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A theory of positron annihilation applicable to real metals is developed. It is based on a band model for a
solid and the ladder approximation for the electron-positron Green s function. The Block character of the
positron as well as the conduction-band single-particle wave functions are included. The core electrons are
treated within the tight-binding approximation. Throughout, the eftect of the direct Coulomb coupling be-
tween the annihilating pair is stressed. The general formulas are then used to derive a theory of core annihila-
tion. In the course of the derivation it was necessary to make a number of simplifying assumptions which
restrict the theory to simple metals. We 6nd that the contribution to the partial annihilation rate Rgpj
coming from a core electron is proportional to the square of the sum of two terms: the usual pth Fourier
component of the product of the positron and core function plus another term accounting for the polarization
of the ion core by the positron. After studying core annihilation in detail using an idealized model for the
unoccupied electron Bloch states in sodium, we conclude that the second term is just as important as the
erst, although it has never been included in past treatments of this problem. Unfortunately our model is too
crude to give quantitative results. An accurate calculation of core annihilation is very much more dificult
than the corresponding computation of annihilation in a conduction-electron gas.

1. INTRODUCTION
' 'T has been known for sometime now' that to even
i - begin understanding the observed lifetimes of posi-
trons annihilating in simple metals it is essential to take
into account very carefully the Coulomb force between
the annihilating electron-positron pair. This coupling
leads to a large enhancement of the electronic density
at the positron which is the quantity that essentially
determines the total annihilation rate. On the other
hand, for a number of simple metals, the main features
of the two-photon angular-correlation curves can be
understood reasonably well on the basis of a Sommerfeld
model. This arises because the annihilation cross sec-
tions, although considerably increased by the positron
force, are not very sensitive to the velocity of incidence
of the electron partner. However, even for sodium, long
and rather broad tails still remain, extending consider-
ably beyond the natural Ferm momentum cutoff which
necessarily enters an electron-gas theory. ' These tails
must come entirely from the existence of the crystal
lattice and it is the purpose of this paper to develop a
theory which includes lattice sects.

To understand the general viewpoint on which our
whole approach rests, it is necessary to give a brief
account of our present understanding of positron annihi-
lation in an interacting electron gas. The work of K-II
was based on the ladder approximation for the electron-
positron propagator as well as a static limit for the
dynamic eGective potential in the random-phase ap-
proximation. No attempt was made to include further
correlations. This left the analysis open to criticism
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since the question of possible corrections to the ladder
graphs was left unanswered. ' The choice of a static limit
is also a nontrivial matter because the total rates are
quite sensitive to the form of the screened potential. '
These problems were recently studied in Ref. 2.

By making an estimate of all the lower order graphs
in the complete perturbation expansion for the electron-
positron Green's function, it was concluded that the
ladder approximation is indeed much more exact than
might have been expected. This occurs not only because
the remaining Feynman graphs involving electron-
positron interaction lines lead to small corrections, but
also because cancellations arise between them.

This work further served to clarify both the use of the
static approximation to the dynamic potential, and the
way in which self-energy processes are to be incorporated
in the general theory. Provided one introduces a plasmon
correction, it was shown that retaining only the zeroth
frequency component in the eGective potential is quite
appropriate since this has much the same effect on the
two photon counting rate as including self-energy cor-
rections. ' These results are of practical value to us in
the present discussion since they indicate clearly that
the ladder approximation with static potential can be
used with confidence in generalizing the theory to
include lattice corrections.

Another result (which to some extent is a question of
principle) to come out of the analysis of CK is perhaps
even more important. It was shown that the positron
can introduce quite subtle distortions in the electronic
configuration. For instance, the angular correlation
curve arrived at in CK bears little resemblance in detail

3 These difhculties with the ladder approximation were empha-
sized particularly by B.Bergersen in a Brandeis University Ph.D.
dissertation, 1964 (unpublished).

4 S. Kahana, Phys. Rev. 117, 123 (1960) and Ref. (1).
~ Strictly speaking this result was established only within the

Born approximation. The arguments presented there, however,
are expected to go through in much the same way for higher order
contributions, although these are smaller and less important.
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to that determined on the basis of the momentum dis-
tribution of the quasiparticles in an interacting electron
gas. This result casts doubt on the usual interpretation
of the data for the counting rate using a simplified Inodel
where one ignores the positron polarization of the sur-
roundings. While this point of view has undoubtedly a
good deal of validity and has been useful in the past in
understanding these measurements' ' we cannot expect
it to be correct in detail. A fundamental interpretation
of the data requires treating the positron Coulomb field
as an essential feature of the problem.

In this paper an attempt is made to include the lattice
within the framework of the ladder approximation. This
involves, in some way, two distinct generalizations of
the usual formalism. First, the ion lattice potential
introduces higher momentum components in the con-
duction-electron single-particle wave function. Second,
core annihilation is now a possibility. Both these effects
introduce tails in the counting rate. However, for a
metal like sodium we expect the latter to be by far the
more important and for this reason we soon specialize
to the case of core annihilation although our formulas
initially refer to both conduction and core electrons.

In Sec. 2 we define the zeroth-order propagators from
which the general perturbation series for the electron-
positron correlation function can be constructed. Our
basic approximation is then specified. Sec. 3 contains
mostly formal algebraic manipulations. We show how
the Green's-function expression for the partial annihi-
lation rate E[pj can be rewritten as the square of a
generalized Bethe-Goldstone-type amplitude whichmust,
however, first be weighted by an appropriate overlap
integral of an electron and a positron single-particle
Bloch state. In this form the expressions are still quite
unmanageable if one is interested in making a practical
calculation. In this sense the work so far has been
purely formal.

In Sec. 4 we use our general formula to derive a
theory of core annihilation which is the main concern
of this paper. To make any progress, a number of
approximations are necessary, but these are of little
consequence. They restrict us to systems with small
cores and for which the conduction single-particle Bloch
functions do not differ very much from plane waves. In
this way we find that the contribution to E[p7 from a
core electron in a state p„„canbe written as the square
of the sum of two distinct terms. The first is the pth
Fourier component of the familiar core electron-positron
product wave function. The second involves matrix
elements which describe virtual transitions of the core
electrons to unoccupied conduction states. The evalua-
tion of these matrix elements is dificult and a complete
numerical calculation is not attempted. Instead, a

' S. Berko and J. S. Plaskett, Phys. Rev. 112, 1877 (1958).
~ E. Daniel, J. Phys. Chem. Solids 6, 205 (1958).
P. R. Wallace, in Solid State I'hysics, edited by F. Seitz and

D. Turnbull (Academic Press Inc. , New York, 1960), Vol. 10, p. 1.' K. L. Rose and S. De Benedetti, Phys. Rev. 138, A927 (1965).

simplified model is studied in the hope of getting some
understanding of the physics of the problem. This is the
subject of Sec. 5. The computations are presented for
sodium since it is for this metal that the theory is
expected to apply best. Because the model used for the
conduction states is quite crude even in this simple case,
the calculation is only preliminary. It is nevertheless
useful since the simple physical picture that evolves is
certainly qualitatively correct. In Sec. 6 we present a
discussion of the results obtained and draw conclusions.

2. FORMAL PRELIMINARIES

We begin with the expression for the partial annihi-
lation rate R[pj as the pth Fourier component of an
appropriate contraction of the electron-positron Green's
function

d'xd'ye '&'*—&'G (x x; y+,y+). (2.1)

The notation is as in CK. This is a perfectly general
expression for E[p$ provided the particles involved are
of low energy, i.e. well within the nonrelativistic regime.
It is important to realize that the complete contrac-
tion (—i)'G, „(x,x; x+,x+) which enters the total rate
R=g~ R[p] has a simple physical meaning. It is just
the ground-state expectation value of the product of the
second quantized density operator for the electron and
the positron field. Implied is the assumption that the
electron system is at zero temperature and that the
positron is thermalized before annihilating.

Once an approximation to G,~(x,x'; y,y') is chosen the
problem is completely determined. It was pointed out
in the Introduction that physically the ladder graphs
are expected to give by far the dominant contribution
to R[p]. We should perhaps be a little more specific.
For the conduction electrons all the remaining lower
order Feynman graphs were essentially evaluated in
CK. Admittedly a plane-wave approximation was used
and the Bloch character of the single-particle states
must certainly modify each contribution somewhat;
however, this will not change the fact that any given
term is either small or almost cancels against another.
The core electrons are more problematical since some of
the matrix elements involved in the various perturba-
tion terms will not resemble at all plane-wave matrix
elements. Also the energy denominators will be signifi-
cantly modified. Thus, in this case, the ladder approxi-
mation has not really been justified by a detailed
numerical calculation although the only first-order term
contributing is the first ladder. Nevertheless, this is
certainly a physically reasonable assumption even for
core electrons, since it describes the modifications in the
annihilating electron-positron-pair wave function due to
the direct Coulomb coupling between them. Thus, in the
present discussion, self-energy effects and plasmon cor-
rections will not be treated.
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The integral equation for the sum of the ladders is

G,„(x,x', y,y')

=G, (x' y)G (x'p y') —i d4sd4s's(s' s')G (x' s)

XGn'(x'; s')G,„(s,s'; y,y'), (2.2)

wltll s(s; s )= s~($] z )8([g—kgb), sg(K; z ) bclllg tile usuRI
screened Coulomb force of an electron-gas theory'; i.e,
only the conduction electrons are assumed to take part
signi6cantly in the screening, and in computing their
eGect a plane-wave model is used. The functions 6,' and
6„0are, respectively, the zeroth-order electron and posi-
tron propagators which we will now define. To construct
G,o(x; x') we can use the best possible self-consistent
Hartree-Fock Bloch states. They are denoted by%'[ ]{x)
where for a core electron in the (el) shell with magnetic
quantum number III and crystal momentum s (restricted
to the 6rst Brillouin zone) the Bloch label [m] stands
for [Nhes). For a conduction or higher exicted state the
label [m) is to represent a restricted momentum plus a
band index in a reduced zone scheme, or alternatively
an unrestricted momentum label in an extended zone
scheme. It should be noted at this point that, although
for a large part of the analysis it is not a necessary as-
sumption, we will always have in mind metals with small
relatively stiG cores so that in constructing the corre-
sponding tight-binding states it is reasonable to use the
Hartree-Pock solutions for the free ion. In other words

any distortion of the cores due to their solid-state
surroundings is neglected.

The positron Bloch states denoted by g[ ](x) are to
be solved for, using in each signer-Seitz cell as crystal
potential the Hartree field of the rigid ion core, plus the
6eld of a conduction electron smeared throughout the
volume. The positron propagator is then

Gn'(x' x')=Z 4[ ](x)e[ ]*(x')
l~]

dc'
X —e-' [" "']G '([m) nI) (2 3)

2Ã

with

G.„(*,x'; y,y') = d4sd's'Q(x, x', s,s')

&&G '(»' X)G.'(s' S') (3 &)

This definition is consistent with the two-body propa-
gator given by (2.2) and, by inspection, we immediately
get that Q(x,x'; y,y'} must satisfy the equation

Q{x,x'; y,y') =8'( x y) 8—3(x' y') —i —d4sd's's, (z; z')

XG,0(x; s)G 0(x'; s')Q(s, s'; y,y'). (3.2)

Because of trRllslRtlollR1 lllvRI'IRIlcc 111 time( Q(x,x ] p,g )
can depend only on the time difference t,—t„.Thus, we
can introduce for 0 a "generalized Fourier transform, "

Q(x,x'; y,y')

fxa], fa]; Pn'], fn']
+[ ](x)4[ ](x')

2'

&&LQ-, ', -,"( ))+- '(y)&- '(y'), (33)

which when substituted into (3.2) yields an integral
equation for Q[m], [,],.[m], [n](&o) of the form,

Q [ml, [n]; [m'], [n'1(nI) —8[m], [m'] 8[n], [n']

+[ml, [nl; l&l, [& ]
—Q [&I,[]e];[m'1, [n'1(I0)

W f&'I 2x'

XG'([m)' ~)G.'{[n) ~—~) (3 4)

3. ALGEBRAIC DEVELOPMENT

We are concerned here with reducing expression (2.1)
and Eq. (2.2) to more tractable forms. First notice that
in Eq. (2.2) y and y' are inert variables and that since
the two-body potential is static we need to know the
electron-Positron Green's function G,n(s, s';y, y') orlly
for t,=t,. Throughout this section for any pair of
variables x and x' it is always understood that t =$, .
Introduce an amplitude Q(x,x'; y,y') according to the
prescription

8„'([m])8 "'(im))
G o([m) ~)— + (2 4) In going from (3.2) to (3.4) we have made use of def In'-

[[ ]n—co—I'0~ E[ ]n—(o+IO+ tion (2.3). The quantity H in (3.4) is

In (2.4), E[ ]n is the eigenvalue corresponding to the
state p[ ](x) while 8nn' ([m]) is a theta function equal
to 1. for all unoccupied states and zero otherwise. The
function 8 ([m)) =1—8 "' ([m]). Since the positron
is assumed thermalized on annihilation 8„'([m]) is in
fact a delta function bf ~ 0. Final1y, we will not write
down G,'(x; x') explicitly since it can essentially be put
in the form (2.3) and (2.4) with&[ ]~% [ ], E[ ]n~/
E[ ]' and 8n'([m]) ~8; ([m]) where, for instance,
8;.([m]) is 1 for all the core and occupied conduction
single-particle Sloch states and zero beyond,

4[m](x)8'&'*P[n] (x)d x (3.6a)

&[ ],[ ];[]].[ ]=(&/1')Ze s («)[ml«lit)'
Xlnl —«Ii')', (3.5)

where q is an ordinary momentum variable as opposed
to a Bloch-state label and s,(«) is the usual Fourier
transform of the static effective potential s,(x; x'). The
matrix elements [m)«(1I)' and [n) —«[lr')" are, re-
spectively, equal to
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e[.)(x)~ "*4(')'(x)d'~. (3.6b)

vrhere I is the overlap integral

We next want to introduce expression (3.1) into Eq.
(2.1) for the partial annihilation rate ELpj and carry
out the necessary Fourier analysis. This gives

( I'.)—9i
~Lpl 2 I[ l, [ l(P)I[ ').[ ') (P)

P [mf, f~l; [~'1 [n'3

kdd 6

X -~'""Lfl[-),[ );(- ),[")(~)j
(2or)'

x&.'(I m'j; o)G.'(Ln'j ~—o)

where Qo[ l [ I, [ .l [ .](oo) satisfies an equation identical
to (3.9) except that the P( ) () (oo) term
appear. The Ln'] sum in (3.12) reduces to a single term
Ln'j=LOj which is a consequence of the assumption
that the positron is thermalized on annihilating. This
leaves a single sum over the occupied single-particIe
electron states. %e see that each electron can be treated
separately. A Anal step is useful. Vkite

~ [ml [nl'[m'l, (ol= ~[ml, [m']~In], [o]+X [m], [ni; [m'], [o) &

then Xo satisfies the integral equation

X (ml. (nl; [m'l, [o)(~)=n [m],[nl(~) L+(m), [n); [m'I. (o]
0 D +(

+ 2 (4 1 [.) (n) ( ])&'[n) ( ) [ ), [o)(oo)j (313)
W [&']

I[ ],[ ](p) = 4'[ ](x)e 'o'*p(„](x)d x.

II[m] [nl [ I [ ]f)( I [ ] [m') [n'](OO)r
[~t, [ 't

(3.9)

A
ELpj= Z I[ml, (nl(P)I[m'I [n'I (p)

P [Xt1g, [ny; [I'],[n']

dc'
X —(I[m], In]; [m'I, [n'l (~)

2Ã

Xe'""LZ(. ) (.)+(~)+&[-I [") (~)j (3 1o)

0."' (X)I)n '.(Lnl)» ],[.)"(")=
+(n]'+~[m) '—~—O

&: (Lmj) 0.'(Lnj)
(3.»b)

@,)n+E( )'—io+o0+

Equations (3.9) and (3.10) can be reduced further.
However, the analysis is quite tedious and, since all the
quantities necessary to write down the 6nal answer have
now been dined, we leave the details to the Appendix.
It is sllowll'thcI'c that (3.9) cRI1 be 1'cplacc(l by thc
formula

X
~I:pl=— Z 0:(I m'j)l). '(I:n' )) I 2 I(-),(-)(p)

V [~'l.[~'] fml, [111

&&"'( ],[.);[ ),[")(&(")'+E( )') I' (3 12)

Taking note of the definition (2.4) of G(„(,)o(Lmj; oo),

the o integration in both (3.4) and (3.7) can be carried
out by contour integration. Thus
f~[m), (nl;[m'l, [n'l(&)

= 5(m] [n ]8[n]., [n ]+f+[m], [n] (oo)+~[ml (nl (~))

X
~Lpj= —Z I):(Lm'j)l&( ),[o)(p)+ Z S( . .., (p)

V [I'1 [m], [nt

X(&'[ ), [ );( ),[o)(~(o]'+&( )')) I'. (3.14)

EqllR'tlo118 (3.13) RII(i (3.14) Rlc'tlM 'basic ielRtiolls
entering our formulation of the theory of positron
annihilation in real metals. They are exact within the
ladder approximation. In principle, they can be applied
to a discussion of core annihilation or used to investigate
lattice effects within the conduction-electron gas. An
important question that needs to be settled in this
regard is what value of enhancement factors must one
use for the Fourier coefIIcients in the conduction-elec-
tron wave functions associated with nonzero inverse
lattice vectors. From the rather complicated structure
of Eq. (3.14) it appears that this problem can probably
be resolved satisfactorily only by making a numerical
calculation. Such considerations, however, should be
only of secondary importance in the case of metallic
sodium where most of the tails must come from core
annihilation. For this reason we limit ourselves in the
remainder of this paper to the exposition of a theory
of core annihilation.

Consider fol R InollMllt cxplessioll (3.14) 111 tllc case
where the Bloch label Lm'7 refers to a core electron and
the direct Coulomb force between the electron-positron
pair is ignored. Only the 6rst term remains and the
expression for the partial annihilation rate reduces to
the prescription of Berko and Plaskett. ' Our general
expression for Elpj goes beyond the independent-
particle formulation of the problem and includes a
correction term which has never been discussed in past
treatments. In the next two sections we will try to
better understand its physical meaning and get an idea
of its relative importance. As we shall see it is numeri-
cally just as large as the conventional term although
more dificult to handle.
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4. CORE ANN'IHILATION

We want to evaluate expression (3.14) when the
Bloch label [m'] refers to a core electron in the (pplpjp)

band with crystal momentum s restricted to the 6rst
Brillouin zone. In the tight-binding approximation the
wave function for such an electron is

j(x) = (1/Qi[j')Pa„e"""u„[ (x—R„), (4.1)

where E is the number of primitive cells in the crystal
and the R„s are vectors giving the various lattice sites.
The function u»„(y) = (P«(y)/y) V& (y/y) is the atomic
Hartree-Fock wave function for the (nlpjp) shell of the
corresponding free ion. The notation is as in the Hartree
papers.

The erst electron-positron overlap integral I appear-
ing in (3.14) is well known and can be worked out to be

];[oj(y)=(~'/V)'"b -p,.
X[4s.(2E+1)]'[i' bm, oJn[+(y) & (4 2)

with

are ordinary momenta since we are using an extended-
zone scheme. Thus (3.13) becomes,

X m, n; [n [ms], o(~) =Pm, n+([o) (1/ V)u, (n) [m I
n

I
pplm s]'

+P, +([o)p ~ (k—m)X k y k;[ [ s] o(u) . (4,5)

In P, +([o) the m and n index refer to excited states.
We can then approximate the energies E ' and E,p
appearing in its denominator by (m)' and (n)', respec-
tively. Implied is our choice to measure electronic
energies from the bottom of the 3s band and positron
energies from the is band. Further I[ j,[,j(y) in Eq.
(3.14) can be safely replaced by a delta function 8 +, ,p.
Hence we need to know (4.5) only for n= y —m. In this
case we have

X m, p—m; [n[ml], o(&) =&m, p—m (oo)[m I y —m
I
pplp[ps]

+Z I ,p- ;k"](~)X'k,p k;[.[ .j,o(~) (4.6)
k

J„&+(P)= drRo+(r)j &(Pr)P„&(r) . (4.3) with

In (4.2) po is a reciprocal lattice vector, j [(pr) is the 3th
order spherical Bessel function and Ro+(r)/r is the
lowest energy positron Bloch state.

To evaluate the second term in (3.14) we require the
solution of Eq. (3.13) for the amplitude X'[ ],[ j;[ '],[o]

which, at erst sight, would seem to be a formidable if
not hopeless task. Before discussing how it is neverthe-
less possible to get a very good approximate solution,
it is necessary to make quite clear an important dis-
tinction between a core state and a conduction electron
or positron single-particle Bloch function. Within each
Wigner-Seitz cell a core state is highly localized about
the center while a conduction state extends substantially
throughout the cell volume. It follows that the value of
a matrix element [mI[IIk], where [k] is a core state
and [m] is a conduction electron or positron wave func-
tion, is quite sensitive to the deviations of [m] from a
plane wave. That is, band effects in [m] are essential
in computing such overlap integrals. If however [k] is
not a core state, band effects in both [m] and [k] are
not so important, at least for the simpler metals, and
it is then quite reasonable to set [mI[IIk] equal to a
delta function 8 +~ k 0."We will return to these points
in Sec. 5. For the moment we simply keep them in
mind and proceed to evaluate X' given by (3.13).

First from (3.5) we have that

II[ j,[,j., [„[,] [,j—(1/V)u, (n)[m In I pplms]' (4.4a)
and

II[ ],[ ];[k],[k']=(1/V)u (n k )4+,k+k' (4 4b)

where the labels n, m, k, and k' on the right-band side

"Notice that at this point we are explicitly making use of an
extended zone scheme to specify the conduction and higher ex-
cited electron as well as positron states.

I-,.='"( ) =(1/V)P-, .--+( ) .(y— ), (4.7 )

Jm, p—;k[o](oo)= (1/V)P, p +(oo)u (k m) . (4.7b)

To solve (4.6) we make the ansatz

X m, p—m;[nlmsj, o(oj) =2k C'm, p—m;k(oo) Jk, p—k (GP)

X[k I y —k
I
pplpjps]'. (4.8)

Thus, C,p., k(~) must be given by

C',p- ;k(~) = &-,k+2(I-,p- ;k ["(~))C'k,,p—k, ;k(~)
k1

(4.9)
The quantity that enters (3.14) is

m ~ m, p—m; [elms], f0]&EO ~E[nzms] J p

which from (4.8) is equal to

Zk [Zm Cm, p m, k%0"+@[n[ms]')]

X&k,p-k[" (&o"+&[.[ .j')[k I y —k
I
pp&pjps]'. (4.10)

Because of our choice of zeros for measuring electron
and positron energies E0~=0 and Ef„g„,~'= —h„g where
6„[is the band gap between the core level [pplms] and
the bottom of the 3s band.

By erst iterating (4.9) and then summing over m one
can easily verify that if we de6ne

X,(k; oo) =Q 4, ,k(o)),

then Xp(k; oo) is given by

1
X,(k; oo) =1+—P Xp(4; co)Pk, ,p k,+(oo)u, (k—k,).

(4.11)
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Thus the second term in 3.i4 becomes

(1/V)Pg sy '(k) [k I y—%Inlets)' (4.12)
w1th

s "'(k)=X,(k; -h.()[Pg,y g+(—4 ())u, (y —k).

Perhaps the most important quantities that enter the
theory of core annihilation are the matrix elements
[k I y—k

I
elms)'. These enter when one wants to account

for the possible virtual transitions of core electrons to
unoccupied electron states induced by the positron
Coulomb Geld.

All the approximations made so far are quite reason-
able. Also the amplitude X,(k; —d „~) can be reliably
calculated on an electronic computer. The overlap
integral [kIy—kIelms)' however presents some diffi-

culty and our ability to make an accurate estimate of
core annihilation depends very much on how well such
matrix elements can be computed. To see more clearly
what this involves we rewrite [kIy k—Iris) i'n the
form

(iV~ '~' P.i(r)
s~, „.e'~'*Nq(x) Y~ ~(i/x)d'x. (4.13)

&VP

Again we point out that since P„~(r) peaks strongly
somewhere inside the ion core, the precise deviations of
Nq(x) from 1 in this region will dominate the value of
(4.13). There is in addition a strong directional de-

pendence implied by the spherical harmonic Y~„(2/x)
for /&0. Because of this angular factor only the / part
of the product e'&'*N~(x) contributes to this integral.
We will not emphasize these points further here except
to note that such quantities are well known in the theory
of lattice dynamics. The matrix elements that are im-

portant there are between an occupied and an un-

occupied conduction state. When one or more orthogo-
nalized plane waves are used to describe the conduction
states, matrix elements of the type (4.13) enter.

For a simple metal like sodium it may be argued that
a single orthogonalized plane wave (O.P.W.) should

give reasonable results. This is a particularly attractive
suggestion since for the present problem we do not need
to know [k I y—k

I
nuns)' for all k's but only the angular

average of the product of [kIy —kIelms)' with the
weighting function e~"'(k). However, such a calculation
requires heavy numerical computations which inevitably
obscure the basic underlying physics. In this paper we
set ourselves a rather more modest goal. We will study
core annihilation using a simple although admittedly
crude model for the conduction-electron Bloch states in
sodium. We hope in this way to arrive at a qualitative
understanding of the important physical features enter-
ing a more re6ned calculation. The choice of the model
was to a large extent motivated by the practical reason
that the computations should be simple. Ke have not
made a critical analysis of the errors introduced in this
way although we shall see in Sec. 5 that the model does

not lead to agreement with experiment. It is nevertheless
relevant since there can be little doubt that the im-
portant ingredients of a more complete calculation are
ncluded.

Before specifying the model, we would like to collect
in a single formula the two contributions (4.2) and (4.12)
to R[y) coming from a core electron in the state [nims)
Using an obvious notation,

R"'"'[y7= () / V) (1V/ V)Bs,,„4'(2l+1)
&& I "~-,.~. (y)+~. -(y) I', (4.«)

dQ,
8-~"(y)= ~"*~,(x)P'.i(.).~r V,.*(~/*)

[4 (@+1)7~

(4.15)
with

M, (x)= 1/Vgg e,"'(k)ug(x) . (4.16)

Finally, to get the contribution from the entire shell (el)
we must sum (4.14) over the magnetic quantum number
m and all s's in the erst Brillouin zone. For 6xed y as 8
ranges over this zone the delta function b~, „clicks for
a unique x. Thus

R"'[y)=2(21+1)R'(4s/ V)

xQ I
'l, oJ (y)+g "(y)I', (4.17)

where a factor of 2 was introduced for spin degeneracy
and E.' is the Sommerfeld total annihilation rate.

Formula (4.17) is still an almost exact expression for
core annihilation, We now make the most serious ap-
proximation of the present discussion. Assume that the
unoccupied conduction states as well as all higher excited
Bloch states can be approximated by (1/QV)e'~ *No(x)
where No(x) is the state at the bottom of the conduction
band. Then (4.16) reduces to X"'(y)uo(x) where
X"'(y)= 1/V Qq e~"'(k). Hence (4.17) becomes

R"'[y7=2(21+1)R'(4ir/ V)

X I~-.(y)+x"(yV. -(y) I, (4»)
where J„~—is defined by (4.3) except that instead of the
positron function Ro+(r) the electron function Ro (r)
= rgo(x) is to appear. This is a relatively simple formula.
The "effective enhancement factor" X"'(p) can be
written as P' C,~ (—4q~) with C ~ '(—h„~) satis-
fying an integral equation very similar to that discussed
in CK," namely

c,,=o(—s„,)
= [8(m —Pz)/(m'+ (y—m)'+ a„,))u, (y—m)

+[8(m Pi )/m'+ (y—m) '+h„&7(I—/ V)

&&K~ N.(e)C'e+, p-~- '(—~ ~) (4.19)

To see how this comes about it is perhaps simplest to
recall the definition of X"'(y) and Xy(k; —h„g). By

"See Sec. 6 of Ref. 2.
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deanition

X"'(y) =(1/V')Qx Xs(k; —6 i)Pg, s g+(—6 i)N, (y—k)
4.0

Electron Wave Function
for the bottom of the 3s band

3.0

ct++a

2.0lo

1.0

5. NUMERICAL RESULTS

Our starting point is the approximate expression
(4.18). Since this expression for R"'fyj is based on a

Positron Wave Function

3

+0
K

I.O 2.0 3.0
Radial Distance in Bohr Units

4.0

FIG. 1. Normalized positron wave function in a Wigner-Seitz
cell as a function of distance from the center. The straight line
of slope one corresponds to a plane wave.

simpli6ed model for the conduction Bloch states the
results obtained will not be as important as the physical
picture which emerges. "The necessary ingredients are
the overlap integrals J+(y) and the "effective enhance-
ment factors" X"'(y). In computing J„i (y) we used the
conduction Bloch state up(x) as tabulated by Calla-

way, "and the core functions for Na+ were taken from
a paper by Hartree and Hartree. '4

To determine the positron Bloch state ss(x) at the
bottom of the 1s band, a cellular method was used. In
each Wigner-Seitz cell the average Hartree field acting
on the positron was taken to be the potential from the
rigid ion core plus that of a single valence electron
smeared uniformly throughout the cell. The results for
Rs+(r) =res(r) are shown in Fig. 1. Over the entire cell

we can state that deviations from a straight line are

~ Note: The results of this section were presented at The 9/ayne
State University Positron Annihilation Conference, 1965 (un-
published}."J.Callaway, Phys. Rev. 123, 1255 (1961).

'4D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A193, 299 (1948).

=(1/V)Z C', — '(—~ i)

where the last equality defines C,, '(—h~&). From
(4.7b) and Eq. (4.9) we see immediately that
C, '(—6 i) satisfies Zq. (4.18). This completes the
algebraic part of the paper and we turn now to a
numerical calculation of core annihilation based on the
approximate formula (4.18).

—l.o—
l l I

I.O 2.0 3.0
Radial Distance in Bohr Units

40

Fro. 2. Normalized electron wave function Re (r) =rgo(r)
as given by Callaway (Ref. 13)

I i I t I i I i I0 2 4 6 8 IO . I2
Momentum in Units of the Fermi Momentum PF

FIG. 3. The overlap iategrals J+(p)J-(p)
and or the 2s electrons.

small although inside the core they can amount to much
more than 50%. For comparison we have also plotted
the electron function Re (r)=rls(r) in Fig. 2. Notice
that the main difference between Rs+(r) and Rs (r) is
inside the core. This is a consequence of the Pauli ex-
clusion principle requiring Rs (r) to have two nodes.
We stress this here, since as we shall see next J+(y) and
J (y) are quite distinct functions of momentum y
although they differ only through the appearance of
Rs+(r) rather than Rs (r) in the defining overlap inte-
gral. This is, of course, because the core function in these
quadratures effectively emphasizes only a relatively
small part of the Re(r)'s near the origin. In passing we
point out again that this is in contrast to the case when
both functions under consideration extend throughout
the cell with maximum weight at the cell boundary.
Deviations from plane waves now amount to only small
corrections to the main contribution.

The overlap integrals J i+(y) for the 2s and 2p elec-
trons are shown in Figs. 3 and 4, respectively. The j.s
integrals are negligibly small. We see explicitly mow that
for any given shell (nl) the two curves J+(y) and J' (y)
are really considerably different and do not carry the
same sign for all p's. Thus, when these are added and the
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Overlop Integrols for
The 2p electrons
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FIG. 4. The overlap integrals J+(p) and J (p) for the 2p electrons.

sum squared as prescribed by Kq. (4.18), destructive
interference between the two terms takes place. This is

certainly a feature that will remain in a more exact
calculation. It should be quite apparent also that our
model is only qualitatively correct and that to get
reliable results we need to treat with much more care
the conduction-core matrix elements Pk~y —k~elms]'.

&ext we must compute the effective enhancement
factors X"'(p). Because of the rather large energy
parameters" A~i'(A', —60eV, A2„—27 eV) entering the
denominator of (4.19), one might argue that the Born
approximation is sufhcient to calculate the necessary
amplitude. This turns outnot tobe the case. The results

from thesolutionof theintegralEq. (4.19) arecompared
with those from the Born approximation in Fig. 5.
Clearly, to get reasonable enhancement factors for
small p'swe cannot use first-order perturbation theory.
This is another important feature of the problem which

will have to be kept in mind in any further work. As a
consistency check, notice that as p increases, the differ-

ence between the 2p and 2s enhancement factors be-

comes less pronounced and both tend towards the Born-
approximation result. This is precisely what we expect
intuitively.

The answer for the two-photon counting rate,

2QdS
R„,=R'P(21'1)

~
J $+(u)~X"'(s)J„[ (u) ~',

value given by Bell and Jgrgensen ". However, the
agreement with the two photon counting rate as recently
measured by Stewart" is not good. For momentum p
just above the I'ermi surface, core annihilation accounts'
for only half the experimental tails while our simple
model seems to introduce too many events around 2pz
and further out. A better calculation of core annihilation
is necessary. Also, even for sodium, a small part of the
tails is certainly due to lattice effects within the con-
duction-electron gas—a question which needs further
investigation.

6. DISCUSSION AND CONCLUSION

On the basis of the ladder approximation to the elec-
tron-positron correlation function we have managed to
derive an expression for the partial annihilation rate
which is applicable to real metals, i.e. a crystal-lattice
potential is included. When our general formula is
specialized to the case of conduction electrons we find
that, without carrying out an actual numerical calcu-
lation, it is dificult to make specific quantitative state-
ments about lattice corrections to an electron gas
theory. In particular, the expression obtained does not
break up into the independent-particle-model result
multiplied by a slowly varying enhancement factor as
one may have naively expected. Our main concern in
this paper, however, was to develop a theory of core
annihilation. To reduce the general expression to a more
tractable form it was necessary to Inake a plane-wave
approximation when computing intermediate matrix
elements involving only conduction electron or positron
states. This enables us to write the contribution to the
partial annihilation rate R[y] from any given core
electron as the square of the sum of two terms. The first
is the usual single particle result, while the second is
more complicated. It involves an effective enhancement
factor e, (k) depending on p and some extra index k
which is to be multiplied with an overlap integral of the
appropriate core function and an unoccupied conduction
state Pkj modulated by a plane wave of momentum

y —k. The entire expression is then to be summed over

is shown in Fig. 6, where we also compare our results
with those of the usual simple theory. Although the two
curves are similar the areas under them are quite
diferent. Without enhancement we get a total annihi-

lation rate of 8""=j-.028.' while including polarization
corrections we find E""=2.23R'.

Finally we compare our results with experiment. In
CK the best theoretical value for the total rate coming
from the conduction electrons is E" '= 14.032'. Thus
we arrive at a composite result E"""=E'"+E""=3.12
)&10' sec ' which agrees well with the experimental

"These parameters were supplied to the author by Dr. T.
Watanabe from I-ray-emission data.

I.O— Effective Enhancement

) I t I i I i I i I . i I

2.0 4.0 6.0 8.0 IO.O 12,0
Momentum in Units of the Fermi Momentum PF

Pro. 5. Comparison of the effective enhancement factors X"&(p)
with the Born approximation.

"R.E. Bell and M. H. Jgrgensen, Can. J. Phys. 38, 652 (1960).» A. T. Stewart (private communication).
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Core Annihilation in Sodium-
The Two Photon Counting Rate

With Enhancement

C
0
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FIG, 6. The contribution of the core electrons to the two-
photon counting rate as given by formula (4.18). The lower curve
gives the results of the usual independent-particle theory.

all unoccupied states. This term accounts for the polari-
zation of the ion core by the incident positron.

Sy studying a model„we conclude that the enhance-
ment factors s,(k) cannot be calculated in Born approxi-
mation despite the appearance of relatively large energy-

gap parameters in the denominator of the defining
integral Eq. (4.19).Further the core-conduction overlap
integrals Lkly —kin)mal' are sensitive to the precise
deviations of the [kj's from plane waves inside the core
and must be evaluated with some care. This difhculty is
further emphasized in the present context because deli-
cate destructive interference occurs between the single-
particle term and the core-polarization corrections
which do not necessarily carry the same sign for each
momentum p.

The calculation does not give good agreement with
experiment. This is no surprise as the discrepancy is
without doubt a result of the limitations of our model.
There is no reason, at least at present, to assign it to a
breakdown, for instance, of the ladder approximation
for core electrons. A careful calculation based on the
nearly exact expression (4.17) rather than on the
simpler, but quite approximate relation (4.18) should
lead to a considerable improvement in the Gnal results,
although we expect no important change in the general
qualitative features of the problem to come from such
a refinement. An accurate computation of core annihi-
lation is then more involved than calculating lifetimes
in a conduction electron gas. Not only must we solve a
rather complicated integral equation of the form (4.11)
for a number of y's and all k's above' the Fermi surface,
but we also need to know the conduction-core overlap
integrals. Wc plan to carry out such a calculation in
the near future.

In concluding we would like to stress again that the
positron Coulomb Geld plays a dominant role in the
annihilation process. ' Thus, the positron is in some
ways a poor probe since it distorts signiGcantly the
electronic conGguration of which we would like informa-
tion. This is certainly a serious limitation on the
method, but it can be overcome if we learn how to
calculate accurately this distortion —an undeniably

'g A relevant reference here is the recent work on solid argon by
E. J. Woll, Jr., and K. L. Rose, Phys. Rev. (to be published).

hard, but not impossible problem. For the near future„
however, it seems likely that the aim of theoretical
calculations will be to reproduce the experimental
angular correlation curves and total rates simultane-
ously, rather than attempt to extract from the counting
rates alone detailed information of a fundamental nature
about the momentum distributions in real metals. On
the other hand, there is substantial evidence, both ex-
perimental and theoretical that the method can be used
to map out quite directly the Fermi surface in mo-
mentum space. On the theoretical side there is a paper
by Majumdar" in which a proof is given that the posi-
tron force does not disturb the Ferm surface in the sense
thRt there should be R sharp discontinuity ln slope ln thc
two-photon counting rate at the true Fermi momentum

ps in any given s direction. This result is further
supported by the numerical work of Ref. 2. Experi-
mentally, as instrument resolution has been improved
over the years the discontinuity at ps has become
sharper and in a number of metals, variations of ps with
direction have been observed. A good example of this
is beryHium. 20 It should be stated, however, that such
measurements do not detect directly the difference be-
tween ps in two distinct directions, but rather determine
the total pp in each direction separately, so that instru-
ment resolution is an important factor.

In this Appendix we wish to start from Eq. (3.9) and
(3.10) and show that the partial annihilation rate can
be rewritten in the form (3.12). In order not to obscure
the basic but quite simple idea which is central to the
development that follows, it is convenient to introduce
a formal matrix notation. This allows us to suppress the
explicit Bloch state labels in (3.9) and (3.10) and deal
with operator quantities rather than matrix elements.
Symbolically we rewrite (3.9) as

Q(co) = 1+(P+(ro)+E (co))HQ(to), (Al)

where for instance

(m»l&+(&) lm'»')=L&i &.i l+(&)jbi l.i &6m, i »
(A2a)

Rnd

(m»l&lm'»')=&i &, i i;f l, f l. (A2b)

%henever a set of intermediate Bloch labels is intro-
duced R suTQmation ls alwRys implied. OuI' notRtlon

19 C. K. MaJU111dar Phys. Rev. j.40 A227 (1965).I S. Beriro, Phys. Rev. 128, 2166 (1962).
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should now be clear. Further, the partial annihilation
rate 18

fmJ, faJ; fm'1, fn'J
ifml, f»(11)if I.f"f*(11)

dbms

X —e*-0'(m,ni Q(~)(P (~)+P-(~)) i
m', n'). (A3)

2g

We fix our attention on the integrand Q(ra)(P+(co)
+P (ca)). Consider iterating (A1) for the amplitude
Q(ce) before attempting the Ie integration. This leads to
an in6nite number of terms, the integrand for the eth
contribution being

e'"'"(P++P)H(P++-P)H(P-++P ) (A4)

where (m —1) H's are to appear. The first term must be
treated separately. In this case the integral of interest is

then clearly the eth term in the perturbation expansion
of Q'P Q' is just (AS).

Provided the only Nth order terms in the expansion
of Q(P++P-) contributing to ELyj are the (e) products
of (AS), we can write the partial annihilation rate (A3)
in the form

iX
~LE= —— 2 lfmf f»(p)If' 1 1.1*(y)

V fmJ [ [;[X''1,[11'J

dG)

X —e"+(m,n
~

Q'((a)P (co)Q»(u))
~

m', n'), (A10)
2x

where the erst-order term is also included. But as a
function of a complex co all the singularities of Qo(a&)

and Q'f(&o) are in the lower half-plane. Closing the
contour above and introducing a set of intermediate
states we get immediately

dM

(Pf ],f» (+)+Pf l.f» (+))1f l, f 'll 1 f ') (As)
2Ã &Enj=— Z fl: (Lm"j)fl: (Ln"j)

U fm"] [11"I

where the exponential factor has now been dropped since
it is irrelevant for e/1. As a function of a complex
variable u&, expression (A7) is analytic in the upper-half-
plane and therefore contributes nothing to ELyj.
Another possible product occurring is (A7) with one of
the I'+'s replaced by a I . There are, in fact, n such
products

I HI'+HE+ ~ .~HE+,
8+HI HI'+ ~ .8+HI'+
E+HP"H2 .E+HI'-.

(AS)

If an intermediate amplitude 0' and its conjugate 0'~
are introduced by the equations

(A9a)

(A9b)

which, recalling the de6nition (3.11), can be evaluated
trivially by contour integration in the upper half plane.
Only I' contributes. The result is

i~: (Lmg)eu'(Cnl)bf l, f lh'f», f"I

I"or I&2 the quantity (A4) can be expressed further
as the sum of 2" products, a possible member being

I HI H "HI (A7)

XL Z If l, f»(p)Qf I.f»;f "l,f "1 (~f "1 +&f "I')]
fmi, f&j

+L 2 Ifm'f, f~'I (11)Qf~"f,f~"I;f~'I,P'1
fm'3, fn'j

In this last equation the expression in the second square
bracket is just the complex conjugate of that occurring
in the erst bracket. After a trivial redefinition of the
Bloch labels Eq. (3.12) follows. To complete the proof
we need only convince ourselves that terms of the form
(A'7) with at least two P+'s replaced by P 's make no
contribution to RLy7. This can be seen quite easily.
Notice tllRt cacll P (0&) factol coIltallls R posltloll
theta function tl~'(Ln]) i.e. a delta function which can
be used to eliminate one of the intermediate Hooch state
summations leaving a factor one over the volume (P') in
front of this term with no corresponding sulnmation.
This clearly leads to a contribution of the order 1/V as
colllpal'cd 'to 'those from thc (AS) tcrllls. Slllcc Rs wc
shall see these latter terms are Gnite, all further terms
must vanish in the limit of in6nite volume. Or, stated
in a, more physical way, such contributions must be
proportional to at least the Grst power of the positron
density in the system, which is negligibly small.


