Q. Ca.tCe +Unetnet .

The irst term is a nondegenerate level at Ts (this is a
restriction which we shall discuss later) and Ce.t, Ce.
are its creation and annihilation operators. The second
term is the Coulomb repulsion between spin-up and
spin-down electrons, where U is the Coulomb correla-
tion integral,

A(rt)' Pe(rs)'«Art
I1—1'g

The scattering of the d and band electrons is assumed
to be due to an interaction of the form

Ebs=a Vek(Ck. tCer+Ce. tCk.)

To Gnd the conditions for a moment at the impurity,
the average values of egt and e~q are calculated and
then examined for a "magnetic" solution for which

(net)W(net)
In the Hartree-Fock theory the impurity electrons

are effectively decoupled so that the average energy of
the impurity (He) is written as

+b++a++bd. T,(net)+ To(net)+ U(net)(net) . (6)

Hb is the Hamiltonian for the conduction electrons of
the host metal. In the wide-band limit it is the free-
electron Hamiltonian.

+b Z ekCka Ckr y

~S. T. Matthias, M. Peter, H. J. Williams, A. M. Clogston,
E. N. Corenzwit, and R. C. Sherwood, Phys. Rev. Letters 5,
542 (1960).

~ G. G. E.Low and M. F. Collins, J.Appl. Phys. 34, 1195 (1963).
M. F. Collins and G. G. E. Low, J. Phys. Radium 25, 596 (1964).' P. A. Wolff, Phys. Rev. 124, 1030 (1961).

4 P. W. Anderson, Phys. Rev. 124, 41 (1961).
' A. C. Hewson, Phys. Letters 19, 5 (1965).

A limitation of this approximation is that it does not
fully allow for the fact that the spin-up and spin-down
electrons can correlate the times at which they occupy
the impurity levels. Consequently the energy of the
nonmagnetic states in which (net)=(net) is overesti-
mated by a factor which is proportional to the Coulomb
repulsion U. However U must be relatively large for a
moment to exist so that one of the impurity levels lies
well above the Fermi level of the conduction band. This
implies that the eGects of the correlation could well be
signiic ant.
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To avoid these difhculties we propose to tackle the
problem in two stages. First the system composed of
the host metal plus isolated impurity described by the
erst two terms in Hamiltonian (1) is considered. The
thermodynamic properties of this system, which in-
cludes the Coulomb repulsion between the impurity
levels, can be calculated exactly. In the second stage,
the band and d-electron scattering (5) is included, and
is taken into account essentially as a perturbation.

The mathematical technique we shall use is the
equation of motion method of calculating appropriately
chosen double-time Green's functions. The Green's
functionp ((A(t):B(t'))) of two operators A and B in
the Heisenberg representation is de6ned by

((A (&):B(1')))=—s()(1—1')(LA (1) B(1')j~), (7)

where 8(t—1') is the step function

g(t—1')=1
=0 t(t'.

The square brackets represent either a commutator or
anticommutator, and the pointed brackets an average
over a canonical ensemble.

From the definition, the equation of motion can be
derived and, if the Hamiltonian is time-independent,
it can be expressed in terms of ((A:B))~, the Fourier
transform of the Green's function with respect to the
time difference (t—t').

is used so that
t Ca.,Ca. 3+=0.

The equation of motion for G» has the simple
solution

Gga" (E)= (bye /2') (E—sa)
—'. (14)

The density of states of the band electrons pp'(E)
is calculated from the imaginary part of the Green's
function Gaq (E+is) in the limit e - +0. Using
(14) we 6nd ..(E)=Z.~(E-"), (15)

where the summation is over all the lr values of the
band.

Hubbard' has shown that the equations for G«' and
I"«can be solved exactly, because they can be ex-
pressed in a closed form. The equation for G« is

(E Tp)Ggg —+UI'gg'= 1/2' (16)

and for I'«

(E—Tp)1'gg = &ng, .)/2m+ U((eg, .'Cg. .Cg.t&). (17)

Equation (17) is put into a closed form by use of the
operator relation e;,2= e; .

The solution for G~~ is

1 /1 —(e, ) (ev.&+
2 & s 1'g E To p)—— —

E«A:B)) =(1/2 )(L»Bj+)+((r.»»-:B)) (9) Th, „,.„,,„d;„d,„„„,f,„,„„;,

(B(1)A (1))

where P= 1/ET.

(es~+1)
(10)

The quantities which are of direct physical interest
are the correlation functions, and these are derived
from the corresponding Green's function by the use of
the relation

p..(E)= (1—(~. .))6(E—r,)
+-(~, .&S(E—r,—U). (19)

There are two levels, Tp and Tp+U, containing
1—(eq, ,) and (eq, ,& states, respectively. For an iso-
lated atom (ez,) can only have the values 0 or 1.

In the ground state of the combined system (11),
the lowest energy levels are 6lled to the Fermi level Ep.
The number of electrons in the d states, if To is below
Ep and Tp+ U is above, is

II. AN ISOI ATED IMPURITY
(eg.&

= pg'(E)dE (20)
The thermodynamic behavior of the system de-

scribed by the Hamiltonian

and
G- =((C":C""&), G- =((C":C'.')), (12)

I'~~'= ((Cs.+a,—.'Ca t)).
The assumption of Anderson that the impurity d

state is distinct from the conduction states of the metal

' D. N. Zubarev, Usp. Fiz. Nauir 71, 71 (1960) LEnglish transl. :
Soviet Phys. —Usp. 3, 320 (1960)g.

can be calculated from the equations of motion of the
Green's functions

which when integrated becomes

(tpg. +Ng, ,)= 1. (21)

This implies that either the spin-up or spin-down
level is occupied. If a magnetic field is included in the
s direction, the ambiguity of (21) is removed (Nzt)= 1
and (e«)=0 so that the impurity has a moment and is
in a "magnetic" state.

The form of these solutions are in contrast with the
Hartree-Fock results which can be obtained, not by

~ J. Hubbard, Proc. Roy. Soc. A276, 238 (1963); A281, 40i
(1964).
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(a)

FzG. 1. The three types of scattering of a band electron.

solving the equation for I'«exactly, but by making
the approximation

Fgg' (eg,——.)((Cg..Cg.t)).
With this decoupling, the solution for G« is

Gdd'= (2~) '(E—To—U(&d, —.)) '

with a corresponding density of states.

pd'(E) = o(E To—U(e—g,—.)) .

III. THE SCATTERING BETWEEN BAND
AND d ELECTRONS

(22)

(23)

(24)

and
[II,Ck.j = okCk. +VkgCg. , (26)

)H,Cd.j =ToCg.+U-&g. .Cd.+Qk VdkCk. (2&)

are used to generate the following equations of motion

(E To)Gdg—' UFdd' ——Qk VdkGkd'= o7r, (28)

(E ok)Gkd VkdGdd (29)

(E—To)Ggk' —UFdk —pk Vdk Gk k =0, (30)

(E—ok )Gk e—Vk dGdk~= hkk /2~) (31)

(E—To U)Fgg-
= (Nd, .)/2m++k Vgk((Ck. lg, , 'Cg, ))

+Pk Vdk{((Cd,—tCk.—.Cd '. Cd t))
—((Ck, .Cg, ,Cg. .Cd.'))),

and
(32)

To predict the behavior of the system when the scat-
tering (5) between the band and d electron is included
we need the equations of motion of the Green's functions

G = ((Ck..Cd. )), Ggk ——((Cg. .')),
(25)

F...= ((C,.~. iC,.t)),
as well as those previously considered.

The commutation relations

To calculate the density of states we use the relation

lim P' ' k E—ok+io

I Vdkl=PP

For convenience we introduce the notation

(a) ((Ck ~(&)md, ,(t):Ck,t(t'))) describes the scatter-
ing of a band electron by the impurity. This term we
describe as the normal scattering.

(b) ((Ck, , (/)Cd, ,(t)Cd (t):Ck (t'))) represents the
scattering of a band electron with spin 0. into a hole
with spin —o-, with a consequent excitation of two d
levels. If U is large the probability that two d states
are occupied at the same time is small and is zero in the
limit U —+~.

(c) ((Cg, , (t)Ck, (t)Cd, (t):Ck, (t'))) represents a
spin-exchange scattering of a band electron. The spin
on the impurity is Qipped in the process.

~e shall approximate to the Green's functions (a),
(b), (c) and their counterparts in Eq. (32) by de-
coupling the d from the band electrons in a simple self-
consistent way. The Green's function (a) for the normal
scattering is replaced by (ed, ,)((Ck, .Ck,t)). There is
no contribution from (b) as (Cd,Cd, ,)=0.The average
(Cd, tCg, ,) is related to the transverse components of
the impurity spin. If we include a magnetic Geld in the s
direction, this average will be zero so that there will
also be no contribution from (c).

The method of approximation of the scattering terms
is very similar to that used on the Hartree-Fock theory.
The important difference is that we have preserved
intact all Green's functions that involve the correlation
of the spin-up and spin-down electrons in the impurity
levels Bnd which are multiplied by the factor U. For
this reason the approximate equations are exact in the
hmit VqI, ~O.

Equations (28)—(32) have been reduced to a closed
form. The solution for Ggg'(E) is

1 — (E To)(E To —U)— —
Gdd'(E) =—

2' E To U(1—(Ig,—,)) —k E ok—
(34)

(E—To—U)Fgk~

=Qk Vga ((Ck.l-.,g. Ck.'))
+Qk Vgk (((Cg, tCk, ,Cg, .Ck."))

—((Ck, .tCg, .Cg. Ck.'))), (33)

~(E)= 2 IV I'~(E— )

~(E)=P E.(l V-I'/(E —"))
(36)

and

(3&)

The density of states deduced from (33) is

6 (E) (E To) (E To U)——
—~(E)

E—To—U(1—(ed, ,))

+6'(E) . (38)

where the operator relation n;,'=e;, has again been
used to simplify some of the terms in (32) and (33).

The higher order Green's function on the right-hand pd (E)=
side of (32) and (33) cannot be expressed in terms of
the lower order functions (12) and (25). Before we
consider how to deal with them it will be useful to
consider their physical interpretation (Fig. 1).
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This is a resonance-type formula with peaks at the
values of E which satisfy the equation

(E—Tp) (E—Tp—U—A) —UA (1—(ng, .))=0. (39)

If A(E) and A(E) are slowly varying functions of E
over the band they can be treated as parameters.
Equation (39) then has two solutions which, when
A/U is small, are

El. Tp+A——(1—(ng, .)) (40)

Eo = Tp+U+A(ng, .). (41)

The widths of these levels are 6(1—(nd, ,)) and
A(nz, ), respectively.

The scattering of the d and band electrons has caused
the impurity level to be shifted and broadened. When
U is comparable with 6 the two levels form an effective
single level of width 6 with its center of gravity at
To+ U(n~, ,) as in the Hartree-Fock theory. ' When U
is large the levels are distinct and like the atomic levels.

Eg

(nd. )=— AdE

— (E—Tp) (E—To—U)

E—To—U(1—(ng, ,&)

+Ao . (42)

This integral can be evaluated if A and 6 are treated as
parameters. The result is

They are accessible either to spin-up or spin-down elec-
trons. If the level E& is occupied part of the time by a
spin-down electron, then the average probability that a
spin-up electron is scatterbd into this state (which is
proportional to the width of the level) is reduced by a
factor (1 (—n&.,)) T.he energy shift, which depends on
the degree to which scattering occurs, is proportional
to the same factor.

The occupation number of the d states at absolute
zero is found by integrating the density of states to the
Fermi energy Ep.

(EI: To) (EF —Tp U+A—)+—UA (1—(no, ,&)

(no.&
= —,o+1/2~ tan —'

A(Ep Tp U(1——(n—g, .))
1 L{2A+U(2(ng) ,1)+—AF 2Tp+2L jA U—2Ep — 2Ep 2Tp A —U+—2L

tan ' +tan '
Lo+F' A+ 2F

1 AL —F{(2(no, ) 1)U+2A (2Ep 2Tp —U 2L) + (5+2F)
ln , (43)

4m L'+F' (2Ep 2Tp A U—+2L)—'+—(5—2F)'

for Tp+U+A)EI, where
L' 'F= 'L( +U)A'—4UA-(1 (nd, .—)) b,'j —(44)—

and

J.'+F'= —:${(U+A)' —4UA(1 —(n. .))—A')o

+6'{2A+2(ng )—1)U)'$'io (45)

where —vr(tan '(x/y)(s and the quadrant is deter-
mined as if x and y are proportional to sin9 and cose,
respectively.

For EI)Tp+U+A, the first two terms in (43) are
replaced by

1
pl+—tan —'

27r

(Ep To) (To+ U—Ep A)——UA(1 —(nd, ))—
X

A(To—E,—U(1—(no, .&)

A(1—(no ))'1
I ~'(E) =---

~ (E—T,—A(1—(n, ))1'+A'(1 —(n~ ))'j
(48)

and the occupation number of the d levels is

1
(ng, &=—(1—(ng .))

When U is relatively small so that U((E&—To and
A«Ep Tp (43) reduces to Anderson's expression. ' The
effect of the correlations is negligible.

P )= (1/ ) -t '((To+A -E.+U( .-, .&)IAP (—47)

In this limit, however, the impurity levels E& and E2
are below the Fermi level and only nonmagnetic states
are possible.

In the other extreme U —+~, the density of states
becomes

(46) -Ep —Tp—A(1—(ng, .))-
tan + . (49)

Equation (43) generates two simultaneous equations A(1—( ..—.))
fol (not) alld (nial): 'tile self-collslstcllt sollltloIls collc-
spond to the points of intersection of the curves. For a Before we continue and examine the solutions of
moment to exist there must be solutions for which (49), we must check that we have lost no magnetic

(n )&(n. ). solutions for which U(nq, ,)~0 as U—+~. Let us
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(a) (b3 In the critical case at the onset of magnetic solutions
(ndt)=(nd&)=n, where n, satisfies the equations

(n,&
(n,)

and
A(1—e,)

3e,—1 1 Ep—To—A(1—e,)=—tan —'
2(1—n,)

(55)

0
0

0
0 2e,—1 (Er Tp)—

(h,)
Fro. 2. (a) A self-consistent plot of (ndt) versus (edg) for

(Er—To)/ 6=2, A=0. There is only one self-consistent solution.
(b) A plot with (Er To)/A —=4.

(1—e,)
h(1—e,)

X--- . (56)
({Er Tp A(—1 —eg) }'+—l9(1 ng)']—

calculate (nd, ) on the assumption that U(nd, ,) -+ 0 as
U —&~. We can then calculate (ed, ,) and examine
whether there is a self-consistent solution of this form.

If
U(nd, .) —+0

1 ~& AdE
(ed.)=-

(E Tp—A)'+ A—'
(5o)

in the limit U-+~. When 6 is fi.nite and Tp+A is
below the Fermi level, we see that (nd, )=1 p, whe—re 5

is a finite quantity. Substituting this in the equation
for (e, .),

1 ~& d,5'dE
(ed, .)=- (51)

pr —~ (E—To—Ab)'+5'~'

as this is not identically zero we cannot have missed
any magnetic solutions on taking the limit U —+~ and
obtaining Eq. (49).

A typical plot of (ndt) and (ndq) using (49) is shown
in Fig. 2. There is only one solution, a nonmagnetic one:
(ndt)= (ndg) = s. As 6 —+ 0 and the lifetime of the im-

purity states becomes very large, the two curves move
closer together and eventually coincide into the single
curve

(52)

If a magnetic field H is included and the limit 6 —& 0 is
taken before II~ 0, then the correct "magnetic" limit
for an isolated atom is obtained:

(ndt)=1, (ndg)=0. (53)

In general, when 6 is finite the self-consistent solu-
tions are nonmagnetic. The condition for three roots,
i.e., magnetic solutions, is that d(ndt)/d(ndg)( —1.
Using (49)

When the width of the localized level is very small,
according to (54) and (55), a magnetic state is possible
if Tp)Er. In this case, Ett =To+A is below the Fermi
level and is occupied, while Egg Tp is above the Fermi
level and is almost empty.

The critical values of A/5 and (Tp Er)/A a—re
plotted in Fig. 3. Only for a relatively small range of
values do magnetic solutions exist: A/A must be nega-
tive and less than —s./2. This is in remarkable contrast
to the Hartree-Fock results which, in the limit U —+,
only require that Ep& To—A for a magnetic solution.
In the Hartree-Fock theory the average contribution to
the energy from the impurity levels is

To(ndt)+To(ndg)+ U(edt)(ndg). (57)

The energy of a possible nonmagnetic state (n«)
=(ndg)=n is 2Ton+Un' and is proportional to U as
U ~(x).

When the correlation is included, the average energy is

Tp(ndt)+To(ndh)+ U(edtndo&. (58)

pd (E)= (1/s.)A/t {E—Tp—A —U(ed, .))}'+A'$ (59)

so

For a nonmagnetic state, U(edtedq) is finite as U ~~
because no two electrons occupy the impurity levels at
the same time and allow the Coulomb repulsion to
come into play.

In the Hartree-Fock theory, the condition for a mag-
netic state can be written in a similar way to the
Stoner-Wohlfarth condition for the ferromagnetism of
a pure metal. The Hartree-Fock expression for the
density of states is

d(ndt)

d(ndg) or

d(nd, )

d(ed, .) d(ed.),Pd (E)dE, (60)

1 Ep—To—A(1—(ndg)) (EF—Tp)= —-' ——tan —'
2

A(1—(ed'))

A(1—(n.&))
X (54)

{LE —To—A(1—( &)1'+A'(1—( .~&)'}

d( .) "dp"(E)=—U dE
d(nd, ,) „dE
d(ed, +.)=—Upd'(Es) .
d(ed .)

(61)

(62)
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6

FIG. 3. The critical curve plotted
from (55) and (56). In region (1)
magnetic states are possible.

.a-

3

2

7,- FF

The condition for magnetic states that d(eq, )/d(nq, ,) which has a band width 2Es,
&—1 becomes

Upg (Ep))1. (63)

It is not possible to take the correlation effects into
account simply as an energy shift. The modi6cation
of the widths is of equal importance and it is for this
reason that we cannot switch the derivatives in Kq.
(59) and present our results in a similar way to (62).

If for simplicity we make the assumption that the
matrix elements for the d- and band-electron scattering
are constant over the band, explicit expressions for
A(E) and A(E) can be derived. From (36)

~(E)=~l VI'po(E), (64)

where ps(E) is the density of states of the imperturbed
conduction band.

For a parabolic density of states with a band width E0,

b. (E)= r)
I VI sE'~s 0(E&Es (65)

and

A (E)=Qr)
I
V

I
2 (E/Ep)+ (E /Es —1) ln

E+Eo
(68)

A is negative in the lower half of the band and the ratio
A/6 —+ —~ as E+Eo—&+o.

In general the type of band which will favor the
occurrence of a magnetic state is one which has a dip
in the region of the impurity level so that 6 is small,
and is weighted in the lower region so that A. is pre-
dominantly negative. If the impurity level falls either
above or below the band, 6—&0, and it becomes a
discrete atomic level.

When U/A is large but finite, magnetic solutions are
still possible but as U is reduced they eventually dis-
appear. Using (42) a plot of (isst) and (as~i,) is shown in
Fig. (4b) which gives a magnetic state. Equation (43)

QEp,' (66)— (a) (b)

0 is the atomic volume. A is negative only in the lower
half of the band. The magnitude of the ratio A/6
increases towards the bottom of the band.

A more symmetrical density of states that has been
considered by Clogston is

0.5

0
0

~(E)=.
I
VI'(1—(EIE.)')

' A. M. Clogston, Phys. Rev. 125, 439 (1962).

&n,&

(67)
FIG. 4. (a) A plot for values Ez To/A = —3, A/A = —5. There are-

three solutions. (b) The same plot with finite U, U/6=8.
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T,+ 3U-J T.+ 3U-J longer true if the E dependence of the level shift is
included. For a Qat band the polarization is

T.+.2U
T+ 2U-J

i& dA
(~—~' w'—)dE

„dE
(73)

T.+ U-J
T+ U From Gbb" (E) it is also possible in principle to calcu-

late the distribution of the polarization about the
impurity.

Fio. 5. The electron energy levels for an impurity
with two orbital states.

(69)

To calculate the density of states of the band electrons
pb (E) we use the relation

(E 22+2 p)2—dA dA
i , p ~ +—0.——(70—)

dE dE

The density of states deduced from (69) and (70) is

ub'(E) =~p'(E)

dA (E Tp) (E Tp U) —) d—A—
dE E Tp U(1 —(2ig, )) —) —dE

(E—Tp) (E—Tp
—U)

X —A +dP
E—Tp

—U(1 —(2ig, ,))
The polarization is

. (71)

.2(E) .b(E)dE. — (72)

The "compensation theorem" of Anderson and Clog-
ston, that the polarization is zero for a Rat band, is no

~P. W. Anderson and A. M. Clopston, Bull. Am. Phys. Soc.
6, 124 (1961).

is rather too complicated for an analytic expression to
be derived for the value of U/6 at which the magnetic
solution disappears.

When the impurity state is magnetic there is a
polarization of the band electrons. It is partly an
apparent polarization due to the mixing of the states
by the scattering, but there is also a contribution which
is induced by the impurity. The total polarization can
be calculated from G22'(E). From Eqs. (28)—(33)

1
G22'(E)—

2m E—eg

(E—Tp) (E—Tp
—U)

+ I
~d2I' (E-")'

E—Tp
—U(1—(Ag, ,))

IV. DISCUSSION

The results of the preceding calculation indicate that
the correlation of the electrons in the impurity levels
plays an important role in determining whether rnag-
netic states are possible. If the energy shift A is negli-
gible magnetic states do not occur. It is conceivable
that in some dilute alloys that A/A is negative and large
enough for a localized moment to be formed but in
general this does not seem likely.

A dilute alloy of nickel impurities in copper falls
within the scope of the model as the nickel atoms elec-
tively supply only one d orbital to the conduction band
of the copper. In this system localized moments have
not been observed which indicates that our conclusions
are correct.

Our Hamiltonian is inadequate as a description of
dilute alloys in which localized moments have been
observed. For example, to describe manganese ions in
copper the full degeneracy of the d levels should be
taken into account and the intra-atomic exchange be-
tween orthogonal orbitals included.

The Harniltonian

H= Tp(nit+Nib+2222+222b)+ (U—J) (iiii2222+mibiipb)

+U(Ui$81$+Rli222b+02tm2$+@2(222))

can be used for an impurity with two degenerate levels

q i and q 2 where J is the intra-atomic exchange coupling.
If we assume that the lowest level is occupied by a
spin-up electron in the state p&, there are three ways in
which a second electron can be added: (i) to the state
q 2 with its spin parallel to the original electron which
requires an energy Tp+ U—J, (ii) to the state p2 with
its spin anti-parallel to the original electron requiring
an energy Tp+U, (iii) to the spin-down q & state with
an energy Tp+U. The energy of a third electron is
Tp+2U in case (i) and Tp+2U I for (ii) and (iii). —

If the Fermi level of the conduction band lies between
Tp+2U Jand Tp+ U—J—then the levels of an isolated
impurity will be occupied by two electrons with parallel
spins and the impurity atom will have a spin one. The
three-fold degeneracy of the level will be lifted by a
magnetic field and the state 5,= 1 will be occupied.

When the impurity levels are weakly coupled to the
band via an interaction of the form (5), the levels will
be broadened and shifted but their relative positions
will be the same. The "magnetic" state is likely to
persist, for if one of the impurity electrons is scattered
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into the band it is energetically more favorable for an
electron in the same spin state to take its place. Only
when both electrons are scattered into the band can the
impurity spin be reversed. Nevertheless it is not clear
whether there are magnetic states in the sense that
(tsrt+tsst) =2, (tstq+Nsq) =0 or whether (Nrt+Nst)
=(tttg+Nsg) and the total spin changes from the up
to the down state with a relatively long period. In this
latter case, the impurity states cannot be separated by
a magnetic 6eld until the magnetic shift pH exceeds
the widths of the levels 6 so that they can be resolved.
If 6 is small the susceptibility might have a Curie-
Weiss behavior at high temperatures and in large Gelds.

In other alloys, such as cobalt or iron in palladium,
which are best described by Wolff's model, the inter-
actions between the band electrons are important. In
palladium these interactions cause the pure metal to
have a high susceptibility and this is certainly the reason
for the giant moments which have been observed by
dissolving such impurities as iron in the metal.

Another effect which is likely to modify our results
is the s-d exchange interaction

——Q Vkk fs (ckt c„.t —ckl, ck s)(tsdt tsds)—

+ckt ck'kcd4 cdt+ck4 ck'tcdt cd'} ~ (74)

This interaction is more likely to increase the polariza-
tion of the band electrons than to help in forming a
moment. Its effect on localized states has been con-
sidered in the Hartree-Fock approximation by Kim and
Nagaoka. '0

Finally we note the qualitative similarity of our
conclusions and those of Hubbard and Kannamori" on
the parallel problem of predicting the conditions for
ferromagnetism in a pure metal. In both cases the corre-
lation reduces the probability of magnetic states as the
electrons avoid populating orbitals on the same atom
resulting in an effective reduction of the Coulomb re-
pulsion U. In the model of a pure metal there is a

"D. Kim and Y. Nagaoka, Progr. Theoret. Phys. (Kyoto) 6,
124 (1963)."J.Kannamori, Progr. Theoret. Phys. (Kyoto) 30, 275 (1963).

short-range interaction U associated with the orbitals
of all the atoms so that the reduction due to correlation
does not occur quite to the same degree as in an alloy.

When this work was completed we received a report
of the work of Schrieffer and Mattis'2 who have also
considered the correlation effects in Anderson's model.
In our notation they have written the Green's function
Gdd'(E) in the form

Gdd'(E)= (E—Ts—Z, (E)+shE/~E~) ', (75)

where Z, (E) is the proper self-energy and contains the
correlation effects. An integral equation is set up for
Z, (E) which is approximately evaluated in the low-
density limit (tsd )(0.3 or I—(tsd,)(0.3 when the
particle-particle t-matrix graphs give the dominant
contribution.

This can be compared with our expression for Gdd'(E)
which was obtained without the low density restriction.
It can be written in the form (75) with an explicit ex-
pression for Z, (E)

& (E)= ~(ts .—)/LI —~(~—(ts,—.))/(E 7 o)j. (76)

With a self-energy of this form, the assumption of
Schrieffer and Mattis that the spectral weight or density
of states obtained from Gdd'(E) has a Lorentzian form

1
—

~
ImGdd'(E)

~

=—6/[(E—s)'+6'j

is too restrictive except for small or large U. In the
latter case, by molding Gdd'(E) to such a spectral
density, the interesting width effects which we discuss
following (46) are lost.

Despite these differences, our qualitative conclusion
that a single-orbital impurity in a metal is unlikely to
have a moment is the same.
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