
P H YSI CAL REVIEW VOLUME 144, NUMBER 2 15 AP R IL 1966

Accurate Numerical Method. for Calculating Frequency-Distribution
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A new method of calculating absolute phonon frequency-distribution functions, which is an extension
of the extrapolation method developed by Gilat and Dolling, is presented for cubic crystals. The method in-
volves dividing the irreducible section of the 6rst Brillouin zone into a cubic mesh and approximating the
constant-frequency surfaces inside every small cube by a set of parallel planes. This method proves to be of
high precision and resolution in obtaining 6ne details associated with a given model, and it requires relatively
short computing time. Applications have been made to nickel, aluminum, and sodium, for which there exist
satisfactory force-constant models. New critical points have been found for Al at r =7.104&0.006 THz and
for Na at v =2.856&0.010 THz. Certain critical points associated with the longitudinal phonon band have
been resolved more sharply than in earlier calculations.

I. INTRODUCTION

'HE frequency-distribution function g(v) of the
normal modes of vibration of solid crystals is of

key importance for understanding many properties of
solids (e.g. , thermodynamic properties, infrared scatter-
ing, and superconductivity). This distribution function
can be obtained directly from experiment' for cubic
crystals by using incoherent inelastic scattering of slow
neutrons. Such experiments have actually been per-
formed on vanadium ' ' nickel, ' ' and titanium, ' which
have large cross sections for incoherent scattering. Un-
fortunately, the energy resolution of these experiments
is still too poor to reveal fine details about g(v), such as
the location of the critical points. Moreover, the num-
ber of materials having sufficiently large incoherent
cross sections is limited. However, g (v) can, in principle,
be calculated from the data on coherent inelastic scat-
tering of slow neutrons, which yield the dispersion
curves of the normal modes of vibrations.

In order to calculate g(v) from the dispersion curves,
it is necessary to assume some force model. This is
usually obtained by 6tting a set of force constants to
the dispersion curves and to the elastic constants. These
force constants give in return the value of the dynamical
matrix at every point q in the first Brillouin zone of the
appropriate reciprocal lattice. Usually the dispersion
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curves are obtained in high-symmetry directions and
then analyzed by the Born —von Karman theory to ob-
tain the force constants. It might be debated to what
extent this theory is able to predict the correct fre-
quencies in off-symmetry directions in view of its pos-
sible inadequacy as a good physical description of the
dispersion curves. This problem, though serious, is ir-
relevant to the present article, which is concerned with
a new method of computing g(v). The method is capable
in principle of calculating g(v) from any force model,
provided the model is able to produce a dynamical
matrix at any point g in the first Brillouin zone. Hence,
the validity of the Born —von Karman theory, which is
still the best available theory in many cases, is by no
means essential to the method.

Methods for calculating g(v) are described at length
by Maradudin, Montroll, and gneiss. ' The simplest and
most straightforward is the root-sampling method, in
which one solves for the eigenvalues of the dynamical
matrix at as many as possible points that form a uni-
form mesh in the irreducible section of the first Brillouin
zone. The main objection to this method is on the
grounds of its being slow, since in order to obtain a
reasonably good sampling, one needs a very large num-
ber of matrix diagonalizations. Gilat and Boiling
have recently introduced the so-called "extrapolation
method, " which increases enormously the sampling
size and thus improves considerably the resolution in

frequency. This improved resolution allows a better
determination of the fine details of the spectrum g(v),
such as critical points and abrupt changes in slope. The
present method is a further extension of the extrapola-
tion method to a point where it eA'ectively extracts "all"
frequencies out of the 6rst Brillouin zone. Therefore, it
should not be classified as a sampling method, but as
a method of calculating absolute g (v). This method will

be developed here only for cubic systems, but it can
be generalized to more complicated systems.

7 A. A. Maradudin, E. W. Montroll, and G. H. Weiss, in Solid
State Physics, edited by F. Seitz and D. Turnbull (Academic
Press Inc. , New York, 1963), Suppl. 3.
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G. THE METHOD

As mentioned in the Introduction, we shall assume
that a certain force model is available, from which the
elements of a dynamical matrix D,P(q) can be derived
at every given reduced wave number q (i, j being in-
dices running from 1 to 3r, where r is the number of
atoms in the primitive unit cell). For simplicity we shall
assume that the masses of the different atoms are al-
ready included in the expressions of Dgo(q). In order
to obtain the frequencies appropriate to g, one has to
solve the following secular equation:

"o(q)—4 2 2p~ "1=0
where 6;, is the Kronecker delta. The dispersion rela-
tions at q will be satisfied by the 3r eigenvalues obtained
from Eq. (1).Let us denote by U(q) the unitary matrix
(orthogonal for cases with symmetry of inversion)
which diagonalizes D'(q). The solution for the eigen-
values can be written as

Ut(q) D'(q) U(q) =&'(q),

where A.o(q) is a diagonal matrix satisfying

A~/(q)=4~'vs(q) (j=1, 2, ",3v). (3)

The idea behind the extrapolation method' is to solve
for the eigenvalues vo; at evenly spaced points in reci-
procal space and then to And other solutions in between
by means of a Taylor expansion about each such point
for each eigenvalue. By choosing the points for diago-
nalization sufficiently close together, all of the reciprocal
space can be reached by linear extrapolation. In order
to obtain such an expansion, it is necessary to calculate
the gradient of the frequency v, (q). Among several pos-
sible ways to do this, the quickest is a numerical
method, in which one applies successively small arti-
ficial changes to each of the three Cartesian components
of q and thus derives three slightly modified dynamical
matrices D (q+e 5q„), where i is a unit vector along
the nth Cartesian axis and 8q a small increment. We
then form the changes 4 (q) in 9', defined by

~"(q) =D"(q+~-~V-) —D"(q)

By applying perturbation theory one obtains

where p, is the change in the jth eigenvalue of D'(q)
when the o,th component of q is changed by 6q . The
element 6; is given by

6;,' (q) = (U$ (q) cL (q) U(q) );;, (6)

to a first-order approximation. As has been shown by
Gilat and Dolling, ' e, can be approximated by 6;,' to
a good degree of accuracy, so that Eq. (5) reduces to

Using Eqs. (7) and (3), we obtain

~;;"(q)8v; 1
(grad, v;) =

8g 8»rpvp, (q) 8q

In the extrapolation method' one determines the
value of v, (q+hq) from the value of vp;(q) by using
gradpv; as obtained from Eq. (8), i.e.,

v;(q+Aq) = vp~(q)+ (grad, v; Aq). (9)

where 5 is the area of a plane confined by the cube
(hereafter to be called cross-section area) and dq is the
thickness of the volume element. Our next interest will
be to investigate the variation in the cross-section area
when a plane with a given normal sweeps across a cube.
I.et us denote the direction cosines of the gradient in
Eq. (8) by /i, l2, and /, ; without loss of generality we
can assume that

lg&l &1 &0,

since the coordinate system for every small cube can
be relabeled accordingly. We also denote by m the dis-
tance of any plane from q, and the cross-section area

9 The cases l3 ——0 and l2 ——l& =0 do not pose any dificult analyti-
cal problem, and can be worked out easily. However, choosing
a shifted mesh (as described in Ref. 8}, the case l3 ——0 can occur
only accidentally, i.e., the probability for its exact occurrence is
nil, and so it can be ignored.

In the actual application of the extrapolation method,
the irreducible section of the 6rst Brillouin zone is di-
vided into a uniform simple cubic mesh of points q,
separated by a distance 2b. Every g, is at the center of
a small cube throughout which extrapolation is carried
out, usually' to a finite number of points, by using Eq.
(9). This results in a very substantial increase in the
total sampling size. Each cube is properly weighted as
required by the symmetry of q, .

With the present method we extract "all" frequencies
out of the small cube containing each q, and thus obtain
a complete frequency distribution from the sum of the
contributions of all the cubes. Let us consider one of
the eigenfrequencies vp;(q, ) obtained at q, . In general,
this frequency belongs to a constant-frequency surface
passing through q, . By introducing a small change dv,
one can 6nd a new constant-frequency surface to which

v»(q. )+dv belongs. The number of frequencies which
lie in the range between vp, (q,) and vp;(q, )+dv is pro-
portional to the volume of the layer confined by these
surfaces. In the present method we assume that linear
extrapolation holds good within every small cube; sur-
faces of constant frequency are then replaced by parallel
planes perpendicular to (grad, v;)»», . The volume ele-
ment dV falling between two such consecutive planes
is proportional to the number of frequencies lying be-
tween v; and v+dv, and as dv approaches 0, it can be
approximated by

(10)
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(g} -W~ N~

-Wp

-W4 W4

These expressions, as well as their Grst derivatives,
are all continuous at their respective boundaries and
the integral of $(w) over the total range yields the
volume of the cube. Equation (12) implies that $(w)
is an even function of m, so that for m(0, m should be
replaced by its absolute value. In Fig. 1 we show sche-
matically a typical behavior of $(w) as w varies over
the different ranges. The figure on the left-hand side
refers to the case satisfy'ing Eq. (14),whereas the second
figure illustrates the case given by Eq. (15).The varia-

P w o w

Fin. 1. A typical behavior of the cross section of a cube S(iv) as
a function of the distance zv of the intersecting plane from the
cube center. Case (a) represents l~)12+is and case (b) is for
lI &l2+lg.

by S(w). The assumption of linear extrapolation from

q, implies
S(—w) =S(w), (12)

so that we have to investigate only one-half of the cube.
We choose, quite arbitrarily, the half for which m&0.
I.et us list, in increasing order, the distances of the four
corners lying in this half, from the plane passing through
the center of the cube:

0
0 4 6

1 (IO cycles/sec)

4

A B

wi= b
l
li ls—4 l ~

ws ——b(li —4+4),
ws= b(it+le —4),
w4= b (ii+4+4), tion of a frequency v obtained from vq;(q, ) by extra-

polating throughout the cube is given bywhere 2b is the length of the edge of the cube. It is clear
that we need to know the behavior of S(w) when w

varies in the various ranges defined by (w; i, w,), given
in Eq. (13).There are two possibilities in the first range

(O,wi), depending on the sign of (li—4—4). If the sign
is positive, then the cross section is a parallelogram of
area

v= vs, (q,)aw
l
grad, v;l q=„,

where 0& m&&m4.
In order to construct g(v) let us define a function

g(j,q„v), which is the distribution of frequencies ob-
tained from ve;(q, ) by extrapolating throughout the
cube centered at q, . Assuming that the density of fre-
quencies in reciprocal space is a constant, we obtain

$(w)=4b'/li for /i)~4+4, (0&~w&~wi), (14)

Pro. 2. ljnsmoothed computer plot of the frequency-distribution
function for Ni at 300'K, obtained from a model by Birgeneau
er al. (Ref. 10). Frequency range is divided into about 4500 inter-

(13) vals of width 0.002 THz. The various critical points are marked
by arrows and indices A and 8 are explained in the text.

while if it is negative, the cross section is hexagonal with
area

S(w) = [li447—'[2b'(li4+ 44+i,li) —(w'+ b') 7,
for

li&ls+ls and 0~& w~&wi. (15)

In the next range (w&,ws) the shape is a pentagon, the
area of which is

$(w) = [l11247 '[2b'(344+llls+4ll)
-b (-l+l.+l )-!( '+b')7 («)

For the range (w, ,w, ) we have a quadrangle of area

$(w) =2[li447 '[b'ls(ii+4) —bw47; (17)

and finally for (ws, w4) we obtain a triangle giving

$(w) = [2lils47 '[b(ii+4+4) —w7' (18)

g(v)= Z g(j,q. ;v),
2 Qc

(21)

where the summation is extended over all eigenvalues
and cubes. In practice the entire range of frequencies is
divided into very small but finite intervals (v, v+d v) so
that the calculated g(v) is a histogram which consists
of a very large number of channels. While it has been

g(j,q„'v)dv= CWq, S(w)dw for vs;—wql gradv;l q,

&&v&&vo&+w4l gradv;l q

=0 elsewhere (20)

where v and w are linked by Eq. (19). Wq, is a weight
factor associated with the symmetry of q„and C is an
arbitrary number which is constant throughout the
entire Brillouin zone. The complete g(v) is now given by
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to the phonon dispersion curves at 300'K by Birgeneau
et at." The plot of g(v) is shown in Fig. 2. It was ob-
tained from 3199 matrix diagonalizations using m=32.
Thefrequencyinterval wasdv=0. 002THz (1THz= 10"
cps), so that g(v) was sorted into about 4500 intervals.
The small wriggles on the graph are probably due to
computational errors, which are d, iscussed in Sec. IV.
We classify" the different kinds of critical points in g(v)
into two categories: (A) critical points which show up
as spikes, and (B) critical points at which there is only
an abrupt change of slope. The critical points in Fig. 2
are at the following frequencies in units of THz:
4.215&0.004 (B), 6.243&0.004 (A), 6.296&0.004 (B),
7.742&0.004 (B), 8.118+0.004 (A), and 8.616&0.008
(B).

B. Aluminum

The computation of g(v) is based on an axially sym-
metric Born—von Karman eight-nearest-neighbor model
derived by Gilat and Nicklow, " who analyzed the
phonon-dispersion curves obtained by Stedman and
Nilsson" at 80'K. The technical details concerning the
computation of g(v) are identical with those of Ni. The
number of intervals in this case was approximately
5000. The plot of g (v) is shown in Fig. 3 and the critical
points are at the following frequencies in units of THz:
4.236&0.006 (A), 5.802+0.003 (A), 7.104&0.006 (B),
8.622+0.004 (B), 8.879&0.003 (A), and 9.534&0.006
(B).The point at 7.104, although weak, has been clearly
resolved.

C. Sodium

The force model for the phonon dispersion curves was
taken from Woods et u/. '4 It is a general five-nearest-
neighbor model obtained from data taken at 90'K.
Sodium, being a bcc crystal, has a first Brillouin zone
with a different shape from that of Ni and Al. The num-
ber of diagonalizations was 3287, and the mesh number
was m =40. The frequency interval was Av =0.001 THz,
which yielded almost 4000 frequency channels. The fre-
quency-distribution function g(v) is shown in Fig. 4,
and critical points are at the following frequencies:
0.949&0.003 (B), 1.672&0.002 (A), 2.573&0.003 (A),
2.856+0.010 (B), 3.462&0.003 (B), and 3.591+0.002
(A). The critical point at 2.86 has apparently not been
observed before. The one at 3.46 is resolved more clearly

"R.J. Birgeneau, J. Cordes, G. Dolling, and A. D. B. Woods,
Phys. Rev. 136, A1359 (1964).

'~ We use this classi6cation for purely practical reasons. Qne has
to analyze the computed data somewhat differently to obtain
points of types (A) and (8), respectively. This is by no means in-
tended to replace the widely used classification of critical points
based on topological analysis (for instance, see Ref. 7).

~ G. Gilat and R. M. Nicklow, Phys. Rev. 143, 487 {1966).
~' R. Stedman and G. Kilsson, in Inelastic Scattering of neutrons

in Solids and liquids (International Atomic Energy Agency,
Vienna, 1965), Vol. I, p. 211.

'4 A. D. B. Woods, B. N. Brockhouse, R. H. March, and A. T.
Stewart, Phys. Rev. 128, 1112 (1962).

than by Dixon et al. ,"who used the ordinary sampling
method. The shape of the main peak is also somewhat
diQerent from that calculated by Dixon et at.

It might be of some interest to point out that in all
three cases discussed above (and presumably for most
of the fcc and bcc monatomic crystals) there exists a
clearly resolved critical point of type B at a frequency
slightly smaller than that of the highest peak. This fre-
quency is probably associated with the maximum ob-
served for some of the dispersion curves along the high-
symrnetry directions. It usually occurs along 1.(qqq) for
bcc crystals and along L(qq0) for fcc crystals. These
critical points were just barely resolved in earlier
calculations. """

IV. DISCUSSION

It would perhaps be of interest at this stage to list
the different sources of error involved in the application
of the present method, although it is very difficult to
make any quantitative estimate of these errors. By
summing over so many contributions from all of the
cubes and all of the eigenfrequencies, any single error
is averaged out to a large extent, so that all errors to be
mentioned are perhaps of much less significance than
it might appear.

The most important error is probably associated with
the use of linear extrapolation. Employing nonlinear
higher order terms does not necessarily correct the error,
because an approximation is already involved in cal-
culating the first-order term itself. This error is probably
the main reason for the small kinks that might be ob-
served on the various plots of g(v), and it can largely be
eliminated by computing g (v) for two slightly different
values of e and comparing the kinks for the two meshes.

A second kind of error is associated with possible de-
generacies in the eigenfrequencies. There are two differ-
ent types of degeneracies: (a) those required by sym-
metry and (b) those occurring accidentally. The second
type can be dismissed, since the probability for its exact
occurrence is zero, and one can avoid its approximate
occurrence (quasidegeneracy) by choosing a sufficiently
small bq in Eq. (8). The degeneracies required by sym-
metry are more important. It has been shown' that
when a shifted mesh of q, is chosen so that none of the
components of q, is equal to zero, most of the high-
symmetry branches are automatically excluded. We are
left only with the branch q, = q,„=q„of relatively low
weight, which has two degenerate transverse modes.
One can partially overcome this problem by using nu-
merical devices, but in any event, the averaging process
makes this error unimportant, except for the acoustic
contributions of the cube at the origin. This cube is the
only contributor to g(v) at v —+0. Fortunately, this is
exactly the region where the Debye approximation for

5 A. E. Dixon, A. D. B. Woods, and B. N. Brockhouse, Proc.
Phys. Soc. (London) 81, 973 (1963). gee also the calculation re-
ported in Ref. 8,
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g(v) is valid, and one can simply extrapolate g(v) at
v~0 from slightly higher v, assuming that g(v) is
proportional to v'.

A third. source of error, probably less signi6cant, is
associated with neglecting higher order contributions to
the gradient by the use of Eq. (7) instead of Eq. (5).
This error becomes more pronounced when one is close
to some degeneracy, but if such a quasidegeneracy actu-
ally occurs, not even Eq. (5) is necessarily valid, since
it may not converge. However, this error is probably
not serious, because such degeneracies are generally not
associated with very small gradients, so that the process
of averaging out is more effective.

A fourth source of error originates from the 6nite
width of the frequency intervals dv when g(v) is sorted
into channels (v, v+dv). The reason for this error is
that the shapes in Fig. 1 are approximated by a set of
rectangles of constant width. Since the length of the
base of these shapes, when translated to v, is propor-
tional to

~
gradv

~
(see Eq. 19), the error will increase as

the gradient becomes smaller. This error, however, has
been overcome by computational devices such as the
use of an auxiliary smaller interval d v', and hence it does
not contribute appreciably. &'

It is clear that the magnitude of 1/
~
gradv

~

is a deci-
sive factor in causing computational errors. However,
the occurrence of

~
grad, v;

~ ~ „=0 is not too serious,
since it does not cause an infinity in g(v) because of the
6nite interval dv. It would be better, though, to avoid
zero gradients as far as possible, because they magnify
errors that may originate from other causes. Again, as
is the case for degeneracies, zero gradients can occur
either by symmetry or accidentally. The use of a shifted
mesh avoids the former completely, while the proba-
bility of the occurrence of the latter is zero.

'6 The only case among the three presented here where correc-
tive steps were really necessary was Na, for which the absolute
value of the frequency gradient is particularly small over a large
portion of the Brillouin zone. This is also the reason for the sharp-
ness of the major (longitudinal) critical point displayed by Na in
comparison to Ni and Al.

The main advantage of this method seems to be its
remarkable resolution in energy. As demonstrated by
the applications for Na, Al, and Ni, the resolution is at
least a factor of 20 better than that obtained by any
other method. A secondary advantage is the require-
ment of less computing time than with the former extra-
polation method, since for the same e, there is a gain
in time of 30% or more. Another advantage, which holds
for both extrapolation methods as compared with the
root-sampling method, is that they become more and
more efficient the larger the number of atoms per unit
cell. This gain in efficiency occurs, because by extra-
polation one obtains much more data per diagonaliza-
tion, which allows substantial reduction in the number
of diagonalizations needed to attain the same statistical
accuracy. For this reason we also believe that this
method might be of considerable help in calculating
electronic density of states from results of band struc-
ture calculations.

In conclusion, we would like to raise a question con-
cerning the physical nature of phonon frequency-distri-
bution functions. In calculating g(v), one usually em-

ploys the harmonic approximation, which gives in6-
nitely sharp normal modes of vibration. More realistic
models, however, must include anharmonic contribu-
tions, which give rise to phonon linewidths. These
widths are generally functions of both q and v, and thus
will affect g(v) in a very complicated manner. Strong
anharmonic effects will presumably blur 6ne details in
the spectrum, and this problem has yet to be treated
quantitatively.
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