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The third-order elastic constants of copper, silver, and gold have been measured at room temperature
using high-purity single crystals. A sensitive ultrasonic interference method was employed to measure small
changes of wave velocities in crystals deformed both uniaxially and hydrostatically at low stress levels.
The results of the measurements were analyzed using finite elasticity theory to obtain the complete sets of six
third-order constants. The values of Cy1; are largest (of the order of 108 dyn/cm?), Cii2 and Cig are about
half of Ci; in magnitude, and all are negative in sign. Almost all of the values of Cizs, C144, and Ciyss are
negative and small compared with the other constants. It is shown that the closed-shell repulsive interaction
between nearest-neighbor atoms makes the dominant contribution to the higher order elastic constants in
noble metals. In this sense, the anharmonic properties are simpler than the harmonic properties of these
materials. The fourth-order elastic constants are also estimated on this basis.

I. INTRODUCTION

IN recent years interest in the study of the anhar-
monicity of crystals has increased considerably.
Some examples of properties of solids which are mainly
or partly determined by the crystal anharmonicity are
thermal expansion, specific heat at high temperatures,
thermal conductivity, temperature dependence of
elastic constants, and damping of high-frequency sound
waves. Anharmonicity is also of importance in the
defect properties of crystals because displacements are
usually large near imperfections. Many approaches
have been developed for treating anharmonicity. Here
we start with the continuum approach, which is
primarily concerned with the nonlinearity between
elastic stress and strain. Finite elasticity theory has
been developed by Murnaghan,! who established the
general stress-strain law in solids. Birch? treated the
theory further in a form more convenient for cubic
crystals. In these theories higher order elastic constants
appear, which are defined as the coefficients in the
expansion of the elastic strain energy of a crystal in
terms of finite strains. If the higher order elastic con-
stants are known, many anharmonic properties of the
crystals can be calculated, at least on the basis of the
continuum approximation. In some cases, the inter-
action energy between atoms can be calculated or
estimated from macroscopic constants in the continuum
model. For these and other reasons, it is important to
determine the higher order elastic constants in crystals.

There have been a rather large number of studies of
the change of the second-order (usual) elastic constants
of crystals under hydrostatic pressure beginning with
that of Lazarus® on KCl, NaCl, CuZn, Cu, and Al
Especially extensive is the work done by Smith and his
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1F. C. Murnaghan, Am. J. Math. 49, 235 (1937); Finite De-
{ogrsrr{()uion of an Elastic Solid (John Wiley & Sons, New York,

2 F. Birch, Phys. Rev. 71, 809 (1947).
3 D. Lazarus, Phys. Rev. 76, 545 (1949).
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co-workers on noble metals* and alkali halides.?* The
full set of third-order elastic constants cannot, however,
be obtained from hydrostatic measurements alone and
other measurements, such as the change of the second-
order constants in uniaxially deformed crystals, are
necessary to determine the complete set. Such experi-
ments were first performed by Hughes and Kelly® on
isotropic materials (Pyrex glass, polystyrene, and
polycrystalline iron). Bateman, Mason, and McSkimin?
first measured the third-order elastic constants for
single crystal germanium and later also for silicon using
the method of analysis developed by them and by
Seeger and Buck.® More recently, third-order constants
of some alkali halide crystals (NaCl and KCl) have
been obtained by Chang® and results for germanium,
magnesium oxide, and fused silica have been given by
Bogardus.' There have been no results on metals up to
the present time because of the difficulty of the experi-
ments. Other techniques for the determination of
third-order constants have also been proposed. When
ultrasonic waves proceed in an anharmonic crystal,
second harmonics of the waves are generated.* When
two ultrasonic waves interact with each other, they
produce additional waves.!? These can be used to
determine the third-order constants, but complete data
for metals have not yet been obtained.

It is of interest to determine the higher order elastic
constants in a homologous series of metals, because the

4W. B. Daniels and C. S. Smith, Phys. Rev. 111, 713 (1958).

5R. A. Miller and C. S. Smith, J. Phys. Chem. Solids 25, 1279
(1964), for example.

%a Note added in proof. Additional results for alkali halides have
recently been given by P. J. Reddy and A. L. Ruoff, in Physics of
Solids at High Pressures, edited by C. T. Tomizuka and R. M.
Emrick (Academic Press Inc., New York, 1965), p. 510.

¢D. S. Hughes and J. L. Kelly, Phys. Rev. 92, 1145 (1953).

7T. Bateman, W. P. Mason, and H. J. McSkimin, J. Appl.
Phys. 32, 928 (1961); H. J. McSkimin and P. Andreatch, Jr.,
J. Appl. Phys. 35, 3312 (1964).

8 A. Seeger and O. Buck, Z. Naturforsch. 15a, 1056 (1960).

9 Z. P. Chang, Phys. Rev. 140, A1788 (1965).

1 E. H. Bogardus, J. Appl. Phys. 36, 2504 (1965).

1 M. A. Breazeale and D. O. Thompson, Appl. Phys. Letters 3,
77 (1963).

2], H. Taylor and F. R. Rollins, Jr., Phys. Rev. 136, A591
(1964); F. R. Rollins, Jr., L. H. Taylor, and P. H. Todd, Jr.,
Phys. Rev. 136, A597 (1964).
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nature of the binding forces in metals is very different
from that in ionic or covalent crystals but should be
very similar in the homologous series. In the present
study, the third-order elastic constants in the noble
metals copper, silver, and gold have been measured at
room temperature by an ultrasonic method and also
the values of the fourth-order constants are estimated.

II. EXPERIMENTAL PROCEDURE

The third-order elastic constants of crystals can be
determined by measuring the change of the second-
order elastic constants or velocity change of ultrasonic
wave velocities when the crystals are strained homo-
geneously by uniaxial or hydrostatic pressure. There
are six independent third-order constants in cubic
(43m, 432, and m3m point group) crystals. Since single
crystals of pure metals are usually very soft and easily
deformed plastically, the applied stress must be very
small. Accordingly, a sensitive method of measurement
for the ultrasonic velocity change, which is usually very
small when the applied stress is small, and a special tech-
nique of specimen preparation were developed. Measure-
ments under hydrostatic pressure were also made in order
to obtain more accurate results. The sensitivity of the
measurements achieved was such that only as little as
60 bar of pressure was necessary.

A. Method of Measurement

A kind of ultrasonic interference method was used to
measure the velocity change. When ultrasonic pulses
are sent into two specimens which have the same path
length but slightly different propagation-wave veloci-
ties, and the pulse echoes from the two specimens are
displayed on the same oscilloscope, interference can be
seen in the echo pattern. If the velocity of the wave in
one specimen is further changed by a small amount,
the positions of the interference nodes are shifted. It is
apparent that this shift is much larger in magnitude
than the shift of the individual echoes.

A Sperry ultrasonic-attenuation comparator unit was
used to produce and receive the ultrasonic pulses.
X-cut or AC-cut, 10-Mc/sec, quartz transducers,  in.
in diam, attached to the specimen faces with Nonaq
stopcock grease, produce the longitudinal or transverse
waves. The specimens were approximately 16-mm
cubes. The volume of the specimen irradiated ultra-
sonically was limited by an electrode 1% in. in diam, so
that velocity changes in the nearly uniformly stressed
region were measured. 10-Mc/sec fundamental waves
were always used because of the rather high attenuation
of the specimens at higher frequencies.

One specimen was stressed uniaxially by the loading
machine or compressed hydrostatically in the pressure
vessel. A Tinius Olsen loading machine with capacity
of 2000 kg and an electronic controller holding the load
constant was used to compress the specimen uniaxially
and measure the stresses. Load readings were recorded
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on chart paper. The machine was calibrated by dead
loads and the error was less than 0.39 of full scale in
the 100-kg range. The specimen was compressed
between two flat stainless-steel plates. Indium shims,
0.03 in. in thickness and 99.999, pure, were inserted
between the specimen and the plates. A steel ball was
put into hemispherical holes on the upper plate and
pushed by the cross-head plate of the machine. In the
hydrostatic measurements a pressure vessel, into which
gas pressure was applied from a nitrogen tank, was
made from stainless steel. The pressure could be
increased and decreased by well-controlled small
amounts with needle valves. A Heise Bourdon-tube
pressure gauge, 150 kg/cm? in capacity and accurate
to 0.19 of full scale, was connected to the pressure
vessel.

The other specimen was set on a holder in a tempera-
ture vessel immersed in ice water. There were two
heaters inside the vessel. One was large and maintained
the temperature of the specimen at a nearly constant
value, and the other was small and changed the tem-
perature slightly but rather quickly. Chromel and
advance thermocouple wires, 4 and 5 mil each in diam
were calibrated from the ice point to room temperature
against a National Bureau of Standards calibrated
Pt-[Pt4+Rh(109%,)] thermocouple. The difference of
the thermoelectromotive force of two thermocouples
attached to two specimens was balanced by a Rubicon
Model 2768 six-dial thermal-free potentiometer. The
output of the potentiometer was connected to a Leeds
and Northrup dc amplifier and recorder. The gains of
the amplifier and the recorder were adjusted so that
full-scale deflection of the recorder corresponded to
10-xV unbalance in the potentiometer (about 1/5°C in
the temperature difference of the two specimens).

At first the temperature of the specimen in the tem-
perature vessel was kept at a convenient point between
ice and room temperature to produce the ultrasonic
interference pattern, and two pulse echoes on both
sides of an interference node were observed. A marker
line in the oscilloscope was set to pass through the tops
of these two echoes. The stress applied to the other
specimen was then increased by AP, producing a small
change of wave velocity in this specimen. The height
of one echo pattern increased and the other decreased
because of the shift of the interference node. Then the
temperature of the specimen in the temperature vessel
was changed by changing the current in the small
heater until the two echoes returned back to their
original heights. At this moment the change of the
temperature difference of the two specimens 67" was
measured on the recorder chart. The speed with which
the temperature of the specimen can be changed is
limited by the necessity of keeping the temperature
gradient in the specimen small. The wave-velocity
change with stress in one specimen can be obtained if
the temperature coefficient of the velocity of the other
specimen is known. The uniaxial stress was usually
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increased up to 25-30 kg/cm? and again decreased in
2.5 kg/cm? steps in one run of the experiments, while
the hydrostatic pressure was changed up to 60 kg/cm?
in 5 kg/cm? steps. The temperature of the compressed
specimen always drifted a small amount, but this
produced almost no effect because it was only necessary
to measure the temperature difference between the
two specimens.

The temperature coefficient of the wave velocity was
determined after each run of the compression measure-
ment also using the interference technique. It can be
shown®® that when there is a velocity difference AW in
two specimens, and the first interference node occurs
at the nth pulse echo, AW/Wo=1/(2ftsn), where W is
the reference velocity (velocity at room temperature),
fis the frequency and f is the time between two echoes.
The temperature coefficient of the velocity (AW/W)/
AT can be calculated from the slope of the 1/% against
AT curve, which can be obtained by changing the tem-
perature of one specimen from the ice point to room
temperature and measuring the temperature difference
AT of the two specimens when the height of the nth
echo takes on its minimum value. Some examples of
such plots are shown in Fig. 1.

Finally we can obtain the velocity change by a stress
increment AP, from the relation, (AW/W,)/AP
= (80T /AP)X (AW /W,)/AT. The temperature differ-
ence of the specimens can be measured to 2X10~%° C on
the recorder chart and the temperature coefficients of
the velocity of sound in metals are usually of the order
of 1074°C, so that the sensitivity of the measurement of
the velocity change can be as high as 1077 in the
optimum case. The sensitivity decreases when the at-
tenuation of the specimen is high and only a few echoes
are available. The mean value of the sensitivity we
obtained was around 5X10~8.

We should note here that we measured the change of
the “natural velocity,” which is defined as twice the
path length of the specimen in the reference (unde-
formed) state divided by the round-trip time of waves
in the final (deformed) state, because it is the change of
the round-trip time that was always observed.

The positions of the interference nodes are also
shifted slightly if the ultrasonic attenuation in the
specimen is changed. The change of attenuation with
compression was checked before each run, and it was
found that the change was so small (less than 0.002
dB/usec for the maximum stress) that the effect was
negligible.

B. Preparation of the Specimens

Copper, silver, and gold specimens were supplied by
Semi-Elements, Inc. according to the following specifi-
cations. Single crystals were made by the Bridgman
method using 99.99959, pure materials. Two specimens

( ‘35R). P. Espinola and P. C. Waterman, J. Appl. Phys. 29, 718
1958).
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Fic. 1. Inverse of number of echoes to the first interference node
1/n against temperature difference between two specimens 7.

which have (001), (110), and (110) faces 15X16X17
mm in size were cut from the center part of the ingot.
The accuracy of these orientations was better than %
degree. The specimens were chemically etched after
cutting to remove the worked layer.

The specimens were compressed in the (001) and
(110) directions to a stress of 30 kg/cm? with the loading
machine. All six faces of each specimen were then
polished until the parallelness and flatness of each face
were better than 5/100 000 in. The lengths between
two equivalent faces in two specimens were also ad-
justed to be as nearly matched as possible, i.e., until
no interference occurred in the pulse-echo pattern when
the temperatures of the two specimens were the same.
The specimens were set in a special aluminum holder
and polished by hand using 2-0 and 4-0 emery paper on
a flat glass plate. Parallelness and flatness were checked
by an optical-lever apparatus.

Dislocations in pure metal single crystals are known
to be easily movable. If this happens during the meas-
urements, a large velocity change due to the dislocation
modulus defect could occur, and the true velocity
change resulting from purely elastic deformation of the
lattice might not be obtained. It is well known that the
apparent elastic range (range where the stress is linear
with strain) is increased by prestressing the crystal,
probably as a result of the tangling or interaction of
many dislocations produced by the plastic deformation.
Further plastic deformation continues when the stress
is again increased above the prestress level. Similar
behavior can be seen in the velocity change against
stress curves in Fig. 2. The velocity change is almost
linear until the stress approaches the prestress value,
after which drastic changes occur above the prestress
level. If the prestress level was increased, the linear
range was extended to the new prestress value. It may
be supposed that no over-all movement of dislocations
occurs below the prestress level. Usually, measurements
were carried out in such a range of stresses. Sometimes
there are deviations from linearity in the initial part of
a run (low stress part for increasing stress runs and
high stress part for decreasing stress runs). These may
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be due to the defect modulus change by depinning of
dislocations from point defects, which should disappear
when all breakable pinning points are exhausted.

III. RESULTS

A. Experimental Data

1 1 L ! L
o 5 0 15

kg
*’(c—n«)

F16. 3. Velocity change with uniaxial stress in copper.
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The numbers attached to these curves are those which
appear in the first column in Table I. In the case of
gold, the change was so small for case 7 that the slope

T T T T T

70 - -
Ag 2

Nine uniaxial and five hydrostatic measurements
were carried out for each material with various direc-
tions of compressing the specimens using various
propagation and polarization directions of the ultrasonic
waves (Table I). The results are gathered in Figs. 3-8.

TaBLE L. Fourteen sets of measurements used.

<
o)
Direction of Direction of Direction of x
No. compression propagation polarization %, °
1 001 110 110
2 001 110 110
3 001 110 001
4 110 001 001
5 110 001 110
6 110 001 110
7 110 110 110
8 110 110 110
9 110 110 001
10 all 001 001 —a0
11 all 001 110 )
12 all 110 110 o 5
13 all 110 110
14 all 110 001

i)

Fi16. 4. Velocity change with uniaxial stress in silver.

kg
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could not be determined with sufficient accuracy to be
included. Straight lines fitting the data points were
determined by the least-mean-square method, the
values of AW /W, being shifted so that the lines passed
through the origin. Some points which apparently
deviate from linearity were omitted to determine the
lines. Each measurement was made with both increasing
and decreasing stresses. Only the decreasing stress runs
are shown in the Figs. 3-8 for the purpose of clarity in
the figures.

The slopes of the lines for increasing and decreasing
stresses are sometimes slightly different, as can be seen
in Fig. 2. This may be partly due to a small contribution
from dislocation movement, and partly to the measuring

[o] 5 10 15 20 25
kg
P(ems)

Fic. 5. Velocity change with uniaxial stress in gold.

method because the differences, although smaller than
those in the uniaxial cases, also exist in the hydrostatic
case where dislocations should be unaffected. Non-
uniformity in the temperature and the stresses in the
specimens may be the main sources of the errors.
Irregularities are seen in the points near the origin
which are rather large in the hydrostatic cases. These
may be the effect of changes of thickness with pressure
of the adhesive material between the specimen and the
transducer. The difference between the slopes of curves
11 and 14, which should be equivalent, is reduced when
the mean value of the slope for both increasing and
decreasing pressure is used.
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Fia. 6. Velocity change with hydrostatic pressure in copper.

The adiabatic second-order elastic constants were
also measured at room temperature by the usual ultra-
sonic technique. The results are shown in Table II

T T T T T T T

AW . 1na
WoxlO
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Fic. 7. Velocity change with hydrostatic pressure in silver.
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F16. 8. Velocity change with hydrostatic pressure in gold.

together with the data by other authors on Cu, Ag,
and Au.’® These quantities were not of primary interest
in the present experiments, but the agreement is seen,
nevertheless, to be good.

B. Analysis of the Data

Third-order elastic constants of the three materials
have been calculated by analyzing the data of the
velocity changes with stress. When the elastic energy
of the crystal is expanded in a series of strains, elastic
constants are defined as the coefficients of the terms of
the series.? Here we follow the definitions of Brugger,'
who defines the adiabatic and the isothermal nth order

TasLE II. Second-order adiabatic elastic constants
in copper, silver, and gold (in 10 dyn/cm?).

Cu Ag Au Author

1 1.661 1.222 1.929 Present
1.684 1.240 1.923 a, b

12 1.199 0.907 1.638 Present
1.214 0.937 1.631 a, b

c44 0.756 0.454 0.415 Present
0.754 0.461 0.420 a, b

a Reference 14.
b Reference 15.

“4W. C. Overton, Jr., and J. Gaffney, Phys. Rev. 98, 969
(1955).

15 J, R. Neighbours and G. A. Alers, Phys. Rev. 111, 707 (1958).

16 K. Brugger, Phys. Rev. 133, A1611 (1964).
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elastic constants as
Sitpg--=po(0"U/IMudnpq- * s,
Tikpqg---=po(0"F/jx0npq- - )1, 1)

where U and F are the internal energy and the free
energy per unit mass of crystal, .S and 7 are the entropy
and the temperature, and p is the density of the crystal
in the undeformed state. The 5;’s are the Lagrangian
strain components:

1 0xy 0% L.
"7i1=_<'— ——8ii) ’ (/l‘)];k= 1:273) ’ (2)
2\da; da;

where a; and w; are the Cartesian components of a
material particle in the unstrained and strained states.
Summation over all repeated indices is hereafter always
implied.

The changes of the apparent second-order elastic
constants pV? where p and V are the density and the
velocity of sound in the deformed crystal, with stress,
can be calculated from the finite elasticity theory.”-8
The density and the path length are, however, also
changed by stresses, and they must be properly cor-
rected to calculate the third-order constants. A con-
venient method of analysis was developed by Thurston
and Brugger'’'® by solving the equations of small-
amplitude waves in a homogeneously deformed crystal.
They calculated the change of the quantity pol#? with
stress p where po is the density of the crystal in the
undeformed state and W is the “natural velocity,”
both of which can be directly obtained from the
measurements. The general expressions are

—[0(pl¥?)/0p Jp—o= (N-M)*+2wF+G,
w= (poW2)p=0=SpresN N U, U,
F=8Tub,~sMaMbUrUs 5
G:sTabquuvprquaMprNqUrUs ) (3)

for uniaxial stress. ¢$ and sT are the second-order
isentropic stiffnesses and isothermal compliances, and
the third-order stiffnesses C are isothermal strain
derivatives of isentropic second-order stiffnesses. These
are evaluated at the undeformed state of the crystal.
M, N, and U are the unit vectors along the direction of
stress, direction of propagation, and polarization of the
waves in the absence of the static stress. The formulas
for the hydrostatic case can be obtained by putting
(N-M)=1, M,=M»=1, and a=»5. A linear combina-
tion of third-order elastic constants G can be obtained
by measuring the change of the natural velocity with
stress and using the values of the second-order elastic
constants in the undeformed state. The explicit expres-
sions for the cases of pure mode waves in a cubic crystal
are given in their paper.}”

( 7 R. N. Thurston and K. Brugger, Phys. Rev. 133, A1604
1964).
18 K. Brugger, J. Appl. Phys. 36, 768 (1965).
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We determined six third-order elastic constants in
each material using 14 sets of measurements, nine
uniaxial and five hydrostatic cases and increasing and
decreasing stress runs for each of them. A weighted
least-mean-square method was used to obtain the most
probable values and their probable errors. The hydro-
static measurements were considered to be more reliable
than the uniaxial ones because of the absence of diffi-
culties such as dislocation movement or nonuniformity
of the stresses in the specimens. The internal consis-
tency among the different measurements was at first
checked. There are some identities between G’s in
Eq. (3) when they are applied to the simple cases we
used for measurements, namely,

G1+Gaot+Gs=G4+Gs+Go,
and G¢=G, for the uniaxial cases and
G1+G11=G1+Gus,

and Gu=Gy for the hydrostatic cases where the
suffixes are the numbers in the first column in Table I.

L Cm 8

Cuz
sl
o Cie6 c
@ o
3]° dos S|E
o 4 ©lo
[=} o
= 0\0\0 o

o

Case ¢
Cia3,

r -0
Ciss

4 1 1 1 ! 1 1
Cu Ag Au Cu Ag Au

F16. 9. Second- and third-order elastic constants
in copper, silver, and gold.

The percentage deviations of the measured values from
these identities

[e.g., 100X | (G1+Ge+Gy)— (Gs+Gs+Ge) |/
(G1+Ga+Gs+Gi+-Gs+Ge) ]

were 16.1, 9.9 and 15.09, for Cu, Ag, and Au in uniaxial
cases and 3.6, 1.5, and 1.49, in hydrostatic cases for
the mean values of the two identities. Different weights
inversely proportional to the above values were put in
for uniaxial and hydrostatic measurements, respec-
tively. Each measurement is also considered to be more
accurate when the difference of the two values of G’s
for increasing and decreasing stress runs is small, and
different weights were given to each of the measure-
ments. The mean values of the percentage differences
of the two G’s were 4.2, 7.4, and 5.69, for Cu, Ag, and
Au in the uniaxial cases and 1.8, 0.8, and 0.99] in
hydrostatic cases.

The final results are tabulated in Table III. The
probable errors found are comparable to those obtained
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TasLE III. Third-order elastic constants in copper,
silver, and gold (in 10 dyn/cm?).

Cu Ag Au
Ciu —12.7140.22 —8.43+0.37 —17.294:0.21
Cuz —8.1440.09 —5.29£0.18 —9.224£0.12
Cigs —0.50+0.18 +1.894-0.37 —2.334-0.49
Ciaa —0.03£0.09 +0.56+0.26 —0.13+0.32
Cies —17.80+0.05 —6.37£0.13 —6.48+0.17
Cass —0.95:0.87 +0.83-£0.08 —0.12+0.16

in the earlier work on germanium.” These values are
plotted in Fig. 9 together with three independent
second-order elastic constants B=%(c1’+2¢127),
C=c4T, and C'=3}(c1u"—c12"). It is interesting to note
that regular changes of these constants are seen in the
homologous series of noble metals.

C. Comparison with Other Experiments

No other data are available at the present time with
which to compare the complete set of third-order elastic
constants in metals. There have been studies of the
changes of the second-order elastic constants of noble
metals under hydrostatic pressure.?# The results are
summarized in Table IV together with our values which
were obtained from our data of the velocity changes
under pressure after correcting for changes of density
and path length with pressure by the usual method.* In
some cases discrepancies are seen in these data, but
they are not systematic. Our values were calculated
from five independent measurements for one specimen
and the internal consistency between these five measure-
ments was very good. The main difference in the three
experiments is that both Lazarus and Daniels and
Smith measured values up to 10000 bar while the
pressure range is very low in our case (60 bar at maxi-
mum pressure). An advantage in working at low
pressures is that no attenuation changes occur during
the pressure cycling. For the high pressure (to 10 000

TasLE IV. Pressure derivatives of second-order elastic
constants of copper, silver, and gold.

Cu Ag Au pmax(atm)  Author
dac/dp 2.63 3.04 1.52 60 Present
0.83 cen cee 104 a
2.35 2.31 1.79 104 b
dac'/dp 0.375 0.755 0.380 60 Present
0.566 oee .. 10¢ a
0.580 0.639 0.438 10t
dB/dp 5.44 4.11 5.21 60 Present
3.01 v ... 104 a
5.59 6.18 6.43 104 b
5.3 5.1 4.6 3X10 c
4.1 4.5 5.5 5X108 d
4.8 5.6 5.2 4X10¢8 e

a Reference 3.

b Reference 4.

¢ P, W, Bridgman, Proc. Am. Acad. Arts Sci. 77, 187 (1949).

d M. H. Rice, R. G. McQueen, and J. M. Walsh, Solid State Physics,
Vol, 6, p. 1 (Academic Press Inc., New York, 1958).

e L. V. Al'tshuler, K. K. Kruprikov, B. N. Ledenev, V. I. Zhuchikhim,
and M. I, Brazhnik, Zh. Eksperim. i Teor. Fiz. 34, 874 (1958) [English
transl.: Soviet Phys.—JETP 7, 606 (1958)].
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bars) experiments, it was found that the difference in
compressibility between the quartz and the specimens
stresses the specimens sufficiently to change the
attenuation and even to shatter the quartz transducer
each time a set of pressure runs is made. The values
listed for dB/dp in the last three rows of Table IV are
derived by differentiation of pressure-volume data at
very high pressures. There seems to be no systematic
trend.

IV. DISCUSSION

The elastic constants of a crystal at zero temperature
can be calculated when the energy density of the crystal
is known as a function of the elastic strains. In the case
of typical alkali halide crystals, the Born model of
ionic solids can be adopted as a good approximation.
The total energy of the crystal can be obtained by
summing up the interaction energy between ions, using
the Born-Mayer potential and the Coulomb potential
as the short-range repulsive and the long-range attrac-
tive contributions. These potentials are functions of the
ion separation which can be expressed in terms of the
strains in the crystal. In this way, one can calculate the
elastic constants of any order. Several authors!®*—! have
calculated the third-order elastic constants in NaCl-
type and CsCl-type crystals, obtaining fair agreement
with the (incomplete) data available so far.2!

The situation is more complicated in metals. It is
closely related to the problem of calculating the cohesive
energy of metals, and the aspects are different in metals
of different kinds. Fuchs® treated the cohesion of
monovalent noble metals (Cu) using the method of
Wigner and Seitz,® and calculated the second-order
elastic constants of Cu and also of alkali metals (Li, Na,
and K). According to his method the total energy of
the lattice is divided up for convenience into the follow-
ing terms: the kinetic energy in the lowest electronic
state, the Fermi energy of the electrons, the potential
energy between ion-ion, electron-electron, and ion-
electron pairs, the van der Waals energy between the
ions, and the exchange energy due to the overlapping
of the closed shells of the ions. The noble metals Cu,
Ag, and Au differ from the alkali metals in that the
closed d shells overlap much more than do the closed p
shells of the alkalis. The exchange-repulsion term does
not contribute much to the total lattice energy, but it
makes a major contribution to the elastic constants.
For example, the contribution of the exchange repulsion
to the shear constants 3 (ci1—c12) is about eight times
that from the electrostatic energy of the valence elec-

18 H. Bross, Z. Physik 175, 345 (1963).

% A. A, Nran’yan, Fiz. Tverd. Tela 5, 177 (1963); 5, 1865
(1963) [English transls.: Soviet Phys.—Solid State 5, 129 (1963);
5, 1361 (1964)].

2 P, B. Ghate, Phys. Rev. 139, A1666 (1965).

2 K. Fuchs, Proc. Roy. Soc. 151, 585 (1935); 153, 622 (1936);
157, 444 (1936).

% E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933); 46, 509
(1934); F. Seitz, Phys. Rev. 47, 400 (1935).
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trons and ions in the case of Cu, but the former is only
one part in 70 of the latter in the case of Na.2

The contribution of the closed-shell repulsive term
becomes more and more predominant in the higher order
elastic constants in the noble metals. When the total
energy of the crystal is expressed as a function of the
interatomic separation #, the energy has a minimum at
the equilibrium separation 7,. The total energy of noble
metals can be separated into two terms: the interaction
energy between closed shells U, and the energy from
all other sources U,. The latter changes slowly and
monotonically with 7 near the equilibrium position 7=r,
in the case of the noble metals.?® It may be reasonably
assumed that U, also changes slowly and monotonically
with homogeneous relative displacements of the atoms.
Then we can expand U, in a power series of the strains
of the crystals 7;; and the expansion coefficients become
expansion. The energy U, can meanwhile be treated as
the sum of repulsive energy terms between ions w(r),
which are of an additive, short-range, two-body, central
force type.

The total energy of the crystal per unit volume
U=U+U, can then be expressed as

U= (1/2V¢) 2 w(7)
+ fot fitutneatnss)+ fo(nietn2s+n31)
+ fr (2 4ns8) + fra(nuamaat-neemss+nsamr)
+f44(ﬂ122+7}232+n312)+f111(n113+77223+71333)
‘l‘fnz{"ln2 (7)22+7)33) + 7)222 (7133+7711) +77332 (7711+7]22)}
+f123 (71117]227733)+f456 (7]127]237731)
+f144 (771117232+7’)2277312+773377122)
‘i‘fw(s{nm2 (7711+7722)+77232(7722+7733)+77312 (7733+7711)}
+ fun et nsH+- -, (@)

where Vy is the volume of the elementary cell, w(r) is
the energy per ion pair, #;;’s are the strains defined in
Eq. (2), and the f’s are constants. The difference of the
square of the separation of two material particles in the
deformed and undeformed states is*!

rP—rg*=2 Zﬂ £abpnag, (0‘76= 1:2;3) ’ (5)

where £, is the difference of the Cartesian coordinates
of the particles in the undeformed state, and

0 1d
=Eakg o £aeD. (6)

r ar

IMap

The elastic constants can be obtained by the definition
in Eq. (1):

Ciir= (0°U/ 01:j00k1) 1=rq , ™

Cijkimn= (63U/a77ij677kla77mn)r=roy (8)

Cijlclmnop= (34U/677ija77kl‘977mna770p)r=ro; (9)

#N. F. Mott and H. Jones, The Theory of the Properiies of
Metals and Alloys (Clarendon Press, Oxford, England, 1936), p. 149.
% See, for example, Fig. 58 on p. 145 of Ref. 24.
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and there is no difference between the isothermal and
adiabatic constants because we are considering the
values at zero temperature. These constants are (ex-
pressed in the contracted notation):

1= (1/2 Vo) 3 214[D2‘w:|,=,0+ 2f11, etc., (73.)
Cii= (1/2V¢) X 5[ D% pmrg+6f111, etc., (8a)
Cllll= (1/2Vo) Z 518[D4w],=,o+24f1111, etc. (93.)

If only the nearest-neighbor interaction is taken for the
repulsive term and the values of all twelve sets of values
of &s (s1=7¢/V2, £2=r0/V2, £,=0, etc.) are summed up,
one obtains

c11= (1'04/ Vo)[:Dzw]r:m-I—an,

c12= (ro"/2V o) [D%0 Jrmryt fr2, (7b)
cas= (rd*/2 VO)[Dzw]r=ro+ 2f 44,
Ciu= (7/2V ) [D*® ] rerg+ 6111,
Cr1e= (ro%/4V ) [D*w]rmry+2 f112,
Ci23= f13,
Cas6= f156,
Crs=2f144,
Cis6= (70°/4V 0) [D*w Jrmryt2 f166,
(etc., for higher orders). (8b)

If f11, f12, and fu are omitted in Eq. (7b), the relations
c11= 2c12= 2c44 are obtained. These are far from satisfied
in noble metals (Table II); that is, it is necessary to
know the contributions from U, to calculate the second-
order elastic constants. When the f’s are omitted, the
relations for the third-order constants become

C111=2C112= 2C16,

C123=Cy56=C144=0. (10)

The measured values are more closely described by
these relations (Table III) than is the case for the
second-order constants, which means that the closed
shell repulsive contribution becomes more predominant
in the third-order constants than in the second-order
constants. Milder relations (Cauchy relations for the
third-order constants) hold generally for the central
force case: C11a=Cie6 and Cia5= C144= Cs56. These seem
to be well satisfied, especially in the case of Cu, which
shows that a central-force-type interaction makes the
dominant contribution to the third-order elastic con-
stants, at least in Cu. Such relations should be checked
at zero temperature, but the temperature dependence
of the elastic constants would not be expected to be
large enough to modify this tendency very much.

It may be a good approximation to use only the
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repulsive term for the fourth-order elastic constants.
There are 11 fourth-order constants in cubic crystals.2®
By the same argument, we obtain the relations

C1111= 2C1119= 2C1120=2C1155= 2C1266= 2C 1444,
Cr23= C1144= Cra55= Cra56= Ca455=0. (11)

These relations are useful in estimating these constants
because direct measurements of the fourth-order con-
stants in the usual way may be difficult, if not im-
possible, at the present time.

We may proceed further by assuming a Born-Mayer-
type potential

w(r)=A4 exp[—B(r/ro—1)] (12)

for the repulsive term. Using Eq. (8b) and similar
formulas for the fourth-order constants and omitting the
terms from other than the repulsive closed-shell
interaction, we obtain

Cin=—AB(B+3B+3)/2V,, (13)
Cun=AB(B+6B>+15B+15)/4V,.  (14)

The ratio of the two elastic constants depends only on
the “hardness” constant B. Mann and Seeger have
estimated the values of the parameters 4 and B in noble
metals semiempirically in several different ways.?” Their
value of B varies from 12 to 24 for Cu, Ag, and Au
according to the methods and parameters which appear
in each method. Using Egs. (13) and (14) the ratio of
fourth- order to third-order constants can then be
estimated as —C1111/C111= 7-14. Thus, the fourth-order
constant is positive in its sign and several times larger
than the third-order constants.

In conclusion, the assumption that the ion core
repulsive term contributes predominantly to the higher
order elastic constants of noble metals seems to give a
fair account of the measured values. It may be interest-
ing to measure the third-order constants in noble metals
alloyed with divalent elements to study the contribution
from the valence electrons. Also interesting would be
measurements of the higher order constants in metals
such as aluminum, the ionic radius of which is much
smaller than that of noble metals so that the ion-ion
core repulsion may not predominate over other terms.
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