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It is shown how many-body perturbation theory may be applied to the problem of correcting Hartree-Fock
energies and wave functions for the degenerate ground states of open-shell atoms. The choice of an appropri-
ate potential for the calculation of the single-particle states of the perturbation expansion is discussed in
detail. As an example of these methods, the correlation energies among all pairs of electrons in the neutral
oxygen atom are calculated for excitations into 1=0, 1, 2, and 3 states. The total calculated pair correlation
energy is —0.274 atomic units (a.u.) as compared with the total correlation energy —0.258 a.u. which is
deduced from experiment. The correlation energy among 2p-2p electron pairs is —0.0906 a.u.; among
2s-2p pairs, —0.1004 a.u.; 2s-25, —0.0150 a.u.; 1s-2p, —0.014996 a.u.; 1s-25, —0.00629 a.u.; 1s-1s, —0.0438
a.u. There is also a contribution —0.0028 a.u. which corrects for the use of a restricted Hartree-Fock solution.

I. INTRODUCTION

HE many-body perturbation theory developed
by Brueckner! and Goldstone? has been success-
fully used in calculations of nuclear structure® and of cor-
relations in the high-density electron gas.? In addition,
this theory has recently been applied to atoms to ob-
tain corrections to Hartree-Fock (HF) solutions and to
calculate other atomic properties.®® Results have been
obtained for the correlation energies among the different
electron pairs in the neutral beryllium atom which are
in good agreement with experiment.5 Calculations have
also been made of dipole and quadrupole polarizabilities
and shielding factors and of transition probabilities, all
for neutral beryllium.®

Although the many-body perturbation theory is
quite applicable to atoms with few electrons, its great-
est value may be in calculations for atoms with many
electrons. The purpose of this paper is to consider the
application of many-body perturbation theory to atoms
which are considerably more complicated than those of
beryllium. As an example, the correlations among all
electron pairs of the neutral oxygen atom are studied in
detail. Oxygen is an eight-electron atom with a non-
spherically symmetric ground state.

The perturbation theory of Brueckner and Goldstone
is reviewed in Sec. II. In Sec. III the choice of an ap-
propriate unperturbed ground-state wave function is
considered and it is shown how the perturbation theory
may be applied in cases where the electrons do not form
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closed shells. The selection of the potential to be used
in calculating the single-particle states is discussed in
Sec. IV. In Sec. V the correlation energies among all
pairs of electrons in oxygen are calculated. Section VI
contains the discussion and conclusions.

I. REVIEW OF PERTURBATION THEORY

T}}e total Hamiltonian H for a system of &V identical
fermions interacting through two-body potentials v;;
is given by

N N
H=Z Ti"'z Vij, (1)

=1 <7

where T'; is the sum of the kinetic-energy operator for
the ith particle and all one-body potentials for the ith
particle. For atoms,

T:=—=V3/2—2Z/r;, (2)

where the term — Z/7; is the interaction of the ith elec-
tron with the nucleus of charge Z. Atomic units are
used throughout this paper.” The correct ground-state
wave function ¥, satisfies the eigenvalue equation

H¥,=EY,, 3)

where E is the exact nonrelativistic ground-state energy.

A great simplification is achieved by approximating
the effect of the N interacting particles by a single-
particle potential V. The Hamiltonian®Z is then re-
placed by -

N
Ho=3 (T+HV)), 4

i=1

and ¥, is approximated by &, which satisfies the eigen-
value equation

Ho@o = Eo‘I)o . (5)

The correct ground-state energy £ is now approximated
by E,. The potential ¥ must be Hermitian so that the

"D. R. Hartree, The Calculation of Atomic St
Wiley & Sons, Inc.’, New York, 1957),01;). 5.0 mic. Structures (John
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single-particle wave functions ¢,, which are solutions of
(T+V)(pn= €EnPn, (6)

constitute an orthonormal set. The wave function ®;is a
determinant of the & solutions of Eq. (6) which are
lowest in energy. The states occupied in &, are called
unexcited states. The remaining single-particle states of
the orthonormal set are called excited states. The un-
occupied unexcited states are called holes and the
occupied excited states are called particles. The correct
ground-state wave function ¥, and energy E are ob-
tained by perturbing the approximate &, by

N N
H'=H—Hy=Y v;—2 Vi, )

i<j =1

and we obtain?

‘I’o=1i£1’é Ua(0)®0/<<1>0] Ua(O) ] fbo) y (8)
and )
E=Eo+(®o| H'| ¥0), )
where
UdB)=2 (—0)"
n=0
X / H'(ty)- - - H'(tn)dty- - - dbn, (10)
t1>81>19:0+>tn
and
H'(t) = eiHotf’¢—iHotgat (11)
In the matrix element representation,
Ho=23n €xnaltn, (12)
and
H=3% X (P(I[vlm”>7lanqi"7n"7m
pamn
(13)

=2 Xp | VIm)nptnm.

The operators 4! and 7 satisfy the usual Fermi-Dirac
anticommutation relations.? Wick’s theorem may be
used to express U4(0) by sums of terms, each of which
may be expressed by a Feynman-type diagram.?

The term U,(0) may be expressed as a product of a
sum of “linked”” terms and a sum of “unlinked” terms
equal to (@] Ua(0)| Po). After the time integrations in
Eq. (10) have been carried out, one obtains the result

1 n
\I’ =Z( H’) (bo,
’ L EQ_HO

(14)

where 3"z means that only “linked” terms are to be
included.? Also, . i
LI

Lo— L1y

where L’ restricts the sum to those terms which are
“linked” when the leftmost H’ interaction is removed

for n>1.
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III. SYMMETRIES

In deriving Eq. (14) for ¥, the factor (&, | U »(0) | o)
contained in U.(0)®, cancels the same factor in the
denominator of Eq. (8). The time integrations are then
carried out and give

\I'0=Iim H'

——
a0 Eyv—Hy+io

1 1
+ H' H/+-- ) ®y. (16)
Eo—Ho+i20l Eo—Ho+ia L

Since only “linked” terms are included in Eq. (16),
excited states must be included as the intermediate
states after H’ operates on ®,. When all excited single-
particle states have energies greater than those of the
unexcited states, then Eo— H, in Eq. (16) cannot vanish
and we may take the limit « — 0 which gives the result
of Eq. (14). This is the reason for Goldstone’s state-
ment that he assumes that H, has a nondegenerate
ground state ®, and that his proof applies only to the
ground state of a closed-shell nucleus.

A general extension of the linked diagram expansion
for the degenerate ground state of a system of fermions
has been made by Bloch and Horowitz.? However, in
many cases it is possible to make use of the Brueckner-
Goldstone (BG) expansion directly even though we are
dealing with open-shell systems with degenerate ground
states. This is because the conserved quantum numbers
may prevent the perturbation from leading to excited
states [here we mean N-particle states which occur after
H’ in Eq. (16)] which are degenerate with the ground
state.

For example, let us assume L-S coupling and start
from an unperturbed ground state ®, specified by quan-
tum numbers L, M 1, S, M 5. The operators L, Lz, Sy,
and Sz commute with the term 3, v;; of the perturbation
for v;; equal to o(|r;—r;|) and spin-independent, as is
the case for Coulomb interactions. These operators also
commute with Y, V;when Visindependent of the single-
particle quantum numbers m; and .. That is, V must be
spherically symmetric and spin-independent. Then L,
Lz, S4, and Sz commute with the perturbation H’. If
we start with ®,, an eigenstate of L2, Lz, 5% and Sz, then
the perturbation can only lead to those excited single-
particle states which give a total N-particle excited
state with the same eigenvalues of L2 Lz, S?% Sz as &,.
The usual degeneracies in M, and Mg in open-shell
atoms are now avoided. When the ground state is
uniquely specified by the electronic configuration and
the quantum numbers L, M, S, and M ¢ as for most
atoms, then we may be able to apply the BG expansion
directly.

In the usual description of the BG perturbation ex-
pansion it is assumed that the unperturbed ground-state

8 C. Blochjand J. Horowitz, Nucl. Phys. 8, 91 (1958).
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wave function &, is a single determinant, but in general
for open-shell atoms &, is not necessarily a single de-
terminant. However, in many open-shell cases if one
chooses M ==L and M s=S then &, is a single de-
terminant. The reason for this is due to Hund’s rule
according to which the atomic ground state has the
largest spin of those terms which may be formed from
the ground-state configuration.? Since the total energy,
for example, is independent of the choice of M1 and
Mg, in calculating such quantities as the correlation
energy it is often possible to choose ®, as a single de-
terminant as will be shown for oxygen. When the state
®, is a linear combination of determinants, we also may
be able to carry out the BG expansion. Again we allow
U (0) to act on &, and then we factor out (®o| U ,(0) | o)
which cancels the denominator of Eq. (8). The result is
that those combinations of single-particle states which
enter into $, are again excluded as intermediate V-
particle states in the perturbation expansion.

As an explicit example, let us consider the ground
state of neutral carbon which is (15)%(2s)%(2p)? 3P. The
ground state is given by the single determinant (1+0%).
The notation 1% refers to a single 2p electron with
my=1 and m,= 43 and 0% refers to a 2p electron with
mi=0 and m,=-3%. It is understood that this deter-
minant also contains two 1s electrons with m,=-413
and likewise two 2s states with m,= =%, This notation
is that used by Slater.!® The BG expansion may now be
applied to ®,=(4-1%0%). The excited 2p states (—1%),
(+17), (07), and (—1~) which are degenerate in energy
with (41%) and (0t) are not reached by the perturba-
sion because of conservation of M, and M. That is,
they cannot be the only excitations present. It is pos-
sible, for example, to excite 2p(+1*) and 2p(0*) into
4f(4-2*) and 2p(—11), respectively. However, there is
no problem of vanishing energy denominators in this
case. If we choose the carbon ground state

@0(3P; ML=0, M,s=0)
=/V)[(+1- =1+ (1 =17)], (17)

the operator U,(0) applied to Eq. (17) gives 2p inter-
mediate states with vanishing denominators but they
add to give ®, which may be projected out as has been
discussed. For example, in first order, the Coulomb
perturbation % >-(pq|v|mn)n, ntn.nm applied to &,
gives terms with vanishing denominators when p, g,
m, and » refer to the 2p states. The first-order correc-
tion to ®, with denominator sa from the Coulomb part
of Uq(0)®, is

Ua(0)aa(+17=1%) = (i) [ (Fo+(1/25)F3)
X (F17—1+)—(3/25)F(0-0%)
+(6/25)Fy(—1~+1+)], (18)

°E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, Cambridge, 1957), p. 209.

0 7. C. Slater, Quantum Theory of Atomic Structure (McGraw-
Hi1814Book Company, Inc., New York, 1960), Vol. II, Chap. 20,
p. 84.
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F1c. 1. Second-order correlation energy diagrams for the 3P
ground state of carbon. Direct diagrams (a) and exchange diagram
J(I?) fog;I:’o(sP; M1=0, Ms=0). (c) Diagrams for ®,(*P; M.=1L,

§=3S).

Ua(0)a(4-1+—17) = (i) [(Fo+ (1/25)F3)
X (+1t—17)—(3/25)F5(0+0")
+(6/25)F(—1++17)],
where .

Fy= / / Pop2(r1) Pap?(r2)dridrs.
o Jo rokH

(19)

The angular integrations were obtained from Ref.
9, p. 178. Since (070¥)=—(0t0) and (—1-+1%)
=—(41t—17), we obtain

Unz(o) cl¢0 = (ia)—l(F()'_ 5/25F2) q)() . (20)

The first-order part of U,(0)®, with denominator ia
due to the term —3 (m |V |p)nutn, also is proportional
to ®o. All these terms vanish when we project out
(®0| Ua(0) | ).

When the correlation energy is calculated for the car-
bon ground state ®(*P; M =0, Ms=0) of Eq. (17)
there will be cross terms between the two determinants.
Second-order energy terms for 2p electron correlations
are shown in Figs. 1(a) and 1(b). The diagram of Fig.
1(b) describes the cross term between the two determi-
nants. The diagrams are given according to Goldstone’s
notation.? There is a minus sign associated with the
diagram of Fig. 1(b). The states £ and 2’ are all
the allowed excited states. Those 2p excitations
with vanishing denominators are excluded as dis-
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cussed. Second-order correlation energy diagrams for
®o(3P; M =L, M 3=S) are shown in Fig. 1(c). The con-
tributions of the diagrams shown in Figs. 1(a) and 1(b)
must equal the contributions shown in Fig. 1(c), and
this has been explicitly verified by enumeration of the
angular coefficients.!! However, the exchange contribu-
tion of Fig. 1(b) is not equal to the exchange diagram
shown in Fig. 1(c).

The atom chosen for the numerical calculations is
neutral oxygen (1s)%(2s)2(2p)*3P which is similar to
carbon. The 3P ground state may be represented by a
single determinant10:

(P; Mp=L, Ms=S)=(+1+0*—1++1-). (21)

The BG expansion may again be applied directly and it
is found that there are no vanishing energy denomina-
tors due to conservation of M 1, and M g by the perturba-
tion. The perturbation could also have been applied to
the other 3P states such as

®o(3P; M1=0, M 5=0)

=(1/NV2)[(+170+—110")+(+110+—1707)]. (22)

IV. CHOICE OF POTENTIAL

In order to obtain the &, which is the best approxima-
tion to the exact ground-state wave function ¥, a
minimization of (®|H|®,) subject to the usual or-
thonormality constraints is carried out.’® The single-
particle states of &, then satisfy the well-known Hartree-
Fock (HF) equations

Z
- %V2¢"(l‘) —'_'Qon(r)
r

+ (J% / dr’ ¢*(r) saf(r’)>% ©

1 ‘ —r' I

—5 (stmnim. / me)

=1 [r—r'|

=e,0,(r). (23)
The terms involving ¢; represent the Hartree-Fock
potential Vgr acting on ¢,. This potential may be rep-
resented in terms of its matrix elements

{a|Var|b)= Zli: ({an|v|bn)—(an|v|nd)). (24)

The coupled equations (23) must be solved self-
consistently to obtain the N single-particle states ¢, of
®,. At this point, Vmr, which is nonlocal and Her-
mitian, is determined.

For open-shell atoms, in general one does not have
spherical symmetry and therefore the solutions of Eq.

1t Reference 9, p. 178.
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(c) (d)

Fi16. 2. First-order corrections to the unperturbed wave function
&,. (a) Direct interaction with passive unexcited state ». This
term equals (ep—ex) 1k |v| pn) Xnrtny|®o). (b) Exchange inter-
action with #. (c) Interaction with the potential V. (d) Two-body
correlation correction. The states # are summed over all unexcited
states. When the Hartree-Fock potential of Eq. (24) is used to
calculate the unexcited states, the diagrams (a), (b), and (c) add
to zero.

(23) cannot always be written

@n(1)=Ry(r) YVim(6,0)Xs(ms) .

Tt is extremely difficult then to obtain exact solutions of
Eq. (23). This difficulty is avoided by assuming that
each single-particle state has the form of Eq. (25).
The quantity (®,| H | ®,) is then minimized with respect
to all R,; subject to the usual orthonormality con-
straints. The resulting “restricted” HF equations may
be solved in practice and the “restricted” Vg is now
spherically symmetric. This procedure has the advan-
tage that it is practical and in addition, since the
single-particle radial functions R,; are independent of
my and m,, $o may be constructed as an eigenstate of
L2 Lz, S?, and Sz which would not necessarily be possi-
ble if the solutions of Eq. (23) were used for open-shell
atoms.

In applying the BG theory it is necessary to obtain a
complete basis set of single-particle states. A Hartree-
Fock basis set may be obtained by calculating all solu-
tions of Eq. (23). Those NV states lowest in energy are the
unexcited states of ®,. For the bound excited states it is
only necessary to calculate a finite number as suitable
extrapolations may be made to account for the remain-
ing bound states of high principal quantum number.$
For continuum states, it is only necessary to calculate
a sufficient number to carry out all numerical integra-
tions with the desired accuracy.

An advantage in using the HF basis set is that @, is
optimized. In the BG theory there are first-order cor-
rections to ®, as shown in Figs. 2(a), 2(b), 2(c), and
2(d). With the HF basis, the correction term due to
Var in Fig. 2(c) cancels the terms shown in Figs. 2(a)
and 2(b). To first order, then, there are no corrections

(25)
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to &, involving only single excitations when the HF
basis is used. This only holds true when Eq. (23) is
used for the HF states. For atoms lacking spherical
symmetry, the “restricted” HF procedure does not re-
sult in the exact cancellation of the terms shown in Figs.
2(a), 2(b), and 2(c). However, the cancellation with the
“restricted” HF basis may be very good so that the
principal first-order correction to ®, is the true correla-
tion correction of Fig. 2(d). The diagrams of Figs.
2(a), 2(b), and 2(c) may also be easily calculated. The
cancellation was found to be quite good in the oxygen
calculations described in the next section.

When the HF basis of Eq. (23) is used, the excited
single-particle states do not correspond to physical
single-particle excitations of the atom.® When we cal-
culate unexcited states ¢, by Eq. (23), the direct and
exchange terms cancel for j equal to n. The state ¢, is
then calculated in the field of the nucleus and ¥—1
other electrons. For excited states there is no cancella-
tion and the HF excited states are calculated in the
field of the nucleus and N other electrons. For neutral
atoms this leads to the possibility that all the excited
states may lie in the continuum. There were no bound
excited states in the previous beryllium calculation
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with the HF basis, and it was argued that this will be
the case for most if not all neutral atoms.5 A search for
these bound, excited HF states in neutral oxygen also
gave negative results. The advantage of eliminating
bound excited states is offset, however, by the resulting
slow convergence of the perturbation expansion as
found in Ref. 5. It was pointed out in Ref. 6 that ex-
cited states have interactions with N —1 other electrons
and it is therefore desirable to calculate these excited
states in the potential field of N —1 other electrons. This
type of potential was used in Ref. 6 and the con-
vergence of the BG expansion for the beryllium correla-
tion energy was greatly improved. The same arguments
also apply in the case of “restricted” HF potentials for
open-shell atoms.

In Ref. 6 the potential V' was chosen by calculating
all states in the fixed field of neutral beryllium minus one
of the 2s electrons. Hartree-Fock states were used to
calculate this fixed potential. In this potential the 2s
state is the HF 2s state, but the 1s state differs very
slightly from the HF 1s wave function. The same pre-
scription is used in this paper to obtain the set of single-
particle states for oxygen. The equation for the radial
functions P,i(r)=7R.(r) for [=0 is

00

dr'Pop(r")Pro(r")vi(r,7") Pay(r) = €n0Pro(r), (26)

1d* 8 ®
(—— —————)Png(r)—i—Z f dr' P1s2(r")vo(r,7" ) Pro(7)
2dr? 7 0
— f dr' P1s(r") P o7 )vo(r,7") P1s(r)+ / dr' Pas(r")vo(r,7") Pro(r)
0 0
® 2
—|—4/ dr’P2p2(r’)vo(r,r')Pno(r)———/
0 3Jo
where

UK (ryrl) = r<K/ r>K+l ]

(27)

7< being the lesser of » and 7/, and 7> being the greater of » and #’. For /=1 states the radial equation is

2\ dr? % r

1 00
-—g / v’ P1s(r") P o1 (v )vi (7,7 ) Pyo(r)+2 /
1 0
—g/ d?”st(T’)Pnl(7’)'1)1(7’,1”)P23(1’)+3/
0

3 r> 6
— / ar' Py 2(r")va(r, 7" ) Py (r) —— /
50/ 25

[1(_fi+i)_§]p,,,(r>+z / " P enlr ) Pa)

0

dr'Pa2(r")vo(r,r") Pra(r)
0

00

dr' Pay(r")vo(r,7") Pa(r)
0

0

7 Poy(#) Pos (7' Y03(r,#") Pag(r) = ex1Pus(r) . (28)

0

When oxygen HF orbitals are used for Py, Pas, and Py, Egs. (26) and (28) are the oxygen HF equations for Pa,(r)
and Ps,(r), respectively.!? The lowest energy solution of Eq. (26) is a 1s orbital but it is not the HF 1s solution. It
is, however, a good approximation to the HF Py,. The next lowest energy solution to Eq. (26) is the HF Ps,. In

2D. R. Hartree, W. Hartree, and B. Swirles, Phil. Trans. Roy. Soc. (London) A238, 229 (1940).
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Eq. (26) we are calculating /=0 states in the field of neutral oxygen minus one 2s electron; in Eq. (28) we are
calculating /=1 states in the field of neutral oxygen minus one 2p electron. The solutions of Eqgs. (26) and (28)
give orthogonal sets of /=0 and /=1 single-particle wave functions.

The choice of equations for /> 1 is slightly more arbitrary than for /=0 and 1. It is desirable to calculate the />1
states in the HF field of oxygen with one 2p electron removed. The 2 exchange coefficient was estimated as that
which would cause as much cancellation as possible of the interactions with the passive unexcited states in the
perturbation expansion.? For /=2, the equation for this investigation is

1 da 6 8 i ) , 1 r>
[_(—-—-——{———)——]Pnz(r)—i—Z f P ol VPrslr)— / 0Y'P1y(r) Posl sl )P1a(7)

2\ dr* ¥ r 0

0 1 0
+2 / dr’st“’(r’)'vo(r,r')Pnz(r)-g / dr' Pao(r') Pus(r )oa(r,7') Pas(r)
0 0

+3 / dr' Poy2(r)vo(r,7") Pro(r)—0.11 / @' Pap(r")Puo(r")v3(r,7" ) Pop(r) = €n2Prna(r) .  (29)
0 0
For =3, P, in this calculation is determined by

[E( _ﬁ-{-g)—%:ana(r)-l—Z /0 i dr’Plsz(r’)vg(r,r')Pna(1’)—; /o 7 Po ()P Yol Pus)

2\ dr? r? 7
00

* 1
+2 [ dT,P232(7”)’00(1’,7”)1)"3(7)—; / A7’ Pas(r") Po3(r")vs(r,r") Poy(r)
0 0

00

+3 / i dr' P2y2(r")vo(r,r") Prs(r)—0.10 / A7 Pap(r") Pz (7 Yv2(r,r" ) Pop(r) = €n3Pns(r) .  (30)

0.0000215 a.u. One a.u. equals 27.21 eV. By comparison,

Equations (26), (28), (29), and (30) were solved numeri-
(®o| H| ®o)=—74.80936 a.u. is the HF result of Bagus

cally to obtain the 1=0, 1, 2, and 3 single-particle wave

functions used in the perturbation expansion. Hartree-
Fock orbitals were used for Pis, Pss, and Psp in Egs.
(26), (28), (29), and (30). These HF orbitals were ob-
tained by iterating several times the oxygen HF solu-
tions of Hartree, Hartree, and Swirles!? in order to

and Roothaan. It is interesting, however, to note that
€15 (—21.726 a.u.) does differ significantly from e,

TaBLE L. Radial functions P1,(r) for oxygen.

obtain greater accuracy. The resulting orbitals were r Pus(r) Pia(r)P Pi(r)
found to be in excellent agreement with the accurate 0.01 0.39819 0.39841 0.39848
analytic HF solutions of Bagus and Roothaan and 88‘; i%g%g? iggggg %ggggg
differed from the Bagus-Roothaan solutions by one or 0.10 1.95085 1.96022 1.96072
igits 1 i lace.!® Th olution 0.12 2.01383 2.014 2.01465

two digits in the fourt(}il decll)mal I.)tace1 Tt e :ﬁ s HFI , 0L 201383 2o 2.01465
of Eq. (26) was found to be quite close to the HFE 1s 0.16 1.97319 1.97359 1.97367
solution although calculated by a different potential. 8%2 ig%%g 12(1);38 %21752;2

3 3 i i . . . .609

The 1s solution .of Eq. (?6) is co.mpar?d in Table I with 033 15805 et 160082
the HF 1s solution obtained by iterating the solution o(‘;' 0.30 %2%% 1_257;094 128085
Ref. 12 and with the HF 1s solution of Bagus an 0.34 .0 1.07645 1.07640
Roothaan.!® Both the 1s orbital of Eq. (26) and the 8‘;8 8%%8; giéggg 82&‘5)2(1)
HF 1s orbital are strictly orthogonal to the HF 2s 0.80 0.09021 0.09041 0.09033
ol g o omm S
T : . . X .00362

The difference between (®o| H|®o) calculated with 2,00 0.00037 0.00046 0.00051
P, of Eq. (26) and with the P, HF is extremely small ggg 888882 8.00010 8.00012
since (®o|H|®o) is stationary with respect to varia- o) 2172625 20:0000466908 20:0000466860

tions in ®,. This difference, which was calculated most
accurately by perturbation theory, was found to be

131 am very grateful to Dr. P. S. Bagus and Professor C. C. J.
Roothaan for kindly sending me a detailed listing of their Hartree-

Fock results for oxygen.

» The 1s orbital calculated from Eq. (26). This orbital was not calculated
in the HF potential and differs slightly from the Hartree-Fock Pis.
beH?r{;eeFock P14(7) calculated by iterating the HF oxygen solutions
of Ref. 12.
o Hartree-Fock Pi1,(r) obtained from analytic solutions of Bagus and
Roothaan.
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HF (—20.669 a.u.). This is understood by considering
that in Eq. (26) the potential for Py, has two direct
interactions and one exchange interaction with Py, HF
and one direct interaction with Pg, in addition to the
interactions with P,,. When we solve for Pi,, the 1s
exchange interaction very nearly cancels one direct 1s
interaction and the net effect is that Py, has one direct
1s interaction and one direct 2s interaction in addition
to the 2p interactions. In the HF case, Py, HF (here-
after denoted Py,”) has one direct 1s interaction, two
direct 2s interactions, and one exchange 2s interaction
in addition to 2p interactions. Since P;, lacks one
direct and one exchange interaction with Py, as com-
pared with Py, it is expected to be lower in energy
since the positive direct term is generally larger than
the negative exchange term. The difference between e,
and the HF¢, is readily corrected when we use P,
in the perturbation expansion. Whenever the 1s state
appears in the perturbation expansion there are cor-
responding higher order terms which account for 1s
interactions with the other occupied unexcited states
and with the potential V. A typical first-order correc-
tion to @, involving a 1s hole line is shown in Fig. 3(a).
In the next order the 1s hole line is modified by direct
and exchange interactions with the passive unexcited
states as shown in Figs. 3(b) and 3(c). The 1s hole line
is also modified by interaction with the potential V as
shown in Fig. 3(d). The corrections to the term of Fig.
3(a) shown in Figs. 3(b), 3(c), and 3(d) are given by
—uv/D times the term of Fig. 3(a), where v is the sum of
the matrix elements of the interactions shown in Figs.
3(b), 3(c), and 3(d) and D is the same denominator as in
Fig. 3(a). The nondiagonal terms, which are much
smaller, are calculated separately. The minus sign comes
from the additional hole line. In third and higher orders
these interactions are again repeated, the mth correc-
tion being the term of Fig. 3(a) multiplied by (—u/D)™.
These terms add geometrically and the result is that the
term of Fig. 3(a) is multiplied by (14v/D)~! which
is equivalent to replacing D by D+v in Fig. 3(a).
When Vyr is used, v is zero. However, these terms
are not zero when the restricted HF solution is used
for open-shell atoms. For example, in oxygen for
$o=(+1t0t—1+417), v is different for 1s+ and 1s—
because 1s* has exchange interactions with three 2p
electrons and 1s~ has only one 2p exchange term,
whereas the restricted HF potential for both 1s states
has exchange interactions with two 2p electrons. If we
consider these 1s—2p corrections due to use of a re-
stricted HF potential separately, then the correction v
for 1s states due to the use of Eq. (26) is

v=(1s1s|| 1s1s)+2(2s1s|v| 251s)
—(2s1s|v|1s2s)—[2(1s1s"|v| 151s")
—(1s1s"|v| 1s"1s)+(251s| | 2s1s)]. (31)

The term in square brackets comes from the choice of
potential used in Eq. (26) and 1s’ is the HF 1s orbital
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(d)

F16. 3. (a) First-order correction to ®, involving 1s state. (b)
Direct interaction of 1s hole line with the passive unexcited state
n. (c) Exchange interaction of 1s hole line with #. (d) Interaction
of 1s hole state with the potential V.

used in Eq. (26). Since the same type of correction may
be made for each hole line, we simply add the appropri-
ate v to each single-particle energy e. Using the matrix
elements listed in Table II, we find that v for €, is
1.05572 and €;,4-v is —20.6705 a.u. as compared with
the HF e,/=—20.66908 a.u.

V. CORRELATION ENERGIES

A. Second-Order Calculations

The BG perturbation expansion may be used to ob-
tain both the ground-state energy E and wave function
¥o. The energy £ may often be obtained from experi-
ment and this serves as a check on the accuracy of the

calculations. The correlation energy is defined by
E¢orr=E—Egy. (32)

TasBLE II. Matrix elements among unexcited states.?

(Lsls|o|1s1s) 4.73865
(15'1s" [v] 1s'1s")P 4.74118
(1515’ 0| 1515 4.73992
(1s1s" || 15'1s) 4.73991
(2s1s|v|2s1s) 1.13425
(2s1s]v| 152s) 0.07726
(2515’ |9| 2515") 1.13430
(2515’ [v| 15"2s) 0.07733
(2s2s|v|2s2s) 0.79794
(252p|v]252p) 0.77387
(252p|v]2p2s) 0.47214
(2p1s|v]2p1s) 1.09845
@p1s|o|152p) 0.105655
@915 |0]2p15") 1.098464
(2915 |0 152p) 0.105583
2p2plol2020) {033000% =9

a Only the radial parts of the matrix elements are given.

b The states 1s’, 2s, and 2p are Hartree-Fock states. The 1s state was
calculated from Eq. (26).

° The notation % is defined in Eq. (27).
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(a) (b) (c)

(d) (e)

F1G. 4. Second-order energy diagrams. (a) Direct correlation
diagram. (b) Exchange. (c), (d), and (e) are single-excitation
diagrams. We may also have the order of exchange and direct
interactions interchanged in (e). There are also diagrams like (c),
(d), and (e) with interactions with the potential V. These single-
excitation diagrams add to zero when a completely unrestricted
Hartree-Fock potential is used.

The energy E may be obtained by adding the experi-
mental ionization potentials and subtracting the esti-
mated relativistic contributions to the total energy. A
more accurate procedure is to use the experimental
ionization potentials for all but the last two electrons
and then use Pekeris’ calculations'4 to obtain the re-
maining energy. The relativistic energy among the first
N—2 electrons is then subtracted to obtain E. Clementi
has given the correlation energies for a large number of
atoms and for the P ground state of neutral oxygen he
has obtained Eeorr=—0.258 a.u. with an estimated
accuracy of 5%,.15 The relativistic contribution is ap-
proximately —0.0503 a.u. and Exr=—"74.80936 a.u.1
‘The HF solution in this case is the restricted HF solu-
tion described in Sec. IV and described in detail by
Roothaan.1® As will be seen from the perturbation cal-
culations, the energy difference between the restricted
HF solution and a completely unrestricted HF solu-
tion is very small compared to the energy corrections
from true two-body correlations.
Given the unperturbed state ®,, we may calculate

(®| H|®o)=Eo+Es,

where Ey is given by Eq. (5) and E;={(®|H’| ®,).
When &, is the HF solution, E¢+E; is the HF energy
Egy. The lowest order energy corrections to (®,| H | ®o)
are second-order terms which are shown in Fig. 4. When
a fully unrestricted HF basis is used, the diagrams of
TFigs. 4(c), 4(d), and 4(e) and the corresponding inter-

1 C, L. Pekeris, Phys. Rev. 112, 1649 (1958).

15 E. Clementi, J. Chem. Phys. 38, 2248 (1963). This value of
Eecorr for oxygen may be obtained by adding the nonrelativistic
ionization potentials as given by C. W. Scherr, J. N. Silverman,
and F. A. Matsen, Phys. Rev. 127, 830 (1962). Then Egr is
subtracted to give Ecorr.

16 C. C. J. Roothaan, Rev.. Mod. Phys. 32, 179 (1960).
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actions with Vgr add to zero. As discussed in Sec. 1V,
for open-shell atoms we must use a “restricted” HF
basis and so there are contributions to the energy from
diagrams as shown in Figs. 4(c), 4(d), and 4(e). How-
ever, it is found that they are quite small compared to
the diagrams of Figs. 4(a) and 4(b).

The diagrams of Fig. 4 are calculated according to the
rules given in Ref. 2. For example, the diagram of Fig.
4(a), which describes correlations among electrons in
states ¢ and 7, is given by

B = 5 {gr[o| k)RR [v] gr) .

kE €gt€p— €r— €

(33)

The sums are over all excited states. Bound excited
states are labeled by the principal quantum number #,
orbital angular momentum /, azimuthal quantum num-
ber m;, and spin projection m, In practice, the
sums over n are carried out explicitly for the first
eight or ten excited states and the remaining infinite
sum may be carried out by integration as shown in
Ref. 6, since

lim(minl’|v| gry=n—%/2X const, (34)

n—o0, m fixed.

The sums over m; and m, are carried out for each
value. The previous beryllium calculation® included
1=0, 1, and 2 states and the present oxygen calculation
includes /=0, 1, 2, and 3 states. The continuum states
are labeled by £, I, m, and m,, where e,=£%2/2. If the
atom is enclosed in a large spherical volume of radius
Ry where R, tends to infinity, then

Pri(r)=(2/Ro)? cos[kr+8:—1/2(1+1)x], (35)
for large 7. Since Py; must vanish for r=R,,
kRyt+8—3(+1)r=nr, (36)

where # is an integer. For fixed /, the number of states
An in the range Ak is determined by

AERy+ A= Anr. (37)
Since Ad;/Ry— 0 for Ry—, we obtain
An=(Ro/m)Ak, (38)
and
§= (Ro/T) / dk. (39)
0

The normalization factor (2/R,)!/2 may then be omitted
from Eq. (35) and the summation of Eq. (39) changed to

z-())

Sums over I, m;, and m,; must still be carried out.

(40)
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B. Higher Order Diagrams

In Ref. 5 it was found necessary to include terms be-
yond second order when the HF basis set is used. How-
ever, it was shown in Ref. 6 that the second-order re-
sults are closer to the correct value when the basis set
is used in which excited states are calculated in the field
of the nucleus and N—1 other electrons, which is the
basis set used in this paper. Nevertheless, it is still de-
sirable to include the effects of terms beyond second
order. Neglecting exchange terms, the third-order energy
diagrams which involve only two hole states (one pair)
are shown in Fig. 5. The hole-hole interaction is shown
in Fig. 5(a) and hole-particle interactions in 5(b) and
5(c). The diagrams of Figs. 5(b) and 5(c) represent the
net effect of the interactions of particles in excited states
i and j with the passive unexcited states? and with the
potential V.5 It is assumed that ¢ is calculated in the
presence of all unexcited states except for ¢ and 7 in
the presence of all but 7. In the case of open-shell atoms,
there are still small corrections for each hole and particle
line due to insertions of the type shown in Fig. 3. How-
ever, these were found to be very small (approximately
1%) in the calculations of this paper but they were in-
cluded in most cases. The particle-particle (ladder)
interaction is shown in Fig. 5(d). The diagrams of Figs.
5(a), 5(b), and 5(c) are exclusion-principle-violating
(EPV) diagrams.5 Tt is also possible to have diagrams
such as 5(a), 5(b), and 5(c) where the hole lines have
different labels. These are less important, however, be-
cause in general the nondiagonal matrix elements are
much smaller than the diagonal ones. When the excited
states 7, 7, &, and / of Fig. 5 are bound states, the
largest contributions for Fig. 5(b) come when i=£, for
5(c) when j=I, and for 5(d) when i=% and j=I. In
this diagonal case, these four third-order diagrams sum
to give the second-order diagrams (with ¢, r excited
into 7, §) times the factor

(eqte—ei—e) "X (gr|v| gr)— (ir| o] ir)
—(gilvlgi)+Gglolig). (41)

This same factor is repeated in the higher orders, and

this geometric series is summed to give the modified

second-order result
D[(ij|v]qn)|?, (42)

where

D= (eg+e,—{gr|v| gr))— (eitej— (ir|v]ir)
—{gjlolgi)+(isloliz)). (43)

The corresponding exchange matrix elements are also
included when states q and 7 have parallel spins. The
first term of D is the two-particle energy of electrons in
states ¢ and 7, and the second term represents the two-
particle energy for particles in states 7 and j.® An analy-
sis of higher order terms leads to the addition into Eq.
(43) of terms Feo(qn) and Eeom(n¥gq,r), where
Eeore(g,m) is the correlation energy of g with all other un-
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Fic. 5. Third-order energy diagrams involving only one electron
pair. (a) Hole-hole interaction. (b) and (c) are hole-particle
interactions which represent the net effect of interactions of
particles in states 7 and j with the passive unexcited states and
with the potential V. It is assumed that 7 is calculated in the field
of all unexcited states except ¢ and j in the field of all but . (d)
Particle-particle interaction or ladder diagram.

excited states and Eeon(#57#4¢, 7) is the correlation energy
of » with all other unexcited states except for ¢. These
quantities are unknown at the outset and their effects
on Eq. (43) may be calculated as a small correction when
the main part of the calculation is finished.

When the excited states 7 and j are in the continuum,
the geometric sum can be carried out only for the hole-
hole interactions of Fig. 5(a), and D becomes

D=e,t+e—(gr|v|gr)—ei—¢;. (44)

When the spins of q and r are parallel, we also add the
exchange term {(gr|v|rq) to Eq. (44). However, as
shown in Ref. 5, the hole-particle interactions of Fig.
5(b) and higher orders may be included to good
accuracy by calculating

2 ]
a(kt';r)= (—-— / ark"{kr|v| k" r)D-1(k" k)
wJo

XE¥|sl0)) [ @ lolay, @)

where

D(E"E)= eqte—(gr|v]gr)—3k""—3k".  (46)

The value of % is a representative value from the range
of % values which contribute most to the second-order
integration. In Ref. 5, a(k,%’; ) was found to be a slowly
varying function of % and %’. To a good approximation
a(k,k’; 7) is the ratio of the third-order diagram of Fig.
5(b) to the corresponding second-order diagram. The
factor a(k,k’; ¢) may be calculated to account for the
diagram of Fig. 5(c). The corresponding approximation
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TasBLE III. 2p-2p correlations in a.u. from continuum states.
Modified Modified Modified Total
2nd-order 2nd-order 2nd-order including
Excitations® directb exchangeP total higher orderse

2p(—1%) — kst
2p(+17) - /s —0.000579 0.0000 —0.000579 —0.000662
2p% — kpt
2pt — B'pt —0.01127 +0.00659 —0.01068 —0.01270
2p+ — ki,q—
2 = k'p —0.01860 0.0000 —0.01860 —0.02212
29t — kd*
2pt > kdt+ —0.01944 -+0.00583 —0.01360 —0.01534
29 — kd*
2p~ > kd~ —0.01930 0.0000 —0.01930 —0.02176
2p+ — EfF
2pT — B f+ —0.00306 +0.00155 —0.00151 —0.001514
2 —> kfF
2~ — kK f- —0.00316 0.00000 —0.00316 —0.003164
2pT — kts, kdt
2pt > E'd, kst —0.00328 +0.00328 0.00000 0.00000
2p* — ks*, kdt
2" > kKd ks —0.00468 0.00000 —0.00468 —0.00468¢
2pF — kpt
2p(417) = 2p(0-,—17) —0.000761 0.0000 —0.000761 —0.000761
Total —0.090131 +0.01725 —0.072871 —0.082691¢

& k and %’ refer to continuum excitations. s, 9, d, f, refer to1=0, 1, 2, 3.
b Second order calculated with the modified D of Eq. (44).
° Includes sum of hole-particle and ladder terms by Eq. (48).

d Effects of higher order terms were estimated to be small and are not included.
e This total is reduced by the contribution -0.00201 a.u. from the third-order ladder diagrams in which the I =1 continuum excitations scatter into
1 =2 excitations and also / =2 scattering into / =1 states. The new total is then —0.08068 a.u.

for the diagram of Fig. 5(d) is

VA d 0
t(k,k/)=[(—> / dk/l/ dk"'(kk'|vlk”k"')
T 0 0

XD(k”,k”’)—%k"k’”lvlqr>] [l @)

where %, £’ are again chosen to be typical excitations of
importance in the second-order calculation. The factor
i(k,k") represents the ratio of the diagram of Fig. 5(d)
to the second-order diagram with the same hole lines.
It is assumed in Egs. (45) and (47) that ¢ and ¢ also
depend on / and !’ of & and &’. As shown previously,5
the interactions shown in Figs. 5(b), 5(c), and 5(d)
are repeated in higher orders and, to a good approxima-
tion, they may be summed geometrically to give the
factor

[—akk'; r)—alkk’; -tk k)T,  (48)

which multiplies the second-order diagram with hole
lines ¢ and » and D given by Eq. (44). In Ref. 5 these
effects were found to be much more important than in
the present calculation owing to the fact that there were
four &’s in the factor corresponding to Eq. (48) because
of the choice of the potential Vgy. In addition, ¢ and ¢
in this calculation are approximately 0.15 and —0.15
for 2s and 2p hole lines as compared with 0.29 and
—0.36 previously.® Typically, the factor of Eq. (48)
is between 1.00 and 0.85~! in this calculation and an

error of 109, in ¢ and ¢, which seems unlikely, would
lead to errors of only 1 or 29, in Eq. (48).

C. Numerical Results

The results of the calculations for correlations among
2p electrons are given in Table III for excitations in-
volving either two continuum excitations or one 2p
excited state and one continuum excited state. The re-
maining 2p-2p contributions from excitations into
bound excited states with #>3 are given in Table IV.
In general, the excitations into bound states are much

TasLE IV. 2p-2p correlation energies in a.u. from excitations
into bound states with #>3.

Excitation Correlation energy
2pT — mst
2p% — ns* —0.000053
2P+ —_ mﬁ*‘
2p* — np* —0.000791
2 P+ —m +
2p(+17) = 2p(0-,—17) —0.000339
2p*T — md*
2p* — nd* —0.000003
2p+ — kpt, mp*
2p% — mp=E, kp* —0.00795
2p% — nsE, kd*x
2p* — kd*, ns* —0.000384
2p* — ndt, kd*+
2p* — kd*, nd* —0.000376
Total —0.009896
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TaBLE V. Factors to sum hole-particle and
ladder effects by Eq. (48).
Excitation a(k,k'; 2p)» t(k,E)P
=0 0.125 —0.125
=1 0.1630 —0.1669
=2 0.1214 —0.1297

a See Eq. (45). k and k' were chosen between 1.0 and 2.0 which is where
the matrix elements (kk'|v|2p2p) were largest.
b See Eq. (47).

less important than the excitations into continuum
states. Although the energy denominators are smaller
for bound-state excitations than for continuum excita-
tions, the matrix elements connecting bound excited
states with the 2p states are much smaller than for the
continuum matrix elements due to the fact that the
bound excited states are mostly at a much greater
radial distance from the nucleus than the 2p states. The
integrations were carried out from %, £’=0.0 to 20.0,
where the matrix elements were extremely small. The
most important range for £ was from 0.0 to 3.0. The
higher order terms were included by the factor of Eq.
(48). The values for ¢ and ¢ for different / excitations
are given in Table V. For example, for a(k,k’,2p) the
value k=%"=1.50 was used for /=1.

The value for the total correlation energy among 2p
electron pairs from Tables IIT and IV is —0.09259 a.u.
However, this values does not include the effects of
third-order ladder diagrams in which excited states in-
teract and scatter from excited states of given / values
to excited states with different orbital momentum J. The
contribution from these diagrams in which excited
states kp,k’p scatter into kd,k’d and diagrams in which
kd,k'd scatter into kp,k’p was calculated to be 4-0.00201
a.u. This gives a new total of —0.09058 a.u. The cal-
culations of Table IIT also include effects of insertions
on the hole lines and particle lines as shown for hole
lines in Fig. 3. These were found to be very small,
approximately 19, effects. Since a restricted HF basis is
used there are also energy terms of the type shown in
Figs. 4(c), 4(d), and 4(e), and also the same types of
diagrams with potential interactions. The total of these
terms for 2p electrons excited into %5 states was found
to be —0.00113 a.u. This small value shows that for 2p
electrons the use of a restricted HF potential rather

TasLE VI. Comparison of second-order correlation energies
and accurate values.®

Second Modified Accurate
Excitations order second order? value®
2p+ —_ kp‘i"
2pE > k' p* —0.03576 —0.02928 —0.03482
2pT — kdt
2p* — k'd*x —0.03799 —0.03290 —0.03710

s All energies are in a.u.

b Calculated with modified denominator of Eq. (46) ; only includes higher
order terms due to hole-hole interactions.

¢ Taken from Table III
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TasLE VII. Effect of Ry on matrix elements.®

B (252.0d|0|2pkd)(Ro=50.0) (2p2.0d|v]2pkd)(Ro=30.0)
0.50 0.041918 0.025130
1.00 0.132219 0.124473
1.25 0.233244 0.242012
1.50 0.400139 0.440386
1.625 0.528058 0.488384
1.75 0.714685 0.782329
1.875 1.037463 1.012214
2.00 2.232088 1.978391
2.125 1.051450 1.029288
225 0.739979 0.800411
2.375 0.563280 0.530494
2.50 0.444062 0.473694
2.75 0.290690 0.201278
3.00 0.197229 0.189353
3.50 0.095408 0.105623
4.00 0.047407 0.051722
5.00 0.011232 0.018026
6.00 0.001395 0.005200
8.00 —0.001646 —0.000664

10.00 —0.001066 0.000212
12.00 —0.000455 —0.000777

a All continuum states of this table have I =2.

than an unrestricted HF potential has an almost
negligibly small effect on the correlation energy when
compared with the true two-body correlations of Tables
IIT and IV. Adding the value —0.00113 a.u. to the pre-
vious total, we find that the total correlation energy
among 2p electrons is now —0.09171 a.u.

This result is close to what is obtained by calculating
true second-order terms only. A comparison between
some of the true second-order terms, second-order terms
with the modified denominators of Eq. (46), and the
correct pair correlations is given in Table VI. For 2p
electrons, the second-order result is only a few percent
higher than the value we obtain by a careful considera-
tion of higher order terms. The reason that this second-
order value is better than that obtained with the shifted

TasrLE VIII. 25-2p correlation energies in a.u. from
excitations involving 2p excited states.

Second- Second-
order order
Excitations® directt exchange® Total
25~ —2$(0-,—17)
2p% — kd* —0.04301 0.00626 —0.03675
25 — kd*
2p(+17) = 2p(0-,—17)  —0.005589  0.00626 0.000671
25— —2p(0-,—17)
2p(0*,—1%) — kst —0.000796  0.00000 —0.000796
25~ —2p(0°,—17)
2p% — ns* —0.000388  0.00000 —0.000388
25~ —2p(0~,—17)
2pE — nd* —0.000270  0.000037  —0.000233
2s% — nd*
2p(+17) » 2p(0,—17)  —0.000020  0.000037 0.000017
Total —0.05007 0.01259 —0.03748

8 k>1:;efers to continuum excitations and #, m refer to bound states.
m, n> 3.
b The terms involving one continuum excited state and one bound excited
state were calculated with the denominator of Eq. (49) to account for one
of the hole-particle interactions and the hole-hole interaction.
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TaBLE IX. 25-2p correlation energies in a.u.
from two-continuum excitations.

Total
Modified Modified Modified including
2nd-order 2nd-order 2nd-order higher
Excitations direct® exchanges total ordersb
2s = ks
2p —k'p —0.02785 +0.004898 —0.02295 —0.02623
2s = kp
2p —k's —0.004100 +0.004898 -4-0.0007980 +4-0.000912
25 =k,
2p - k?d —0.0129017  40.003320  —0.009597 —0.01097
2s = kd
2p —k'p —0.003640 -4-0.003320 —0.000320 —0.000366
2s = kd
2p - k'f —0.01589 —0.01589 —0.01589
Total —0.064397 +0.016436 —0.047959 —0.05254

a Calculated with the modified denominator D of Eq. (44).
b Includes sum of higher order terms by Eq. (48).

D of Eq. (46) is that with the basis set of this calcula-
tion there are two hole-particle diagrams in third order
which increase the second-order result, whereas the
hole-hole and particle-particle diagrams reduce the
second-order term. These terms are often of comparable
size and tend to cancel. When only one of them is in-
cluded [for example, by D of Eq. (46)], there is in
effect an unbalance, and the rough cancellation in
higher orders does not occur. In the calculations of Ref.
5 the HF basis was used and in this case there are four
hole-particle diagrams in third order and so the rough
cancellation does not take place.

In calculating matrix elements for second-order
energy terms it is only necessary to carry out the radial
integrals to the radius where the unexcited-state wave
functions are effectively zero. However, in higher orders
we encounter matrix elements with continuum to con-
tinuum transitions. There is no natural cutoff now on

TaBLE X. 25-2p correlation energies in a.u. from excitations
involving bound states other than 2p.

Second-order Second-order  Second-order

Excitations? direct exchange Total
25 —ns
2p —kp —0.006845 0.00104 —0.005805
2s = kp
2p —ns —0.0006290 0.00104 0.00041
2s = ks
2p—np —0.003210 0.000474 —0.002736
2s = np
2p — ks —0.000279 0.000474 0.000195
2s > np
2p —kd —0.002173 0.000495 —0.001678
2s — kd
2p —np —0.000466 0.000495 0.000029
2s — ms
2p —np —0.001020 0.000150 —0.000870
2s—m
2p— mj) —0.000110 0.00015 0.000040
2s — mp
2p—>nd —0.000001 0.000000 —0.000001
Total —0.014733 0.004318 —0.030416

an, m>3.
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the radial integrations, and we must decide on a physical
Ro. We expect that Ry can have any value which is much
larger than the “radius” of the atom. Physically, we
should not expect the structure of the atom to depend
on the size of its container provided this containing
volume is very large compared to the atom. In the pres-
ent calculations R, was chosen as 50.0 as compared with
the maximum orbital density of the oxygen atom which
occurs at 0.85 according to the HF calculations.!s
Although the matrix elements for continuum to con-
tinuum transitions still depend on Ry, in calculating the
energy or other physical quantities we integrate over the
intermediate continuum states and the result then does
not depend on Ry. An example of this effect is shown in
Table VII where the matrix elements are sensitive to
Ro. However, when the quantity @(2.0,2.0; 2p) of Eq.
(45) was calculated for /=2 states, the result was 0.121
using Ro=50.0 and 0.119 using Ry=30.0.

The results for 2s-2p correlations are given in Tables
VIII, IX, and X. It is seen that the bound-state excita-
tions of greatest importance are 2s~— 2p(0—, —1-).
In calculating the contributions of Table VIII, when
the 2s electron is excited into a 2p excited state and the
other excited state is in the continuum,

D= exote2,—(252p | v| 252p)
— (e2pt3k2—(252p]v] 252p)) . (49)

We have accounted for one of the two hole-particle in-
teractions by including (2s2p|v|2s2p) in D, which is

TasBLE XI. 25-2s5 correlation energies in a.u.

Modified

Excitations? second-order result? Totale
25t — kst
25~ — ks —0.00250 —0.00286
25t — k;:*'
25— kp —0.00162 —0.00185
2st — kd+
25— kd- —0.00463 —0.00529
2st > kft
25—k~ —0.00135 —0.00135
25t — kpt
25~ —2p(0-,—17) —0.00184 —0.00184
25t — npt
25~ —2p(0-,—17) —0.000595 —0.000595
25t — nst, kst
25~ — ks, ns” —0.000804 —0.000804
25t — npt, kpt
25~ — kp=, np~ —0.000274 —0.000274
25T — mst
25~ — ns~ —0.000118 —0.000118
25t — mpt
25~ — np~ —0.000020 —0.000020
2st — md*
25~ — nd~ —0.0000001 —0.0000001
Total —0.01375 —0.01500

2k and &’ refer to continuum states and #, m to bound excited states
with 7, m> 3.

b Shifted denominator of Eq. (49) is used when there is one bound and
one continuum excited state. D of Eq. (44) is used for %, &’ excitations.

¢ Higher order effects of Eq. (48) are included for all %, 2’ excitations
except for kf, k' f.
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TasLE XII. 15-2p correlation energies in a.u.
Modified Modified Modified
second-order second-order second-order
Excitations® direct® exchangeP totalb Totale

1s — ks
2p—k'p —0.001391 —0.000537 —0.001927 —0.002079
1s—k
2p— ki’)s —0.001326 —0.000537 —0.001863 —0.002009
Is—k
2p— kz’jd —0.009349 0.001110 —0.008239 —0.008888
1s — kd
20— k'p —0.001014 0.001110 0.000096 0.000104
1s > kd
20—k f —0.001376 0.0003120 —0.001064 —0.001148
1s—k

2p— kfd —0.000389 0.000312 —0.000077 —0.000083
15~ — 217 0-,—17)

2p — ki —0.000648 0.000090 —0.000558 —0.000558
1s — kdfc
2p(4+17) = 2p(0~,—17) —0.000104 0.000090 —0.000014 —0.000014
15~ — 2p(0-,—17)
2p(0F,—1%) - nst —0.000005 0.000000 —0.000005 —0.000005
1s — ns
2p — kp —0.000036 —0.000022 —0.000058 —0.000058
Is—k
2p— nI; —0.000062 —0.000022 —0.000084 —0.000084
15— 2p(0-,—17)
2p(0F,—1%) > ks —0.000063 0.000000 —0.000063 —0.000063
1s = np
2p— ks —0.000015 —0.000004 —0.000019 ~—0.000019
1s — ks
2p —np —0.000005 —0.000004 —0.000009 —0.000009
1s > np
2p — kd —0.000104 0.000021 —0.000083 —0.000083
Total —0.015887 0.001919 —0.013967 —0.014996

& k, k' are continuum states. m, n refer to bound states with m, 7> 3.
b D of Eq. (44) used for %, &’ excitations.
¢k, k' excitation terms are modified by Eq. (48).

now the second-order denominator. The remaining hole-
particle interaction and the particle-particle interaction
are expected to cancel to a good approximation as they
did in the 2p-2p case as seen in Table V and so the
second-order result is taken as the pair correlation
energy. The total 25-2p correlation energy from Tables
VIII, IX, and X is —0.1004 a.u.

The correlation energies for different excitations for
the 2s-2s pair are given in Table XI. In the case of
25— 2p(0~, —17) excitations, one hole-particle inter-
action is included by adding (2s2p|v|2s2p) to D of
Eq. (44). In the two-continuum excitation cases, the
hole-particle and ladder interactions were included by
the factor of Eq. (48). Small effects for the insertions of
Fig. 3 were also included. The excitations into bound
[=2 states were extremely small. The total 2s-2s cor-
relation energy of —0.01500 a.u. is considerably smaller
than the 2s5-2s beryllium correlation energy of —0.04491
a.u.58 This relatively small 2s-2s correlation energy in
oxygen may be ascribed to the exclusion principle as
discussed previously by McKoy and Sinanoglu.l” If the
presence of the four oxygen 2p electrons is ingored, then

17V. McKoy and O. Sinanoglu, J. Chem. Phys. 41, 2689 (1964).

there is a contribution of —0.0607 a.u. in second order
to the 2s5-2s correlation energy due to excitations into the
2p excited states. However, the exclusion principle must
be considered and so this contribution may not be
included.

There is also the small contribution to the correlation
energy due to the diagrams of Figs. 4(c), 4(d), and 4(e)
because the potential we use is not a completely unre-
stricted HF potential. The potential of Eq. (26) has two
2p exchange interactions for both 2s* states, but the
25t electron actually has exchange interactions with the
three 2p* electrons and the 25~ has exchange interac-
tions with the one 2p~ electron. This effect causes the
diagram of Fig. 4(d) to be included for both 2s*, with
excitations into ks* states giving a total of —0.000769
a.u. There is also an energy of —0.000814 a.u. from
diagrams shown in Figs. 4(c), 4(d), and 4(e) in which
25s% electrons are excited into kd* states. The total
2s-2s correlation energy, referred to the restncted HF
solution, is then —0.01661 a.u.

The remaining contributions to the correlatlon energy
come from 1s-1s correlations and from the 1s-2s and 15-2p
intershell correlations. The 1s-2p correlations are given
in Table XII and give a total 1s-2p correlation energy of
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TasLE XIII. 15-2s correlation energies in a.u.

Modified Modified Modified
second-order second-order second-order
Excitations* direct® exchange® total® Totale
1s — ks
2s > k's —0.003160 0.001537 —0.001623 —0.001688
Is —kp
2s—kp —0.003910 0.001189 —0.002721 —0.002830
1s — kd
2s — k'd —0.000940 0.000329 —0.000611 —0.000635
Is—kf
25—k f —0.000248 0.000101 —0.000147 —0.000153
15t — kp*
25~ —2p(0,—17) —0.000799 0.000046 —0.000753 —0.000753
1sm—2p(0-,—17)
25t — kp —0.000136 0.000046 —0.000090 —0.000090
s —np
2s > kp —0.0000241 0.000006 —0.000018 —0.000018
1s—kp
2s > up —0.000089 0.000006 —0.000083 —0.000083
Is— ks
2s —ns —0.000020 0.000013 —0.000007 —0.000007
1s —> ns
2s — ks —0.000036 0.000013 —0.000023 —0.000023
15~ —2p(0-,—17)
25T — np —0.000009 0.000006 —0.000003 —0.000003
1s* — np*
25~ —2p(0-,—17) —0.000014 0.000006 —0.000008 —0.000008
Total —0.009385 0.003298 —0.006087 —0.006291

a k, k' are continuum excitations. m, # refer to bound states with m, n> 3.
b D of Eq. (44) has been used.
< Hole-particle and particle-particle effects are included by Eq. (48) for &,

—0.014996 a.u. The total 1s-2p correlation energy, al-
though small compared to 2p-2p and 2s-2p correlations,
is still sufficiently large that it must be included if an
accurate value for the total correlation energy is de-
sired. The 1s-2s intershell correlation energy is given in
Table XIII and is —0.006291 a.u. The average correla-
tion energy for each 1s-2s pair is —0.00157 a.u. as com-
pared with an average correlation energy —0.00187 a.u.
for each 1s-2p pair. The average effect of the hole-
particle and particle-particle interactions for 1s-2s cor-
relations is to multiply the modified second-order
terms involving two-continuum excitations by approxi-
mately 1.04. The 1s-1s correlation energy contributions
listed in Table XIV add to give a total of —0.04383 a.u.

Since the excited single-particle states in this in-
vestigation are calculated in the presence of both 1s
electrons, when there is a 15 hole line both excited states
interact with it. That is, the interactions of the excited
states with 7 and with the unexcited states do not com-
pletely cancel and give rise to these hole-particle inter-
actions. There may also be interactions with a 2s or 2p
state which was omitted in V but is now present. For
example, consider 1s-2p correlations into kp,%d states.
There are hole-particle interactions of both %p and %'d
with the 1s hole line because kp and kd are calculated
with V in which both 1s electrons are present and one 2p
electron is removed. There will be no hole-particle inter-
actions with the 2p hole line in this case. It should be

k' excitations. The second-order result is used for bound excited states.

noted that in general there will be small effects due to
insertions on hole and particle lines of the type shown
in Figs. 3(b), 3(c), and 3(d). The hole-particle inter-
actions merely account for the major effects of the
lack of cancellation between interactions with ¥ and
with the passive unexcited states.

For the 1s-1s correlations both excited states inter-
act with each 1s hole line giving a total of four hole-

TasiLe XIV. 1s-1s correlation energies in a.u.

Modified second-

Excitations® order totalP Totale
1st — kst
1s— ks~ —0.011788 —0.013173
1st — kp™
1s-—kp —0.021848 —0.024413
1st — kd*
1s~— k'd- —0.003716 —0.004152
1st > kft
s —kf —0.001063 —0.001188
1st — kpt
15~ —2p(0,—17) —0.000634 —0.000634
1st — kp*, npt
1s—np™, kp~ —0.000117 —0.000117
1st — kst nst
1s™ — nst, kst —0.000152 —0.000152
Total —0.039318 —0.043829

a k, k' refer to continuum states. m, » refer to bound states with m, n> 3.

b States with &, k' calculated with D of Eq. (44).

¢ Includes hole—partlcle and particle-particle effects by Eq. (50) for k, k'
excitations.
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(a) (b)

F1G. 6. Third-order diagrams which should be included in 1s-1s
correlated in a potential V which omits one 2p state. For /=0
states, 29 is replaced by 2s. (a) Direct interaction. (b) Correspond-
ing exchange term.

particle interactions rather than two as given by Eq.
(48). These terms are partly cancelled by the particle-
particle interactions and by the interactions of excited
states with a 2p or 2s state excluded from V but now
present. This type of term is shown in Fig. 6. These
terms are included by the methods used in Eq. (48).
However, the appropriate factor is now

[1—4a(k,k'; 15)—t(k,k')+2a(k,k"; 2p) T2, (50)

where o and ¢ are defined by Eqgs. (45) and (47). The
term a(k,k’; 2p) in Eq. (50) should account for the ex-
change term of Fig. 6(b) as well as for the direct term of
Fig. 6(a). In the case of kp,k'p excitations, (k") was
found to be approximately equal to —a(%,t’; 1s). The
term a(k,k’; 1s) was calculated to be 0.0431 and
a(k,k’; 2p) was 0.0121. For kp,k'p excitations of two
1s electrons, Eq. (50) is then 1.1174.

As discussed previously, the 1s states were calculated
with interactions with only one 2s electron of opposite
spin and with interactions with one 15 electron of parallel
spin and one of antiparallel spin. Each 1s electron inter-
acts, however, with a 2s electron of parallel spin and one
of antiparallel spin and with only one 1s electron of
opposite spin. The interaction of a 1s electron with a
1s electron of parallel spin in ¥ may be neglected since
the exchange 1s interaction cancels the direct term. The
net effect is that diagrams of Fig. 2(a) and 2(b) must be
calculated for p=1s* and n=2s* and for p=1s— and
n=2s". The corresponding energy diagrams are shown
in Figs. 4(c), 4(d), and 4(e). The diagrams of Fig. 4(c)
were found to give —0.0001322 a.u. and those of Fig.
4(d) gave —0.0002522 a.u. The diagrams of Fig. 4(e)
gave 0.0003629 a.u., making a total —0.0000215 a.u.
This value should not be included in the correlation
energy, however, as it is the difference between the re-
stricted HF energy and the energy through first order
using the potential of Eq. (26) for both 1s and 2s
states.

Asin the case of 2s electrons, there are also corrections
of the type shown in Fig. 4(d) with ¢=1s* and n=2p*
due to the fact that a restricted HF potential is used.
The sum of diagrams like Fig. 4(d) for 1s* excitations
into ks states was calculated to be —0.0000632 a.u. and
—0.0000223 a.u. for excitations into kd states. These
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values are included in the correlation energy which is
referred to the restricted HF solution. The total 1s
correlation energy is then —0.04392 a.u.

D. Discussion of Results

The results of the correlation energy calculations are
summarized in Table XV. The total correlation energy
—0.2740 a.u. is composed both of true two-body cor-
relations which equal —0.2711 a.u. and of one-body
effects equal to —0.00283 a.u. These one-body effects,
as discussed previously, are due to the use of a spheri-
cally symmetric, restricted HF potential rather than a
completely unrestricted HF potential. The value
—0.2740 a.u. is 5.849), more negative than the value
—0.258 a.u. which Clementi has deduced from experi-
ment as the total oxygen correlation energy and which
he estimates as accurate to within 59). The difference
between the results of the present calculation and the
correct total correlation energy may be attributed both
to the approximations in calculating the pair correla-
tions and also to the neglect of three-body and higher
effects. If we neglect the possible errors in Clementi’s
value for Ee,: and in the value from this investigation,
the difference 0.016 a.u. gives us a very rough estimate of
the size of the three-body and higher correlation effects
in neutral oxygen. Since this value is quite inaccurate
and could even be wrong in sign, it would be desirable to
calculate three-body effects directly.

The calculations of this paper for one-body and two-
body correlations are estimated as being accurate to
within approximately 5%,. Most of this inaccuracy is
attributed to the neglect of nondiagonal ladder diagrams
and omission of excited states with /> 3. The individual
contributions listed in the tables are estimated to be
accurate to within 29%,. The nondiagonal ladder dia-
grams which are expected to be largest for 2p-2p cor-
relations have been included. These are the diagrams in
which two 2p electrons, excited into /=1 states, scatter
into /=2 states before returning to the ground state and
those diagrams in which particles in /=2 states scatter
into I=1 excited states before returning to the ground
state. These terms contributed 0.00201 a.u. No other

TaBLE XV. Summary of contributions to the
correlation energy in a.u.®

Electrons Correlation energy
12p-2p —0.09058
2s-2p —0.10044
|25-2s] —0.01500
1s-2p —0.014996
1s-2s —0.00629
1s-1s —0.04383
2> —0.00113
2sb —0.00161
1sb —0.000086
Total —0.2740

@ Only one-body and two-body contributions are included.
b One-body corrections due to use of a restricted Hartree-Fock potential
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nondiagonal ladder terms have been included. For the
correlations involving at least one 1s electron, the non-
diagonal ladder diagrams are very small due to the
large energy denominators. Omission of the ladder
diagrams tends to make the correlation energy more
negative and omission of states with />3 causes the
correlation energy to be less negative.

From Tables IIT, IV, VIII, IX, and XII it is found
that the correlation energy terms involving the 2p(41-)
state add to approximately —0.079 a.u. This value may
be compared with the difference in correlation energy
between O and O+ (—0.065 a.u.) or between O and
N (—0.070 a.u.).’s Actually, an adjustment should be
made to account for the fact that since the state
2p(+17) is unoccupied in Ot and N, excitations into
this state may occur and there is an approximate change
in the correlation energy in Ot and N by —0.0063 a.u.
relative to that in O due to all electrons other than
2p(+17). This provides another example of the effects
of the exclusion principle.

E. Three-Body Effects

An advantage of the perturbation expansion is that
the three-body and higher terms enter in a systematic
manner and are added directly to the one-body and
two-body terms without repeating the part of the cal-
culation for the pair correlations. The orthonormal set
of states used to calculate the pair correlations is also
used to calculate the three-body and higher diagrams.
Three-body diagrams for the energy first enter in third
order and they are shown in Figs. 7(a) and 7(b). The
hole states g, 7, and s must all be different for three-body
terms. The most important contributions are expected
when ¢, 7, and s are 2s and 25 states. The diagrams of
Fig. 7(a) are positive while the diagrams of Fig. 7(b)
are negative. In Fig. 7(b) the spin of state ¢ must be
parallel to that of state r, while there is no such re-
striction in Fig. 7(a). Because of the angular factors in
the matrix elements, the contributions from Fig. 7(b)
are expected to be very small when g and r are 2p states.
However, when ¢ is a 2s state and 7 is a 2p state or gis a
2p state and 7 a 2s state, these diagrams will be signifi-
cant. Although the diagrams of Figs. 7(a) and 7(b) have
not been explicitly calculated, they are estimated as
small compared with the pair correlations.

Some of the three-body diagrams in fourth order are
shown in Figs. 7(c), 7(d), and 7(e). Diagrams like Fig.
7(c) have recently been included in studies of three-body
correlations in nuclear matter.!® The diagrams of Figs.
7(d) and 7(e) are rearrangement diagrams of the type
considered by Brueckner and Goldman.!® In Ref. 5 the
diagrams of Fig. 7(d) were shown to arise from the linked
cluster factorization and were called third-class EPV
diagrams. In the diagrams of Fig. 7(d) the hole lines ¢

18 H. A. Bethe, Phys. Rev. 138, B804 (1965).
K. A. Brueckner and D. T. Goldman, Phys. Rev. 117, 207
(1960).
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Fi1e. 7. Typical three-body diagrams. (a) Third-order “ring”
diagram. (b) Exchange diagram of (a) or hole-particle diagram.
(c) Fourth-order diagram of type considered in Ref. 18. (d) and
(e) are rearrangement diagrams discussed in Ref. 19.

and s may be equal and in this case the diagram is no
longer a three-body diagram but is part of the pair cor-
relations. By considering both time orderings of the
right-hand part of this diagram and the corresponding
higher order diagrams, we may sum these diagrams in
such a way that they may be included by a small shift
in the denominator D of Eq. (43).20 The rearrangement
diagram of Fig. 7(e) also is an exclusion-principle-
violating diagram resulting from the linked cluster
factorization. Calculation of the diagrams gave ap-
proximately 0.0041 a.u. for Fig. 7(d) and —0.0045 a.u.
for Fig. 7(e), so there is good cancellation between these
two types of diagrams.

VI. DISCUSSION AND CONCLUSIONS

It has been shown in this investigation that many-
body perturbation theory need not be restricted to
closed-shell, nondegenerate systems but may be applied
directly to calculation of the ground-state energy and
wave function of most atoms. It was emphasized that it
is important to start from an unperturbed eigenstate of
L2, Lz, S?, and Sz. In calculating the single-particle

2 H. P. Kelly, Phys. Rev. 134, A1450 (1964).
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states it is important to use a potential which is spheri-
cally symmetric and independent of spin orientation.
It was discussed why it is desirable in many-body per-
turbation calculations to choose the potential so that
the single-particle excited states are calculated in the
field of N —1 other electrons rather than in the field of
N other electrons as is the case if the usual HF potential
is used. The result in the present oxygen calculation is
that the 2s and 2p states are HF orbitals but the 1s
state differs slightly from the HF 1s solution. This dif-
ference caused (®y|H|®p) to be only 0.0000215 a.u.
higher than the Hartree-Fock energy which is — 74.80936
a.u. Bound and continuum excited states were calculated
for I=0, 1, 2, and 3. The perturbation theory was then
applied to the calculation of the correlation energy
among all electrons of neutral oxygen. Sums over con-
tinuum states were carried out by numerical integrations
and sums over the infinite set of bound states were
carried out by the #~3 rule.® The final result from cal-
culation of the pair correlations and small one-body
effects is that the total pair correlation energy is
—0.2740 a.u. as compared with the correlation energy
—0.258 a.u. deduced from experiment by Clementi.'®
Most of the contributions to the correlation energy
come from continuum states and from the excited 2p
states of the unfilled 2p subshell. It is interesting that
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the 2s-2p intershell correlation energy of —0.1004 a.u.
is 379, of the total correlation energy. The total inter-
shell correlation energy from 2s-2p, 1s-2p, and 1s-2s
correlations is —0.1217 a.u. or 449, of the total correla-
tion energy as compared with the previous beryllium
calculation where the intershell energy was only 5%, of
the total. The importance of intershell effects may be-
come even greater for larger atoms as the shells and
subshells of electrons become closer.

The total pair correlation energy —0.2740 a.u. cal-
culated in this work is estimated as being accurate to
within 5%, and Clementi also gives a limit of 5%, on the
accuracy of the value for the total correlation energy
—0.258 a.u. deduced from experiment. Although the
difference of 0.016 a.u. between the two correlation
energy values may be due to three-body and higher cor-
relations, the uncertainties in the two values make it
desirable to carry out a direct calculation of three-
body correlations and these effects will be investigated
in future work.
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