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Free-Energy Shift of Conduction Electrons Due to the s-d Exchange Interaction
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Institute for Solid State Physics, University of Tokyo, Azabu, Tokyo, Japan
(Received 1 November 1965)

A free-energy shift of the conduction electrons due to magnetic impurity immersed into an otherwise
pure metal is calculated up to the fourth order in the s-d exchange interaction. The results obtained show
that there appears no anomalous term of the form 7%InT up to this order in the magnetic-field-independent
part of the free energy and that anomalous In 7 terms are included only in the magnetic-field-dependent part.

INTRODUCTION

T has been pointed out by Kondo! that the electrical
resistivity of dilute alloys due to the s-d exchange
interaction with magnetic impurities immersed in other-
wise pure metals shows a singular behavior described
by a logarithmic function of temperature which arises
from the second Born approximation. Similar loga-
rithmic singularities also appear in the expressions for
the spin polarization of the conduction electrons due to
the magnetic impurities and for the magnitude of the
localized spin, as has recently been shown by Okiji and
one of the present authors.? According to their results,
this singular behavior of dilute alloys including magnetic
impurities can be attributed to a reduction of the mag-
nitude of the localized spin as far as the magnetic
properties are concerned.

In this paper, we shall calculate the magnetic-field-
independent part of the free-energy shift of a free-
electron gas due to a magnetic impurity immersed into
it, up to the fourth order in the exchange interaction,
and we shall show that there appears no logarithmic
term up to this order. In conflict with the result recently
obtained by Engelsberg,? this result means that the
logarithmic singularities appear only in the magnetic-
field-dependent part of the free energy.
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EXPRESSION FOR THE FREE-ENERGY SHIFT

We consider the Hamiltonian of the system consisting
of the conduction electrons and one localized spin
situated at the origin, which can be written as

H=H+V
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where s-d exchange interaction is assumed to be §-func-
tion-like. S means the spin operator of the impurity
atom, and S, the usual spin raising and lowering
operators

Si=S5:+13Sy.

ax*y and axq are, respectively, the creation and annihi-
lation operators for the conduction electron with the
wave vector k and the up spin, and e is the band energy
of the conduction electron with the wave vector k.
The usual method of perturbation gives rise to the
following energy shift for the ground-state energy of the
conduction electrons up to the fourth order in J:
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Here, the unperturbed ground state is assumed to be
the state in which all the one-electron states below the

17J. Kondo, Progr. Theoret. Phys. (Kyoto) 32, 37 (1964).

2K. Yosida and A. Okiji, Progr. Theoret. Phys. (Kyoto)
34, 505 (1965).

3 S. Engelsberg, Phys. Rev. 139, A1194 (1965).
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Fermi energy are occupied by the electrons with up and
down spins and the state of the localized spin is in one
of (25+1) states in each of which the z component of
S takes one of the integers ranging from S to —S. The
function fy is zero for x> er and unity for < ey where
er denotes the Fermi energy.
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Equation (2) is originally an expression for the energy
shift at the absolute zero of temperature. However, if
one takes the Fermi distribution function as fi it turns
out to be the expression for the free-energy shift with
the fixed Fermi energy at finite temperatures. This fact
can actually be shown for the present Hamiltonian up
to the fourth order in J. The contributions to the free
energy from the change in the Fermi energy are not
expected to give any anomalous term. Therefore, these
will be disregarded in the following calculation. The
free-energy shift of the third order in J has already been
given in the paper by Engelsberg.?

Je(1— fu) (1= fi)

kk’k’’ (ek— ekl) (ek-— ék'l)

K. YOSIDA AND H. MIWA

144

THIRD-ORDER ENERGY SHIFT

It is easy to show that the second-order term has no
logarithmic component. In order to see whether the
third-order term has logarithmic components or not,
we have to carry out the summation over k, k/, and k”.
In order to do this, we assume the following simple
state density for the conduction electrons:

p(e)=p for D>e>—D
=0 for D<|¢] 3)

and take the Fermi energy as an origin of energy. Then,
the first term can be integrated as follows:
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where small quantities proportional to exp(—D/kT)
have been omitted. As is easily seen, the first term gives
no singular term. The last term can be expressed by
partial integration as
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where G(ex) is the indefinite integral of the function g of
& given by the last factor, including a double integration
with respect to ¢ and €”,
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The contributions from the band edges do not give any
singular term with respect to 7. On the other hand,
since dfi/dex is an even function of e, and G(e) is an
odd function of e, the contribution from the central
part vanishes.

The second term of Eq. (4) converges near both ends
of the band. Therefore, we can expand the first loga-
rithmic function with respect to ¢/D. Then, we obtain
the following type of integral:

/ fkék [ —ﬁ ln] €x— €k’ I dék' (5)

Ek' deku

where e In|ex— e | can be integrated with respect to
& as [ (e"'— ew™)/(n+1)] In| ex— exr | +-nonlogarith-
mic terms. Obviously, the contributions from the band
edges give no singular terms, and further the contribu-
tion from the central part is given by
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This integral vanishes because the interchange of ¢ and
e changes the sign. The considerations made so far
also apply to the second term of the third-order energy
shift. Thus, the third-order energy shift is found to have
no singular term.

Engelsberg?® adopted a parabolic form for the state
density and approximated the Fermi distribution func-
tion by a simple integrable form. Such a method of
calculation gives no logarithmic term in the third-order
energy shift either.

FOURTH-ORDER ENERGY SHIFT

There are three kinds of integrals which we must now
calculate for the fourth-order energy shift.
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The first one is calculated as
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The first term of this equation has no In7T" term. The second term has no In7" term either because the integral
given by expression (5) has no In7" term. Since the fourth term is an integral of the product of fx and an even
function with respect to e, no logarithmic function of temperature appears from this term. Thus, what we have
to study is the following integral:

dfi dfie
/ fk h’l] D— ékl dek ln[ €x— €x’ [ ln[ €x— €Ex’/ I dek'deku . (7)
—D

€k’ d €xr

The second type of integral which appears in the fourth-order energy shift can be rearranged as follows:
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The first term is just of the first type of integral which we have considered above. The second term can be calculated
as follows:
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(In| D—ex|)?4+2 In| D— ¢] —In| ex— e | dew

€x —D G€xr

k(1= fw)(1— fiwrrr) D—
oy Je(l—fi)(1~ =p3§fklnD

Kk k" (€e— €1 ) (€x— €xrr) (ex— €xrr7)

D

dfw dfier

+ _— ln[ €x— €k’ [ln] €x— €k’ dekfdekn . (9)
s dekr dék"

It can easily be seen that neither the first nor the second term has any In7 term. The third term has a similar
form to the integral (7). These two integrals have no singularity at the ends of the band. Therefore, in order to
show that they have no InT term at all we have only to show that the following integral
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has no In7 term. The evaluation of this integral will be given in the Appendix A.
The third type of integral can be rearranged as follows:
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The second factor enclosed in curly brackets can be calculated as follows:
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Since the first and the second terms of Eq. (12) do not show a singular behavior for small ¢, these terms are not
of interest. With the use of (12) in Eq. (11), the essential part of Eq. (11) can be expressed as
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Integrating with respect to e and omitting normal terms, we find that the first term gives
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e

There is no problem at all for small e in this expres-
sion. However, some care may be needed for the band
edges where D4 =« becomes small. The two func-
tions of e enclosed by the square brackets in (14) are
even functions of x. Therefore, the indefinite integrals
of these two functions with respect to x become odd
and vanish as x tends to zero apart from an integration
constant. Thus, it is found that no In7" term arises from
the first term of the expression (13).

The second integral
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is somewhat difficult to evaluate. For evaluations of
this integral and also the integral given by Eq. (10), a
simplified distribution function is assumed. The evalua-
tion of I, will be described in Appendix B. From the
results of these calculations, we cannot expect any InT"
term in the free-energy shift due to the s-d exchange
interaction at least up to the fourth order in J.

DISCUSSION

As may easily be seen, there exists no divergence in
the perturbational expansion of the energy shift of the
conduction electrons due to the s-d exchange interaction
at the absolute zero of temperature. At finite tempera-
tures, however, it might be expected that such loga-
rithmic functions of 7" as 7" InT would appear in the
free-energy shift. The present calculations show that
there appears no such logarithmic function of T at least
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up to the fourth order in J in the absence of an external
magnetic field. It seems likely that this holds in any
order in J.

This conclusion is not surprising, but rather reason-
able. As has recently been shown by Yosida and Okiji,?
the essential effect of the higher order perturbation of
the s-d exchange interaction is to decrease the magni-
tude of the localized spin, and the logarithmic functions
of T are included in the expression for it. The contrac-
tion of the localized spin has no influence on its entropy.
Thus, no singular term would be expected in the mag-
netic-field-independent part of the free energy.

The free energy is expanded in the presence of the
external magnetic field as follows:

F=Fy+AF—ixH+ - - -

Here, AF includes no singular term, but x, which is
proportional to the square of the magnitude of the
localized spin, as Miwa* has shown, includes logarithmic
functions. Thus, the present results also suggest that
the origin of the logarithmic singularity due to the s-d
exchange interaction is in the magnitude of the localized
spin.
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APPENDIX A: EVALUATION OF [,

In order to make the calculations for 71 and I easier,
we approximate the Fermi distribution function fix by

4 H. Miwa, Progr. Theoret. Phys. (Kyoto) 34, 1040 (1965).
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the following functional form:

f(e)=1y e<—a,
=1(1—¢/a), —a<lela, (A1)
=0, a<e.

Here, if we take 2T for a, the slope of this approximate distribution function at the origin coincides with that of
the true Fermi function.
With the use of (A1), the double integration with respect to ¢ and ¢’ can easily be carried out and 71 becomes
—a 1 a 1 a
Il=/ €"F(e) de—l—-a €"F(e) de——z— "t (e) de, (A2)
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Here, F(e) is an even function of e. Therefore, if # is even, the third integral of (A2) vanishes and the second
integral is completely cancelled by the contribution of the first integral from the upper bound. Thus, there appears
no In7 term for this case. If # is odd, the second integral vanishes. Then we have only to calculate the first and
the third integrals.

First, we consider the second term of F(e). The indefinite integral of the product of e and this term
is calculated as
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where only the terms which include logarithmic functions are retained. Inserting the upper bound e=—ga into
Eq. (A4), we obtain the contribution from the first integral of (A2),

2/(n+2))a 2 1n|2a| .
The contribution from the third integral of (A2) can also be obtained by replacing #» by #z+1 in (A4) and in-
serting e=a, as —(2/(n+2))am+ In| 2a| ]

Thus, two contributions cancel out each other and no In7" term comes out of the second term of (A3).
Next, we consider the third term of F(e). The indefinite integral of e"{(e+4@)?In?|e+ta|+(e—a)?In?|e—al}
can be calculated as
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where only the terms with logarithmic functions are retained. Inserting e=—a¢ in this expression, we obtain the
contribution from the upper bound of the first integral of (A2) as
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Putting e=a in (AS5) with the replacement of # by #+-1, we obtain the third integral of Eq. (A2) as
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For even #, the first term is replaced by

(—a){(eta)ttr—(2a)*} In| e—a[] , foroddx. (A10)

1 1 1
{ 6n+1(€2_a2)+a2e7b+1(_————)l In|e+ta|ln|e—a|
n+3 n+3 n+1

1 1 o 1 e—a\! [eta\'
—— a"3] In|2¢|(In|e—a| —In|eta|)— —{ -1 l(——) —(————) }]
(n—l—3 n-i-l) |: |2e(In] | letel) 1§1 2 =1 2a 2a (A1)

Inserting e=—a into (A10), we obtain the contribution of the upper bound of the first integral of (A2) as
{L(n+3)—2L(n+1)}(20)"* In|2a] . (A12)

The contribution from the third integral of (A2) can be calculated with the use of (A11) and (A10) as
—((n+4)7'— (n+2)"Ya"(In | 2¢|)*+2{ L (n+4)— 1L (n+2)} (20)"*In| 2a] . (A13)
The summation of (A12) and (A13) gives
(2L(n+4)+L(n+3)—31L(n+2)— 1 L(n+1)}(20)"*3 In| 2a| +((n+2)"'— (n+4)Da™3(In| 2a|)2.  (A14)

Equation (A9) and —2 times (A14) are completely cancelled. Thus, there appears no In7" term at all from the
integral 7.
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APPENDIX B: EVALUATION OF I,

The simplified distribution function given by Eq. (A1) enables us to carry out the integration with respect to
e and ¢ in the integral I». The result is

D D
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—D D
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x

It is easy to show that %,(x) does not give any logarithmic term. Therefore, we now consider the integral of one
of the two terms included in %s(x), namely,
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If one changes the integration variables ¢’ and ¢”/ to ¢’ and x=¢"""— ¢/, the region of integration is divided into
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integration for the integral

20 D
(B4). ’

Xx=-2d

four subregions shown in Fig. 1. The integral over region (1) is calculated as
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The sum of (B6), (B7), and (B8) vanishes. Thus, the integral I, includes no logarithmic function at all.




