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Free-Energy Shift of Conduction Electrons Due to the s-d Exchange Interaction
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A free-energy shift of the conduction electrons due to magnetic impurity immersed into an otherwise
pure metal is calculated up to the fourth order in the s-d exchange interaction. The results obtained show
that there appears no anomalous term of the form T"lnT up to this order in the magnetic-held —independent
part of the free energy and that anomalous ln T terms are included only in the magnetic-Geld-dependent part.

INTRODUCTION
' "T has been pointed out by Kondo' that the electrical
~ ~ resistivity of dilute alloys due to the s-d exchange
interaction with magnetic impurities immersed in other-
wise pure metals shows a singular behavior described
by a logarithmic function of temperature which arises
from the second Born approximation. Similar loga-
rithrnic singularities also appear in the expressions for
the spin polarization of the conduction electrons due to
the magnetic impurities and for the magnitude of the
localized spin, as has recently been shown by Okiji and
one of the present authors. ' According to their results,
this singular behavior of dilute alloys including magnetic
impurities can be attributed to a reduction of the mag-
nitude of the localized spin as far as the magnetic
properties are concerned.

In this paper, we shall calculate the magnetic-field-
independent part of the free-energy shift of a free-
electron gas due to a magnetic impurity immersed into
it, up to the fourth order in the exchange interaction,
and we shall show that there appears no logarithmic
term up to this order. In convict with the result recently
obtained by Engelsberg, ' this result means that the
logarithmic singularities appear only in the magnetic-
6eld —dependent part of the free energy.

EXPRESSION FOR THE FREE-ENERGY SHIFT

We consider the Hamiltonian of the system consisting
of the conduction electrons and one localized spin
situated at the origin, which can be written as

&=&o+V

ekakz &ks (+/2+)Q{(&k't &kt &k't akt)Ss
ks

+"t*"tS +"t*"tS,), (1)

where s-d exchange interaction is assumed to be 8-func-
tion-like. S means the spin operator of the impurity
atom, and S+ the usual spin raising and lowering
operators

Sp =S,&iSy.

uk*& and ak& are, respectively, the creation and annihi-
lation operators for the conduction electron with the
wave vector k and the up spin, and ek is the band energy
of the conduction electron with the wave vector k.

The usual method of perturbation gives rise to the
following energy shift for the ground-state energy of the
conduction electrons up to the fourth order in J:
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Here, the unperturbed ground state is assumed to be
the state in which all the one-electron states below the

~ J. Kondo, Progr. Theoret. Phys. (Kyoto) 32, 37 (1964).' K. Yosida and A. Okiji, Progr. Theoret. Phys. (Kyoto)
34, 505 (1965).' S. Engeisberg, Phys. Rev. 139, A1194 (1965).
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Fermi energy are occupied by the electrons with up and
down spins and the state of the localized spin is in one
of (2S+1) states in each of which the s component of
S takes one of the integers ranging from S to —S. The
function fk is zero for ek) e& and unity for ek( e& where
c& denotes the Fermi energy.
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the following functional form:
f(e) =1

= 2(1—e/a)
=0

7

Cp

—8+~+8,
age.

(A1)

Here, if we take 2kT for a, the slope of this approximate distribution function at the origin coincides with that of
the true Fermi function.

With the use of (A1), the double integration with respect to e' and e" can easily be carried out and Iz becomes

1
e"F(e) a'e+—

2 Q

1
e F(e) de —— e F(e) de

q

2g g
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1
F(e)= 1——{(ega) in
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a
1

+ {(e+a)'(ln
I
e+al)'+(e —a)'(lnl e—al)' —2(e+a)(e—a) lnl e+allnl e—al }. (A3)

4a2

Here, F(e) is an even function of e. Therefore, if n is even, the third integral of (A2) vanishes and the second
integral is completely cancelled by the contribution of the first integral from the upper bound. Thus, there appears
no lnT term for this case. If e is odd, the second integral vanishes. Then we have only to calculate the erst and
the third integrals.

First, we consider the second term of F(e). The indefinite integral of the product of e and this term
is calculated as
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where only the terms which include logarithmic functions are retained. Inserting the upper bound e= —a into
Eq. (A4), we obtain the contribution from the first integral of (A2),

(2/(n+2))a"+' ln
I
2a

I
.

The contribution from the third integral of (A2) can also be obtained by replacing n by n+1 in (A4) and in-

—(2/(n+ 2))a +' ln
I
2a

I
.

Thus, two contributions cancel out each other and no lnT term comes out of the second term of (A3).
Next, we consider the third term of F(e). The indefinite integral of e"{(e+a)'ln'I e+al+(e —a)'ln'I e—al }

can be calculated as
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where only the terms with logarithmic functions are retained. Inserting e= —a in this expression, we obtain the
contribution from the upper bound of the first integral of (A2) as

(4/(v+2))a"+e(ln j
2a j

)'—2 fL(m+3)+L(n+2)+ eL(v+1)}(2a) "+e ln j 2a j,
where L(e) is defined by '1

L(N) = —-{(x——,')"—(—-')"}dx.
Q p S

putting e=a in (A5) with the replacement of I by I+1, we obtain the third integral of Eq. (A2) as
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Inserting e= —a into (A10), we obtain the contribution of the upper bound of the first integral of (A2) as
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The contribution from the third integral of (A2) can be calculated with the use of (A11) and (A10) as
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Equation (A9) and —2 times (A14) are coinpletely cancelled. Thus, there appears no InT term at all from the
integral Ij.
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APPENDIX 3: EVALUATION OF I2
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