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be assigned to the magnitude of the elastically scattered
component. Values of p at E=E, have been displayed
in Fig. 6 for various targets as a function of the incident
electron energy E,. The decline in p with increasing
energy Eoand with decreasing target atomic number Z
agrees qualitatively with a formula obtained by
Dashen'® and with a similar expression obtained earlier
by Bothe.!® However, thecurves of Fig. 6 decrease
more rapidly than the Z/E, dependence predicted by
these theories. In view of the approximations employed
in the theory, close agreement is not expected.

No theoretical treatment presently available offers
an adequate quantitative description of the data con-
tained in this and the previous paper.! Apparently, the
energy range from about 500 eV to 10 MeV contains
most of the interesting variation in the retrofugal-flux
coefficient p(Z,Eo8,E). In this range the effect of the
binding energy of the target atomic electrons is im-
portant and directly influences the generation of
energetic secondary electrons. Except for the secondary
electrons from e-e collisions, these have been ignored in
theoretical treatments so far, but evidently the

14 R. F. Dashen, Phys. Rev. 134, A1025 (1964).
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secondary electrons make a substantial contribution
to the retrofugal flux. Berger,' using Monte Carlo
methods, has calculated the spectrum of backscattered
electrons from aluminum for 0.5-MeV primaries. He
obtains an elastically scattered component consistent
with the present data although the most probable
energy E, is somewhat higher than the present measure-
ments indicate. Again, the presence of secondary elec-
trons could account for the difference in magnitude
between the measured and the calculated retrofugal-flux
coefficient as well as the differences in the spectrum
profile. Other theoretical treatments by Bothe,® by
Thiimmel,”* and by Dashen' yield results which also
aredeficient at the lower energy portion of the spectrum.
Since all of these neglect the generation of secondary
electrons in the target, a discrepancy of this type is
expected.
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Explicit formulas are obtained for the atomic M-shell form factor as a function of energy loss and mo-
mentum transfer of a charged particle in the Bethe-Born approximation. The M-shell binding corrections
to Bethe’s energy-loss formula are calculated. The validity of the calculation is limited by the use of hydro-

genic wave functions.

I. INTRODUCTION

HE removal of inner-shell electrons from atoms

by impinging protons or other heavy ions has

been studied experimentally and theoretically from
time to time during the past fifty years.! The process
itself, manifested by the emission of characteristic
x rays, has received some attention, but most interest
has centered around inner-shell excitation and ioni-
zation as a mechanism by which charged particles lose
energy as they penetrate matter. As is well known, the
contribution of the relatively slowly moving outer
electrons to the stopping power of a particle incident

* Work done under the auspices of the U. S. Atomic Energy
Commission and supported in part by a grant from the University
Research Council, University of North Carolina at Chapel Hill.

1 E. Merzbacher and H. W. Lewis, in Encyclopedia of Physics,
edited by S. Fliigge (Springer-Verlag, Berlin, 1958), Vol. 34, p. 166.

with charge ze and velocity v is accurately taken into
account by Bethe’s simple formula? for the energy loss
per unit path length,

—dE/dx= (4re's®/m?)N B,

with B=ZIn(2m*/I). N is the number of stopping
atoms per unit volume, Z the atomic number, I an
average ionization potential, and 7 the electron mass.
The contributions of the inner-shell electrons are, on
the other hand, not properly represented in this formula
and must be calculated separately. The contributions
of the inner shells, notably K and L, but more recently
also M, to the stopping power of charged particles have
remained a subject of investigation since Bethe’s
pioneering work.?

2, A. Bethe, Ann. Physik 5, 325 (1930).
3 U. Fano, Ann. Rev. Nucl. Sci. 13, 1 (1963).
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The first quantum-mechanical calculation of the
cross section of excitation and ionization was made by
Bethe?# for the K-shell electrons. The same method
was applied to the L-shell electrons by Walske.5 In
Bethe’s treatment, one uses plane waves to describe
the impinging protons or heavy ions thereby neglecting
any distortion of the projectile wave function by the
Coulomb field of the nucleus. A further simplifying
assumption is the use of hydrogenic wave functions
for the atomic electrons in the vicinity of the
nucleus.®

The extension of Bethe’s method to the calculation
of the ionization and excitation cross sections for M-
shell electrons has for some time seemed desirable, but
the complexity of the problem has so far been a de-
terrent against its solution. Since the main obstacle
was the prodigious amount of algebra which could be
expected on the basis of experience with the K- and
L-shell calculations, one is led to think of using a
computer for some of the algebraic operations.

The present paper contains the results of a calcu-
lation of the M-shell cross sections following the pro-
cedure and the assumptions used earlier by Bethe.
Explicit formulas were obtained for the M-shell form
factor as a function of energy loss and momentum
transfer. The values of the stopping number By are
exhibited in graphic and tabular form. Finally, approxi-
mate asymptotic formulas for the M-shell corrections
to Bethe’s stopping-power formula valid in the limit
of high projectile energies are obtained.

4M. S. Livingston and H. A. Bethe, Rev. Mod. Phys. 9, 263

(1937).

s M. C. Walske, Phys. Rev. 101, 940 (1956).

6 These assumptions and the prescription for including the effect
of screening are discussed in'the review. article by Merzbacher and

Lewis, Ref. 1.

II. THE EXCITATION FUNCTION AND
STOPPING NUMBER

For an inelastic collision between an incident particle
of mass M and energy E and an atom at rest, in which
an electron from the M shell is promoted to a higher
energy level, it is convenient to define an excitation

function as
Qmax dQ
I(nu,W)= '—;IFWM(Q)P- 1)

Qmin

The energy of the incident particle is measured in terms

of
nu=mE/MZy’Ry, 2

where Zy is the effective nuclear charge for the M shell
which takes screening of the inner electrons summarily
into account, and R, is the Rydberg constant. W is the
energy transferred to the atomic electron, in units
Z12R,. The variable of integration Q in Eq. (1) is
defined in terms of 7g, the change of the incident par-
ticle’s momentum, by the relation

Q=(a/Z)¢, 3

where g is the first Bohr radius of the hydrogen atom.

The limits of integration in Eq. (1) can be obtained
from conservation of energy and momentum. If, as
may be assumed, the heavy charged particle loses in a
single collision only a very small fraction of its initial
energy, the lower limit of the Q integration becomes
approximately Qumin=W?/49s. For the upper limit
Omax= o is a good approximation.

The so-called form factor |Fwa(Q)|? which appears
in the integrand of (1), is the sum of the squares of the
matrix elements of e'?* between the nine distinct M-
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shell states and the alomic states greater in energy
by the amount W.

The calculation of the form factor, |Fwa(Q)|?
follows the analogous work of Bethe? and Walske,57
for the K and L shells, respectively, and is made with
nonrelativistic hydrogenic wave functions. A GAT
program was written performing the necessary algebra
in obtaining |Fw(Q)|? on a Univac 1105 computer.
As a check, the program was required to reproduce the
calculations of Walske” on the L shell. We quote only
the final results here.

For transitions to the continuum (W==£k?+3%),

7

[Fwu(Q) !2dW=33(1
XCXP{ — (2/k) arctan[3k/(Q—#*+3%)]}
LQ—F+%)+ (4/9)F]°

XQLQ*+ f1(R)Q*+ f2(R)Q*+ f5(R)Q?

—e2 w/ k)

+ f1(B)Q+ fs(B) W, (4)
where
108 (43+11k2>
REGR VAR &
® 518 412k2+14k4
o (k) =——+—R+H—%4,
f 243 81 3
442 310 122
fa(B)=— (——+———k2+—~k4+ 2k6>
729 81 27
11443 1652 4606
Foll) = —— ket T
98415 2187 3645 27 3
14923 1279 - 902 34848
fs(k)= ——R - ——F A ——kS
6200145 59049 3645 45927
71
+—k8-|- ~R1o,
81

From the excitation function the total cross section
for an inelastic collision leading to a removal of one
of the electrons from the M shell is easily obtained:

8rz?

oM=

®

a / I(nu,W)dWw .
Zy*r J won

The lower limit Wmia of the integration over all possible
energy losses is a critical quantity which in the absence
of any interaction between the atomic electrons would
have the value 3. Screening by the atomic electrons,

7M. C. Walske, thesis, Cornell, 1951 (unpublished).
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TasLE I. Stopping-number contribution of
M electrons, By (0u,mn)-
n 02=0.55 03 =0.45 02=0.35
0.1 20.85 26.44 36.70
0.2 36.13 44.97 62.43
0.3 45.53 56.52 79.08
0.4 52.02 64.61 91.12
0.5 56.87 70.74 100.48
0.6 60.94 75.87 108.13
0.7 63.93 79.78 114.60
0.8 66.67 83.32 120.22
0.9 69.01 86.37 125.12
1.0 71.10 89.10 129.53
1.1 72.97 91.55 133.52
1.25 75.44 94.80 138.84
1.5 78.91 99.39 146.42
1.75 81.81 103.25 152.84
2.0 84.30 106.57 158.39
2.5 88.36 112.03 167.60
3.5 94.45 120.24 181.54
5.0 100.91 128.95 196.37
10.0 113.38 145.83 225.07

which effectively reduces this qua.ntity, is accounted
for by the definition of a screening number GM by the
relation

(6)

where [ is the average ionization potential of the M
shell. In the computations of this paper 6, was chosen
to have the values 0.35, 0.45, and 0.55, corresponding
to three representative regions of the periodic table of
elements. The proper choice for Wi, then becomes

Iy=03Z1"Ry,

@

Since 6 <1, this implies the use of expression (4) for
negative values of 2% As Bethe and Walske have shown
such an extrapolation is permissible if the normali-
zation factor 1/(1—e?7/%) is simply omitted.

The stopping number for the M shell, which is the
quantity of central interest in this paper, is defined as

J— §
Wmin = '§0M .

B Ostynar) = / W W)dW. (8
o0M

The results of computations of By are given in graphic
and tabular forms in Fig. 1 and Table I, respectively:
These calculations were made for values of 52r between
0.1 and 10.

By comparing Fig. 1 with similar curves for the K
and L shells, given in the work of Walske,58 it is seen
that the initial rise in B as a function of » becomes
sharper as one goes from the lower toward the higher
atomic shells.

8 M. C. Walske, Phys. Rev. 88, 1283 (1952).
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III. ASYMPTOTIC FORMULA FOR B (01y1r)

For large values of the projectile energy nu, an
asymptotic expression for By can be written in the form

Bar(0ae,120) =S (0ar) Innag+T ar (011)
—Un(0u)/n2. (9)

Approximate values for S (6ar), Tar(021), and U s (605r)
have been obtained by fitting an expression of this
form to the highest computed values given in Table I
for 6r=0.35, 0.45, and 0.55, respectively. No attempt
was made to derive the asymptotic expansions from
the theory. The resulting equations are

Br(0.35,721) =41.37 Iny3r+129.8—0.24/7,1
BM (0.45,‘)1M) =24.29 lnnM+89.92— 0.39/17M , (10)
B1(0.55,m31) =17.88 Inna+72.28—0.75 /5.

It should, however, be noted that the accuracy of
Egs. (10) depends on the accuracy of numerical values
of By Since the numerical values of By listed in Table
I may contain errors of as much as 19, the coefficient
U (0x) in the last term of Egs. (10) is not accurately
determined. It is nevertheless useful to follow con-
vention® and to extend the asymptotic expressions (10)
by defining a quantity Cau(6a,mr) for all 5, through

the equations,

B (0.35,121) =41.37 Inna+129.8—Cu (0.35,7n)
B (0.45,m27) = 24.29 Inna4-89.92—Cy (0.45,9)
B(0.55,757) =17.88 Inz 3r+72.28— C7(0.55,m21) .

For low values of nar, Ca(6ar,mar) was determined
from the numerically evaluated Bi, and for nu>2,
Cu(Oumar) was taken to be proportional to 5%, ac-
cording to Egs. (10). The results are shown in Fig. 2.

(11)

IV. CONCLUSIONS

The main result of this paper is Eq. (4) giving
explicitly the plane-wave Born-approximation form
factor for inelastic collisions of a charged particle with
M-shell atomic electrons. The validity of the calculated
cross section and stopping power is limited primarily
by use of hydrogenic wave functions to represent the
initial and final states of the ejected electron. More
accurate calculations, using Hartree-Fock wave func-
tions for the atomic electron are now probably feasible.
In the meantime, the M-shell binding corrections pre-
sented in this paper may serve as reasonable estimates
for protons and heavier ions stopping in high-Z
elements.



