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Theory of Low-Temyerature Resistance Anomalies in Dilute Alloys
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By means of a generalization of the Wick contraction procedure to the case of a localized spin, it is shown
that the perturbation series for scattering of a conduction electron at zero temperature on a localized mag-
netic impurity in a metal may be generally resummed so as to express it in terms of the solution of a Slater-
Koster model with a spin-dependent and strongly energy-dependent eftective potential. A perturbation
expansion of the effective potential provides a systematic approximation to the scattering cross section
which does not suffer from the divergence found by Kondo. The results of computations of resistivity and
thermopower based on this perturbation approximation and using a simple model for the conduction-electron
density of states are reported, leading to a possible interpretation of the resistance anomaly in rhodium-
based alloys.

1. INTRODUCTION AND DISCUSSION

'HE discovery by Kondo' of the logarithmically
divergent behavior of the second Born approxi-

mation to the scattering amplitude of conduction elec-
trons on a magnetic impurity in a metal has recently led
a number of people' 4 to investigate how this divergence
would become modified in nonperturbational treatments.

In this paper the results of an investigation of the
general properties of this scattering amplitude based on
study of the perturbation series to all orders in the
interaction between the noninteracting Fermi gas of
electrons and a single, localized, magnetic impurity are
reported. The principal result is a proof that, at zero
temperature, the perturbation series can generally be
resummed to express the scattering of a single electron
in the presence of the Fermi sea in terms of a spin- and
energy-dependent effective potential for a single elec-
tron interacting, independently of the Fermi sea, with
the center. A systematic perturbation expansion of the
effective potential in powers of the coupling constant is
derived. The main advantage of this expansion, as
compared to the perturbation expansion of the scat-
tering amplitude used by Kondo, ' is that although the
terms in the expansion of the effective potential still
contain divergences, these no longer result in a diver-
gence in the cross section, which is therefore shown
to be an artificial consequence of Kondo's original
approximation.

The approach used depends on a method of evaluation
of time-ordered products of localized spin operators.
Although Wick's theorem in its usual form cannot be
used, it is shown that it is nevertheless possible to define

propagators for the spin variables. This leads to a
physical interpretation of the Kondo phenomenon as a
self-energy effect resulting from spontaneous excitation
of electron-hole pairs by spin fluctuations. A key
property is, then, that since, in the absence of a mag-
netic field, the spins have zero excitation frequency, the

~ J. Kondo, Progr. Theoret. Phys. (Kyoto) 32, 37 (1964).
2 H. Suhl, Phys. Rev. 138, A515 {1965).' V. Nagaoka, Phys. Rev. 138, A1112 (1965).
A. Abrikosov, Zh. Eksperim. i Teor. Fiz. 48, 990 (1965)(English

transl. : Soviet Phys. —JETP 21, 660 (1965)g; Physics 2, 5 (1965).
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excitation of electron-hole pairs near the Fermi surface
will not require any extra spin excitation energy, and so
will lead to the divergence. The point of this remark is
that the degeneracy of an impurity spin is a general
property of a magnetized local state in the absence of a
magnetic field, so that although in reality such states
are not completely localized an8 resonate with band
electrons, ' this spread will not destroy the magnetic
degeneracy, so that the Kondo phenomenon may be
expected to persist even for partly delocalized spins.

At this point, a comment on the relation of the present
approach to that of other authors: Abrikosov, 4 using a
different method of evaluating time-ordered products of
spin operators, has summed a subseries of contributions
to the scattering amplitude, containing dominant di-
vergences. In terms of the resummation procedure of the
present paper, such a subseries would also contribute an
infinite subseries of terms to the effective potential. In
the present paper, the effective potential has only been
studied to second order in the coupling constant, so that
no further conclusions can be drawn about the nature of
resonance obtained by Abrikosov or that of the analo-
gous complex pole and conjectured instability of the
system discussed by SuhP ' and by Nagaoka. '

However, the relatively simple nondiverging pertur-
bation approximation to the scattering amplitude ob-
tained by our method does allow extension of the original
Kondo study to two further problems of physical
interest. This is done in the remainder of the paper
where results of computations of thermopower, and of
resistivity in a partly filled band situation, based on this
approximation, are reported.

The first conclusion from these computations, is a
qualitative confirmation of recent calculations by
Kondo' on the giant thermopower. Excitation of elec-
tron-hole pairs by a conduction-electron scattering on
an isolated magnetic impurity atom, leads to inelastic
contributions to the cross section, expressed, in the
language of the present paper, through the fact that the
effective potential is now complex. It turns out that

s P. W. Anderson, Phys. Rev. 124, 41 (1961).
H. Suhl, Phys. Rev. 141, 483 (1966).' J. Kondo, Progr. Theoret. Phys. (Kyoto) 34, 572 (1965).

382



144 LOW —TEM PERATURE RESISTANCE ANOMALIES IN DILUTE ALLOYS 883

these inelastic processes are not symmetric about the
Fermi level, so that carriers in the region of kT below
the Fermi level scatter more strongly than those in the
region of kT above the Fermi level. This provides a
detailed mechanism for the origin of the negative
thermopower, originally conjectured by Korringa and
Gerritsen' to arise on this basis using a phenomeno-
logical model. However, the calculations of the present
paper are only qualitative, as an ansatz has had to be
made in extending the zero-temperature formula for the
cross section to calculate the transport properties at
finite temperatures. The effects of magnetic ordering
6elds on the thermopower have not been considered.

The second conclusion from the computations con-
cerns the appearance of a resonance in the scattering
under conditions of fairly strong coupling and partly
filled conduction band. These results suggest a quali-
tative interpretation of the observed resistivity de-
crease of Rh alloys' as resulting from a resonance in the
scattering of d-band electrons, with resonance energy
above the region of observation. Such an interpretation
would also provide an understanding of the low mag-
netoresistance of these alloys compared with that of
alloys of the Cu Mn type.

2. FEYNMAN DIAGRAMS FOR
LOCALIZED SPINS

We coli,sider the one-electron Green's function, at zero
temperature, for a system of independent fermions
interacting with a randomly placed set of localized
impurity spins via a spin-dependent interaction. We
make the assumption that, in the limit of low impurity
concentration, interference effects for electron inter-
action with two or more impurities at a time may be
neglected as far as electrical resistance is concerned, so
that the average of the Green's function over the
ensemble of random impurity positions will be ex-
pressed in terms of an average electron self-energy equal
to the impurity concentration co (=Eo/E where Eo is
the number of impurity atoms and E the number of
matrix atoms) times the analytically continued forward
scattering amplitude for the electron scattering on a
single impurity. This will be derived from the one-
electron Green's function evaluated for an interaction
with a single impurity. The unperturbed Hamiltonian is

Ho=2 epao, ~ ao, ~~
p, 0'

where a, at satisfy the anticommutation rule {a, ,a, , )
Sp, p 8, The interaction Hamiltonian is"

T exp
&

n

—iHi(t) dt
0 + R i

X dti . dt„(T{no „(t)Hi(i'i)

XHi(& )no, , (t')))o, (6)

where the brackets ( ) o include an average over the im-
purity spin states (in zero magnetic field this is just a
normalized trace) and pro„(i) are Heisenberg operators.
Now the expectations of the interaction representation
pro, „(/) operators may be evaluated inunediately, using
Wick's theorem, in terms of the contractions represented
In Flg.

FIG. 1. Unperturbed electron
Green's function. G, (&-&') =in (t)a (t')

P,o o,P oo

where

G,'(t t')=id„(—1/Ã)P, e "&" '&

X{f+(e,)e(t—t') —f-(.,)S(f—t)}, (7)

where 8(t) =1 for t)0 and 0 for 5&0, eo are the un-
perturbed electron-band energies and f+(e) = 1 for e) es
and 0 for e(air (and vice versa for f ) In the absen. ce of
external magnetic fields, 6p are independent of the spin
state of the electron, so that G, ,

' becomes independent
of p, 0. and the spinor suffixes may be dropped. Because
of the 8-function range of interaction all momentum
sums separate completely as in the original Slater-
Koster model. The result of this process may be repre-
sented by a diagram in which directed lines represent
the G"s and at each vertex a scalar product of S and a
Pauli matrix occurs (Fig. 2). Because the G„' are
diagonal in the spin suffixes, the order of multiplication
of the Pauli matrices is dictated by following the order

where no „ is the Wannier destruction spinor operator
for an electron at site zero, spinor suffix p, ,

o,.= (1/v'&)Z. .,. (3)

e» are the spin--', Pauli matrices (e".= 4) and S are the
operators for the impurity spin satisfying the usual
commutation rules

fS;,S;)= ie;;iSI .
This one-impurity Green's function may now be ex-
panded in powers of (2) using the Feynman-Dyson
expansion

G..(~—~') = '(T{ o,.(~), '(~')})

Hi —JS' Q o'o, y 0»'rro, oi ) (2)

8 J. Korringa and A. N. Gerritsen, Physica 19, 457 (1953).
B. R. Coles, Phys. Letters 8, 243 (1964). A similar resistivity

decrease bas also been observed for Rh Mn $3. R. Coles lprivate
communication) j.' The J defined here is related to Kondo's (Ref. 1) coupling
constant Jz by J=—2'.

FIG. 2. Second-
order contribution to
one-electron Green's
function.
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I' will have the form, including a factor (—1) for each
closed loop,

I'zG. 3. Higher order contribution to one-electron Green's function.

of the arrows on any linked electron line. For instance,
the contribution to (6) resulting from the diagram of
Fig. (2) is

( J)2 ao

dtidt2G'(t —ti)G'(ti —t2)G'(t2 —t )
2l

)&Tr,{T{e„„,S(ti)e„,„S(tg)}}. (8)

While for the contraction of Fig. 3 we obtain the con-
tribution to (6) of an appropriate product of electron
propagators 6' multiplied by

P {T{e„„,S(t,)e„,„, S(t2)
P&P~

X P (e„,., S(t )e„,„, S(«))e..„S(t) I }, (9)

where the time dependence S(t) serves only to label the
order induced in the operators by the original T product
in (6). The spinor products may be rewritten without
spinor suKxes using a direct-matrix-product notation.
For instance (9) becomes

Tr,{T{eiS(ti)ei S(t,) Tr., (e2 S(t3) 2 (4))
&&., S(t,)}}. (10)

Here the suKxes, 1, and 2 on the e's denote that the
matrix product of all cr~'s is to be taken, and also the
independent matrix product of the e2's.

We now introduce a term "structure" to distinguish
different classes of contractions of electron operators
which may occur in a perturbation term with a given
number of vertices. To each partition of a term with m

vertices into a set of eo, eq e, subsets of vertices in
which mo vertices are contracted to the ingoing and
outgoing electrons and each of the remaining sets
m~ e„are contracted to form r distinct closed loops
we associate a class of diagrams said to be of the same
structure, which we will denote by a symbol F. Then
for a given time ordering of the e vertices there will be
Sr =m!i+i i" rii g;=i" i,! Lwhere v; is the number of
closed loops with i vertices (0!= 1)j ways of contracting
the electron operators to produce a diagram of chosen
structure, i.e., this will be the number of diagrams in the
given structure class. The spin-operator factors Las in

(10)] occurring for the members of a given structure
class will however have the c matrices multiplied in
different orders. By relabeling the time variables, we
can fix on a definite order of multiplication of the 0-'s as
represented by a chosen drawing of the diagram, and
include all the other contractions leading to diagrams of
the same structure by reordering the operators. The
resulting contribution to (6) from a diagram of structure

where the necessary traces over the 0's belonging to
closed loops are implied and T, denotes boson-like time
ordering with respect to the S operators only:

T,(S(t,)S(t,))=+S(t,)S(t,) for t,)t, . (12)

The main step in this paper is the following procedure
to disentangle commuting contributions to the time-
ordered product of S operators in (11).As stated above,
the order of multiplication of the a's is 6xed by the
chosen drawing of a diagram of given structure. We
de6ne that time ordering of the S operators which is the
same as a chosen order of operation of the 0- operators as
the normal form for the class I' of diagrams of given
structure. This is denoted by {:S;,(ti) S,„(t„):}r.
(Here it ~ i are Cartesian suKxes. ) Any other time
ordering of the S operators may be reordered to the
normal form by using the commutation rules (4). In
doing this there will appear a sum of terms involving
first and higher order cornrnutators of the S operators.
These may be separated out recursively as contractions
of various orders (denoted by link symbols). If we
abbreviate S;„(t ) by S then we obtain for second- and
third-order contractions the expressions given in Eq.
(13) (Fig. 4). This procedure

SS, = T(S Sl -:SS,:

S, S,S,= T iS, QSl —Z:8 S,S,: -:SS,S,:

Fzo. 4. Equation (13).

may be continued to as many orders as required. (Note
that the choice of the normal form as corresponding to a
chosen order of multiplication of the 0 matrices is merely
imposed for the later convenience of handling of the 0.

matrices. In fact any arbitrary order would be as good
as far as the S operators are concerned. ) Because the
contractions are still operators, the normal product with
contractions requires further definition. We define the
order in which contracted operators are to be taken in a
normal product with contractions to be that corre-
sponding to the order in which the 6rst line of the link
symbol for each contraction group occurs, reading from
right to left, when the operators themselves are written
in the normal order for the class I'. (An uncontracted
vertex counts as a first-order link symbol. ) For example
the normal product given in Fig. 5 (a) is to be evaluated
as the expression given in Fig. 5 (b).

:S,S,S,S,S,:

FIG. 5. Illustration of convention
given in text for evaluating a normal
product with contractions.

(—1)"+"J"Sr dti dt„g G'(t; t,)—

X(T.{IIe; S(t;„)})„(11)
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In this way the product of operators for arbitrary time
ordering can be re-expressed as a sum of time-inde-
pendent products, corresponding to the normal products
with contractions, of time-dependent operators resulting
from the contraction procedure. For example, for the
second- and third-order contractions corresponding to
the normal forms

:SyS2. =SyS2,

:SiSsSs:=StSsSs ~

we find the expressions given in Eq. (15) (Fig. 6).

s, s,= e(t, -t, ) fs, .s, ~

LJ

s s s=e(t -t ) 6(t -t ) f fs, s J,sl3 2 2 l 3 2

+ e(t, -&, )e(t-&ills, , gl, s]

(14)

FIG. 6. Equa-
tion (15). :s s,s:=e(t,-t )fs, s) s

:s,s, q:=e(t,-l, ) s[s, ,sl

:ss s:-"e(t -t ) (15)

By this means the T product in (11) may be re-
expressed as the sum of all possible normal products
with contractions. ~' These may conveniently be repre-
sented by means of diagrams of the Feynman type in
which, however, the spin-contraction lines do not repre-
sent c numbers but operator products. Possible such
terms corresponding to the class in Fig. (3) are shown
in Fig. (7).

3. THE EFFECTIVE POTEN'TIAL

Using the expansion of the T products developed in
Sec. 2, the contributions to the single impurity scat-
tering Green's function are represented by a set of
Feynman-type diagrams derived from the electron

diagrams of diferent structures by performing the con-
traction procedure on the spin operators. The resulting
diagrams consist of one-electron irreducible parts strung
together with G' functions, together with disconnected
parts. The disconnected parts are those pieces of the
diagram which have no electron or hole lines connecting
them to the rest of the diagram, and which also have no
contraction links crossing contraction links from another
part of the diagram. (This last is necessary since the
contracted operators do not commute. )

For the problem of the present paper (i.e., only a
single localized spin), there now appears a further
simplifying feature which is that, as a result of the
rotational invariance of Hr, Eq. (2), and the traces over
the closed-loop spin matrices, the contributions to a
normal product corresponding to a disconnected part
can depend on the operators S only through S', hence
will be c numbers. For similar reasons the one-electron
irreducible parts are diagonalized by the spin eigen-
states of the combined spin j, for asiegle electron spin
coupled to the impurity spin

j=rr+S (16)

and depend only on j and not on ns;. Because of the
c-number character of the disconnected part contribu-
tions we expect that the sum of these contributions can-

cels the normalizing factor T exp — iH~ t dt
tO 0

in (6) in the usual way. The spin average over the
connected parts may then be replaced by the weighted
mean of the two j eigenvalues, j=S&-,' for the single
electron entering the definition of G'(5) coupled to the
impurity spin. Finally, if we denote by V,«'(t t ) thej-
eigenvalue of the contributions from the sum of all
possible one-electron irreducible parts, and its Fourier
transform by V,rr&'(~) then the total single-impurity
one-electron Green's function (5) may be written as

where

G'(ro)
G(co) =Q; w,

1+G'(ro) V.rr &(co)
(17)

~~= (2j+1)/2(»+ 1)

and G'(&u) is the Fourier transform of (7)

G ( )=I( )+ '(j'+( )—f-( ))r( ),
with

(18)

(19)

(20)

FxG. 7. In this figure an unlinked vertex represents an un-
contracted term o"S (contraction oi order one) in the normal
product.

"The content of the usual Wick. theorem is that in the case of
bosons all contractions higher than the second are zero.

Note that Eq. (17) is the Green's function for scattering
on a single impurity. If the one-electron irreducible
parts are denoted by a circle LFig. 4(a)] then the single
impurity character of G is emphasized by drawing
dotted lines to denote momentum transfer to the im-

purity atom LFig. 8(b)]. On making an ensemble
average over impurity positions, " only forward scat-

"S. F. Edwards, Phil. Mag. 5, 1020 (1958).
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(b) g=~ + + + + StC

I r

= G, 4 Q,E G.

V ff' in powers of J. Although terms in this expansion
will still contain the Kondo divergence, the eGect of the
resummation is to remove this from the scattering
amplitude, so that in this form, perturbation theory
gives physically reasonable results. We use it to investi-
gate qualitative features of the model. (An unphysical
singularity does, however, occur off the real axis for
Jx)0 as discussed in the Appendix. )

From {15)we have for the first and second pertur-
bations to V«r (see Fig. 9)

(c)g=w+ g

0

I-~4 etc

FIG. 8. Construction of the many-impurity Green's function g
in the low-concentration hmit in terms of the one-impurity self-
energy diagrams Z which are in turn constructed from the eBective
potential V, 44. )The dotted lines denote momentum transfer to the
impurity (see text).j

[V«f&(f—t'))r ——|i(t—t') J(4r S);,
[V«4'(f ~'))s= ~'G'(f ~ )(Z~p ~~~pL~pP~))J (26)

= —J'GP (f—f')(4r S);

with Fourier transforms [using (7))
tering contributions to the total, many-impurity, one-
electron Green's function, denoted by gp(cp), will sur-
vive. In the low-concentration limit discussed in Sec. 2,
g will result by stringing together one-atom scattering, where
contributions [Fig. 8 (c))

LV '()) =~{o S)

[V«j(&p))s ———J'(4r S);d(&p),
(27)

where P follows from (17) as

(21) 4f4p G (tp —cp )
CO

—$E

g(cp) =G' '[GG' '—1)

V. ()
=Qu,

1+GP (4p) V«44'(rp)
(22)

Finally, in the limit co —& 0, the quasiparticle lifetime
follows from (21) as

1/r„= —cp Imp(es). (23)

In the case that the original impurity interaction is
not spin-dependent, all except the lowest order irre-
ducible diagrams disappear and (23) reduces, using
(19) to

[1/re)" ---«"-d-4= cp(fr+ —fr ) I
~ I'I'(en) (24)

where

(e,)I

s es Ql+ze

In (28) appears the characteristic zero-frequency pole
for the spin propagator mentioned in Sec. 1, which has
the additional feature of picking out only a negative
time, i.e., electron-hole pair, contribution to U,ff The
iteration of this term in the scattering amplitude via
(22) suggests, by analogy with electron-phonon inter-
action, that the Kondo effect should be interpreted as
resulting from this interaction with a "spring" of zero
restoring force" rather than directly as a Pauli principle
exclusion eBect of the type originally proposed by
Cooper" for superconductivity. Using (27), (23), and
(22) we recover Kondo's original expression (retaining
only logarithmically diverging terms) by expanding 1/r

A = V/(1+G'V) (25)

which is the usual answer for a Slater-Koster potential
of strength V. This is therefore a proof that exclusion
principle effects cancel to all orders for a spin-inde-
pendent potential. (Kondo showed this to third order. 's)

4. APPROXIMATE CALCULATION OF THE
ELECTRICAL RESISTIVITY AND

THERMOPOWER

In this section we discuss qualitative features of the
quasiparticle lifetime, (23) by using (22) and expanding

"This must happen, of course, as one can Grst solve the
Schrodinger equation for a single electron scattering on the
impurity, then All up the modiGed Fermi sea without altering the
scattering wave functions.

FIG. 9. First- and second-order contributions to the
effective potential t/', ff.

44 Appearance of the spin propagator in (22) also allows us to
estimate the effect of paramagnetic polarization of the electron gas
on the spin response leading to the Kondo eBect. The main point
here is that although this polarization damps the spin response it
does not remove the spin degeneracy, so that the zero-frequency
pole persists even for a damped spin. The qualitative effect of
electron-hole pairs on the spin propagator is to replace 1/(44 —44)
by 1/Pc4 (1+4y) 44] wher—e, to lowest perturbation order
ycc (J/ez)' This seems likely to be true generally, as y measures
the ratio of the spin resonance linewidth to frequency. This should
remain Gnite as the applied Geld tends to zero. (The author is
grateful to Professor M. H. Cohen for questioning this point. )

L 'N Coopers Phys Rev 104' 1189 (1956)



144 LOW —TEMPERATURE RESISTANCE ANOMALIES IN DILUTE ALLOYS 387

to third order in J
1/ =,(f+( )—f-( ))r( )

X (I'—I'a(~))P; tot(e. S) s. (30)
Using (18) and

3

.2-

V=.33 J= -.50
K

we have

(o S);=-',S for j=S+—',

=—-,'(S+1) for j=S——',

Q, w, (e S)t'=-,'S(S+ I)

(31)

(32)

V =33 J„=-.17

so that (30) agrees with Kondo's expression. "(We have
not included a spin-independent part in the inter-
actions. ) We proceed to use the perturbation approxi-
mation (27) .1 .4 1 0

T'K
4.0 10. 40. 80.

V.ttt=[U. ff $1+[V,stt)s ——(e S);(I—J'a(to)) (33)

as a basis for a nonperturbative computation of the
electrical resistivity and thermopower.

A problem which arises at this point is that the
effective potential and hence the lifetime at given
electron energy ~ will be strongly temperature-de-
pendent since the divergence of (29) as co approaches ep
results from the sharpness of the Fermi distribution

f (to) leading to the logarithmic divergence of gtt(M)
which becomes smeared out as the temperature in-
creases. One cannot therefore use the zero-temperature
cross section to calculate scattering at finite tempera-
tures. The best way to proceed would be a recalculation
of the self-energy using finite-temperature Green's
functions. We believe that the treatment of Sec. 3 can
be generalized to work at finite temperatures, but for
the purposes of the present paper, a qualitative estimate
of the scattering is made by assuming that the main
effect of temperature will be to replace the step function

f of Eq. (6) by the Fermi distribution (and similarly
for f+ using f+= 1—f—). (This will have the advantage
of joining smoothly on to the approximation at T=O.)
Equation (29) then becomes

Fio. 10. Resistivity (arbitrary units) against temperature for a
half-ulled band situation (bandwidth was taken to be 10.0 eV,
Fermi energy 5.0 eV), calculated using the second-order approxi-
mation to V, &s of Eq. (33), to which a spin-independent potential
2V has been added. Jlf-, is Kondo's coupling constant. '

therefore make a crude ansatz at this point and set

where
1/r -=2 ~ l~ (~) I'I'(~),

U.n'(~)
A;(co) =

1+(I((o)+ii'(to)) U, tt (co)

(35)

(36)

where I and I' are given in (20) and V,tt is obtained by
inserting (34) in (33). Formula (35) was used to calcu-
late the electrical resistivity (in arbitrary units) by
means of

8
p(T) = se p' dec r„,(T,os)——

(9Q)

(37)

and the thermopower" via"

itf
S(T)= ———',Vp' doe(c F to)r„,(T,o&) —p(T) . (38)—

eT (3M

d(T,os) =N ' Po((Pf(eo)/(eo —co))—if(os)1'(&o), (34) For the comPutations a simPle Parabolic density-of-
states model"

where

f(~)= I/(eP(M ~&3+1)'

For calculation of the electrical resistivity we further
require, not the quasiparticle relaxation rate but, by
analogy with the case of an energy-independent po-
tential, the difference of "particle" and "hole" relax-
ation rates. ' An estimate of this is made by noticing
that in the spin-independent case the current relaxation
rate 1/r„, is obtained from the quasiparticle relaxation
rate 1/r, by dropping the factor (f+ f ) in (24). W—e

"In making the comparison, Kondo's de6nition of the coupling
constant' must be used.

A. Abrikosov, L. P. Gorkov, and I.K. Dzyaloshinsky, 3fethods
of Qmasttgm Field Theory il Statisticat Physics (Prentice-Hall, Inc. ,
Englewood Cliffs, New Jersey, 1963),p. 334. In the present case of
a 5-function interaction the (cosset —1) term in the Boltzmann
integral averages to (—1).

N ' Zo ~(eo—~)= (4»/e~) ((~/en) (1—~/e~) ) (39)

was used. (e~ =band width. ) po is determined (assuming
one electron per atom) by the normalization

N ' Q 1=1.
l yl (uz

(40)

For a half-filled band, I(&o) in (20) is zero [in noble-
metal-based alloys, the band is not symmetric, but one

"N. F. Mott and H. Jones, The Theory of JjtIetals and Alloys
(Oxford University Press, London, 1936), 1st ed. , p. 310."The approximate formula for 5(T) in terms of the logarithmic
derivative of the cross section at the Fermi surface cannot be
applied in the present case owing to the rapid variation with
energy t c.f. A. R. de Vroomen and M. L. Potters, Physica 27, 1083
(1961)3.

"A. M. Clogston, Phys. Rev. 125, 439 (1962).
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p v/0

T'K
0 20 40 60 80 to the effective potential is also shown. Owing to the

saturation effects of the denominator in (36) mentioned
above, a larger ratio J/V is needed to obtain a given
resistance rise at low temperature than that needed by
Kondo using his perturbation approximation. Although
the magnetic-Geld effects considered by Kondo~ have
not been included, the thermopower predicted still
tends to fall off at low temperatures due to the increase
of the logarithmic part of the cross section over the
inelastic part which gives the large, fairly temperature-
independent part at higher temperatures.

FIG. 11.Thermopowers calculated with the approximation and
band parameters used for Fig. 6. (No magnetic-ordering 6eld
eRects have been included, ) As J increases relative to V, the eRect
of the log term shows up as a suppression of the thermopower at
low temperatures, together with an over-all negative increase of
therm op ower.

would still expect I(&v) to be small) and as V,rr(&v) in-
creases at low temperatures, the effect is to saturate the
resistivity, flattening off the rise proportional to lnT
which was found by Kondo from (30). The results of
numerical integration on the IBM 7090 at Imperial
College are shown in Fig. (10).The principal conclusion
to be drawn from these results is that the region of
validity of Kondo s perturbation estimate (30) is re-
stricted to

~

J'rr~ &0.2 eV in the temperature range of
observation. However, for negative J~" and a half-full
band the linear dependence on lnT persists even for
fairly large values of Jz. For positive Jz there appears a
cancellation between the perturbation terms [V.H jr and
(V.ffjs indicating that this approximation is bad in this
region. (See also the Appendix. ) But the indication
remains that the decrease of p(T) as T &0 predicted b—y
the perturbation formula (30) for J&)0 will probably
not persist in a more exact theory, for J&)0.2 eV. We
conclude from this that the observation of increasing
p(T) for all known dilute magnetic alloys of the type
with transition-metal impurities in Cu, Au (half-filled
band situation) cannot be taken as conclusive evidence
for J~&0.

Results for the thermopower are probably much
more sensitive to the brutal use of the ansatz (35), (36)
than the resistivity case. As mentioned in the Intro-
duction, the scattering is no longer elastic for the spin-
dependent case, as may be seen from the ifI' contribu-
tion to PV,rr &js appearing via (34). The present
approximations are in fact equivalent to Kondo's' up to
fourth order in J; as in the present treatment, he also
uses a quasielastic formula of the type of (35) to
calculate the scattering cross section. This approxima-
tion probably excludes some inelastic (pair production)
contributions. The results of the computation for
thermopower are shown in Fig. 11 for a variety of J
values. The effects of adding a spin-independent term V

S. APPLICATION TO TRAÃSITIOÃ-METAL-
BASED ALLOYS

In the case of transition-metal-based alloys it is
probable" that s —& d scattering provides an important
contribution to the resistivity. This means that the
coupling of the d electrons to the impurity spin should
be taken into account in determining this transition
rate. We simulate this qualitatively by lowering (or
raising) the Fermi level in the above one-band model.
The inunediate physical result is to increase I(cu) and
reduce I'(&o) in (20). As I(~) increases, the fact that
V,qq(~) may become large as &u approaches ez can lead
to a zero for the real part of the denominator of (36) for
scattering energies near the Fermi surface. This leads to
a very sharp resonance in the scattering amplitude at
these energies. This resonance is completely different
from the usual Friedel virtual bound state for scattering
from nonmagnetic impurities, described by (25), for
which V does not vary with energy. Here the resonance
width would be measured in electron volts. In the
present magnetic case, however, the resonance is a
result of the fact that the effective potential itself is
becoming large in the region of the Fermi surface. The
width of the resulting resonance now depends expo-
nentially on the coupling constant J but at any rate is
very sharp, to be measured in 10 eV units. Since V,ff
has opposite sign for S+~~ and 5—rs in the approxima-
tion of Eq. (33) the resonance could occur for either sign
of J within this approximation.

The main point of the present section is the observa-
tion that as the Fermi level is lowered or raised in the
band, the position of the resonance may move into the
energy range of carriers in the usual temperature range
of observation (=1 to 50'K). This is to be contrasted
with noble metal situations where, if a resonance does
occur, it is at energies corresponding to extremely low
temperatures. (This situation appears to be the case for
the resonances discussed by Suhl' and Abrikosov' which
are somewhat different in origin from the present one.
(See remarks in Sec. 1.) We further observe that, what-
ever the approximation used, V,« is likely to increase at
low energies, since for co large compared to eg, the
perturbation approximation for V,qt(~) is good, and this
shows V,ff increasing as co —+ e&. Hence it seems likely

"See Ref. 18, p. 267.
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It follows that for small J, the change in resistivity due
to a magnetic field will be proportional to the resulting
change in V,tr, while for large J, the change in g and
hence in I/7 will be strongly suppressed by the large
denominator in (41).
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FIG. I2. Resistivity (arbitrary. units) for a partly filled band
situation. Fermi level was taken at 1.0 eV for bandwidth 10.0 eV
(using the parabolic density-of-states model (39)].As J increases
the resonance moves exponentially fast through the temperature
range of observation.

that the existence of the resonance does not depend too
strongly on the present perturbation approximation.

In order to check that the resonance could appear in
the physical range of temperatures, the approximation
of Eq. (35) using (33) for V,tr has been run on the com-
puter using values of I and I' corresponding to a partly
61led band. The results are shown in Fig. (12) plotted on
a linear scale. Owing to the logarithmic dependence of
V ff on energy, the resonance is very distorted in shape.
We propose that the observed resistance anomaly in
dilute alloys Rh-Fe and Rh-Mn may be interpreted as a
resonance of this type, although the scale of the ob-
served resistivity decrease is larger than that in the
present approximation. (This decrease depends on the
ratio I/I' and is sensitive to details of the band struc-
ture. ) The absence of resistance anomaly in dilute
Pd Fe alloys, s' above the ordering temperature could be
similarly interpreted as a case with both J and I/I' very
large.

This interpretation is also in qualitative agreement
with the observed low magnetoresistance in Rh-Fe
compared with that of Au-Fe. The detailed effects of the
magnetic field will depend on the g factor of the impurity
state; however, its qualitative eGect is to reduce the
log term, Iz(&u) in V,«," since, if cpp is the energy re-
quired to alter the magnetic quantum number of S by a
unit, (29) becomes modiled to

I/r= —cpImg(~))0 for co)ep
&0 for co& ep. (A1)

We discuss this for the approximation (33) to V,ff f. We
have

1/ ="Z, IV;&(f+ f )I IV. -I'-
—I Vm}e/«I1+O'V ffl e(A2)

For pp) e~, ImV, tr is zero, from (33, 29) so that 1/r) 0.
For co(.e~ however, ImV, gg& can take either sign de-
pending on j=S&-,' so that we must consider the
relative magnitudes of the two terms in the numerator
of (A2). We have for cp&sp

—I'I V «'I ImV, , '= —I'J &e S» I1
—(e S);I'J'. (A3)

APPENDIX: STABILITY OF THE APPROXI-
MATION OF SEC. 4

The resummation procedure of Sec. 3 leading to V,ff
removes Kondo s singularity in the scattering ampli-
tude, but there is still the possibility that approxima-
tions to the resulting self-energy function g(&o) (22)
may lead to unphysical singularities off the real co axis.
Singularities of this type were found by Suhl2 ' in his
calculation of the scattering amplitude. The correct
analytic behavior of the one-particle Green's function
(21) will be guaranteed at T=O in the limit cp~0
provided the quasiparticle lifetime has the correct sign

f(ep)

1V & (e,—rpp) —re+is

Hence this has the correct sign ((0) provided

II-J~ ls»/S. (A4)

The resulting change in V,« leads to a change in P (~) of

& Z (~)=Z~ to~&V.«'/(I+OP V.«')' (41)

~ S. R. Coles, J. H. W'aszink, and J. Loram, I'roceedings of the
International Conference on 3Iagnetisnz, Eottingham (Institute of
Physics and the Physical Society, London, 1965), p. 165.

"N. Mikoshiba and K. Yoshiro, J. Phys. Soc. Japan. 19, 2346
(1964).

This will always hold for J)0(Jz(0) since dz(cp)(0.
But for negative J(Jx)0) there will be a small region
of energies co over which the real part of V,gg& is small, in
which the unphysical sign for 1/r occurs. As noted in
Sec. 4, this is also the region where the perturbation
approximation is badly wrong, so that an improved
approximation to V,qq should really be used in this
region.


