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Thermodynamic properties of an isolated spin impurity in a Heisenberg ferromagnet are calculated as
functions of the magnitude of the impurity spin and of the strength of its exchange coupling to the host spins.
The magnetization of the impurity, the energy and weight of its s-state localized mode (when one exists),
and the shape of the local spectral weight function are all obtained as functions of temperature.

I. INTRODUCTION

HE properties of systems containing impurities is a
pervasive problem in many fields of solid-state
physics. Of the various types of such systems the
particular case of spin impurities in ferromagnets is
uniquely convenient for experimental investigation.
Nuclear magnetic resonance, Méssbauer techniques,
and angular-correlation methods can probe the mag-
netization of the impurity, and neutron scattering can
determine the distribution of magnetization in the
vicinity of the impurity. In fact the results of NMR and
Mossbauer measurements have been reported recently
for several systems: for Fe in Ni,! Mn in Fe}? rare-earth
ions in garnets,® and Fe in rare-earth manganates.*
Although many interesting single-particle® and two-
particle® (transport) effects arise from the interactions
of impurities at nonzero concentrations, we here con-
sider only a single impurity, and we limit our attention
to insulating (Heisenberg) ferromagnets. This impurity
may be distinguished from the host by the magnitude
of its spin, by its exchange interaction, or by both. The
localized spin-excitation modes at zero temperature
have been calculated by Wolfram and Calloway,’
whereas we are interested in thermodynamic properties.
In particular we shall calculate the magnetization of the
impurity ion, and the energy and weight of the s-state
localized mode, as a function of temperature. In addi-
tion, we calculate the spectral weight function or the
distribution-in-energy of the single-spin-flip excitations
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on the impurity ion, again as a function of temperature.
The work is an extension of heuristic and semi-quantita-
tive discussions given previously by Jaccarino, Walker,
and Wertheim?® and by Callen, Hone, and Heeger.®

In several of the experiments cited above, the im-
purity magnetization is very accurately given by a
molecular field theory, with an effective field propor-
tional to the host magnetization. This result is given
a fundamental rationale by the present work, as
has been discussed in a preliminary way in Refs. 8 and 9.
The molecular field dependence is by no means general,
and we shall find criteria for its applicability.

The theory of impurities in one type of physical
system has close formal relationships with theories
for other types of systems. Unfortunately the original
extensive work by Lifshitz!® on the vibrational modes
of impure crystal systems was for many years almost
unrecognized outside the USSR. Much of the theory
subsequently was developed independently and was
extended by workers in this country and in England.!
Similar methods were thereafter applied to other types
of systems; by Koster and Slater!? to the spectrum of
conduction electrons in impure metals, and, as men-
tioned above, by Wolfram and Calloway’ to impure
ferromagnets. The exploitation of the short range of the
perturbation (rather than the small magnitude, as in
conventional perturbation theory) is applied in our
theory to thermodynamic Green’s functions, thereby
extending the Lifshitz method to thermodynamic
properties.

In Sec. IT we formulate the equations of motion of the
temperature-dependent, two-time, retarded Green’s
functions for the spins in the perturbed lattice. These
Green’s functions are decoupled by the random-phase
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approximation (RPA). By assuming that the perturba-
tion is influential over only a finite range, we find the
Green’s functions can be solved explicitly (and self-
consistently). Successive approximations are achieved
by assuming successively larger limits on the range of
influence of the perturbation, but we demonstrate that
the sequence converges extremely rapidly. Accurate
results can be obtained by taking the range to be only
the nearest-neighbor distance, and such results are
presented for various values of host and impurity spins
and of the associated exchange parameters.

An investigation very similar to the present one, by
Izyumov and Medvedev,'® has appeared recently. How-
ever, those authors introduce the simple boson represen-
tation of the spin operators, which simplifies the theory
enormously but restricts it to the region of validity of
simple (unrenormalized) spin-wave theory. In contrast
the RPA form of Green’s function theory has been
found to be quite successful over the entire temperature
range below the Curie temperature, although it admit-
tedly fails to reproduce the niceties of spin-wave re-
normalizations at low temperatures. In particular, the
RPA predictions of Curie temperatures of pure ferro-
magnets agree well with the “rigorous” Curie tempera-
tures obtained by high-temperature Padé extrapola-
tions.* And, perhaps more impressively, the real part
of the temperature-dependent self-energy shift of the
spin-wave frequencies agrees well with the results of
inelastic-neutron-scattering experiments,'® although the
imaginary part (or spin-wave lifetime) is not properly
accounted for. The thermodynamic properties are
primarily determined by the energy shifts rather than
by the lifetimes, so we believe that the theory given
here is a reliable description of the thermodynamic
properties of isolated impurities over the complete
ferromagnetic temperature range.

It should be mentioned that our theory strictly
applies only to insulating ferromagnets, but much of the
available data is on metallic systems and it is irresistible
to make a direct comparison. As pointed out by Dash,
Dunlap, and Howard! part of the magnetization at an
impurity in a metal may arise from the polarization of
the conduction electrons, but those authors also find
empirically that this conduction-electron contribution
is fairly small. Therefore it is tempting to consider the
metallic ferromagnet as a collection of localized mo-
ments, with the conduction electrons merely providing
the mechanism for an effective exchange interaction.
At low temperatures this is clearly not an adequate
model, but there is at least suggestive evidence'® that
this model may be increasingly satisfactory at higher
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temperatures. To the extent that such a model may
be reasonable, our theory may in fact have relevance
to metals.

II. THE GREEN’S FUNCTIONS

Consider a system of localized spins, each of magni-
tude S except for a single impurity of spin S7. The ex-
change interaction between host spins at sites g and /
is denoted by 2J,;, and it is assumed to depend only
on the distance between g and /. The position of the
impurity is denoted by the subscript ¢ (the “central”
ion), and its exchange interaction with a host spin at g
is denoted by 2(Jge+ 740)-

Accordingly the Hamiltonian is

H=—hy S,,Z—Z; JoaSs-S1—2 3 75:5,S,, (2.1)
g g, g )

where /% is the product of the g factor, the Bohr mag-
netron, and the externally applied magnetic field.

A quantity of primary interest is the thermodynamic
expectation value of the z component of spin at site g.

1
<Saz>=2‘ e FPe(a| S o*| @)
1
= ‘2“2 2 e Pla(q] S S — 85,78, )

1
= 2 (| (V[ | P = [ (v Set |, (2.2)

o,y

where Z is the partition function, 8 is the inverse tem-
perature, and a and v label the exact eigenstates of the
system. By rewriting this equation in a spectral repre-
sentation we find the natural emergence of the appro-
priate Green’s function:

(S =)—1/dE[A (B,E)— By(B,E
g —2 g\Mr, o) a(ﬁ, )]

=1 / dE(1—ePP)A4B,E), (2.3)
2 ) b

where

ABE=— T || 3B EHED (2.
and

BBD=— #5150t a) Bt B)

=¢P74,(B,E). (2.5)
A,(B,E)/2(S,) measures the probability that a single
spin-flip excitation of energy E, occurring with the
system at temperature 1/3, will flip the particular spin
at the site g: The initial state |a) occurs with weight
¢ PEa 3]l final states |y) with the correct energy E
above E, are summed over, and S, just projects out
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(with weight 2(S,%)) that part of |y) which differs
from |a) only by a spin flip at g. With this interpreta-
tion in mind, henceforth we shall call 4,(8,E) the
“spectral weight function” at site g.}” The argument of
the integral in Eq. (2.3) is (—2) times the imaginary
part of the retarded Green’s function G,,(E):

) dE' (1—efE")A ,(B,E)
Gy(E)= | — N )
27 E—E'+i0%

(1= A4,(8,E)=—2 ImGy(E).

(2.6)

(2.7)

It is natural to consider the slightly more general
function Gg4i(E), which is the Fourier transform of the
double-time, retarded, thermodynamic Green’s func-
tion!® Gi(f):

Ga(t)=—i((SsH(1); S (0)))
=—i(O{[SH(®, Sr(0)D. (2.8)

Here 6(¢) is the unit step function. The quantity
Gqi(E) is the transfer admittance function,'® measuring
the response of the g’th spin to a small applied mag-
netic field acting only on the /th spin and rotating in the
x-y plane with angular frequency E/#. This interpreta-
tion is transparent in Eq. (2.7), which relates the energy
absorption (the imaginary part of the response) to the
difference in the probabilities of turning a spin down
(and absorbing a photon from the driving field) and of
turning a spin up (and of emitting a photon to the
field).

Given the Green’s function, and thence the spectral
weight function A4,(8,E), one could calculate (S,?) by
Eq. (2.3). However, it is preferable to use an independ-
ent relationship proved by Callen!® and recast in a more
convenient form by Callen and Shtrikman.?® For this
purpose one first defines a “quasiboson energy” Q(g),
such that

1/[ef*0—1]= / g dEA,(B,E)e5/2(S%).  (2.9)

Then the Green’s-function formalism implies that
(S0%)="5,B:,(82(2)) (2.10)

where B, is the Brillouin function corresponding to the
spin magnitude S

BQ(25+1) B

SB,(8)=(S+%) coth————— —% coth—. (2.11)
28 28

If the quasiboson energy were to be proportional to
{S,%) then the solution of Eq. (2.10) would correspond
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to a molecular field theory. But, of course, the solution
of Eq. (2.9) for Q(g) will not generally be of this simple
form.

In order to calculate the Green’s functions we employ
the equation of motion

i(d/d)G ()= ([S*,Sim1)a(2)
+{LSH(0),3]; S(0)))  (2.12)

and we invoke the random-phase approximation,2!
((Sm (DS (@); S7)) = (SmeN(Sot(1); S17))  (2.13)
from which we directly find

[E—h—2% Jom(m*) Ga(E)+2 3 Jom{g*)Gmi(E)

1
=7—r(g’)5gz+2 2 Jam(m*)Go(E)

-2 Z jam<gz>Gml(E) . (214)

We have abbreviated (S,%) as (g#), and we interpret
Jom as zero unless either g or m is equal to ¢, the central
ion. The expectation values (g?) (or (m?)) are actually
unknown at this point, but they are to be carried as
parameters in the calculation, ultimately to be deter-
mined self-consistently.

We now seek to isolate to the right-hand side of the
equation all terms explicitly involving the perturba-
tion. We therefore define

(om)=(m*)/(S5)—1, (2.15)

where (S?) is the magnetization per ion in the pure host
crystal (or in the impure crystal at great distances from
the impurity). Then Eq. (2.14) is rewritten as

LE=h—2(5%) 2 T ym Go(E)+2(5%) 3_ T ynGmi(E)
=5gl<gz>/7"+2 Z jym(mz>Gal(E)_2 Z jam<g’)sz(E)

+2(5%) X T oml0m)Go(E)—2(57) X T 4m{0¢)Gmi(E) .
(2.16)

Consider / fixed, taking it specifically to be ¢. The first
and second summations on the right-hand side of the
equation actually involve only a very few terms, be-
cause of the factors jym. If (6m) were also limited in
range, being appreciable only in the vicinity of ¢, then
the last two summations would be similarly limited. We
proceed on the general assumption that this is in fact
true; the accuracy of this approximation will be central
to our method. Then we invert Eq. (2.16) by defining

%S. V. Tyablikov, Ukr. Matem. Zh. 11, 287 (1959). A review
may be found in Ref. 18.
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the classical Green’s functons L,.(E) by
[E_h— 2<Sz> Z Jam]Lan(E)
+2(5%) X JomLmn(E)=85n  (2.17)

and writing Eq. (2.16) in the form
[E'—h— 2<SZ> Z ng]ch(E)
+2(S) X TomGme(E)=R,, (2.18)

where
Ry= Bgc<g’)/1r+2 % []arn<6m><sz>+jam<m2>Gac(E)

-2 [Jam<5g><sz>+qu<g2>]Gmc(E) . (2.19)

The solution of Eq. (2.18) is

Gy(E)=2 LgnR,. (2.20)

The Green’s function L,.(E) is (7/{(S%))G(E),
where G,-.°(E) is the Green’s function of the pure host,
as can be seen by comparing Eq. (2.17) with Eq. (2.16)
and taking j,,= (ém)=0. Accordingly, Eq. (2.17) can
be diagonalized by spatial Fourier transformation and
L,.(E) is obtained as the propagator of RPA-renor-
malized spin waves in the pure host,

—ik-($—
Lgn(E)=—1—Z exp[—ik-(¢—n)]
N'F E—h—2(S)[J(0)—J (k)]
1 __ exp[—ik-(g—n)]

=Xf- k E—E(k)

, (2.21)

where g denotes the vector position of ion g, and J (k')
is the Fourier transform of J,,

J(k)= X Jm exp[ik-(§—m)]. (2.22)

Let us suppose that the range of j,. and the range
of (ém) were such that only some small number (Vo) of
Green’s functions appeared in Eq. (2.19). Then writing
N, equations of the form of Eq. (2.20) we would obtain
N, simultaneous equations for the N, functions—a
soluble problem. Undoubtedly, (ém) falls rapidly
toward zero as |m—c| increases, but it never rigorously
vanishes. Nevertheless it is clear that increasingly ac-
curate approximations can be made by neglecting
(6m) beyond increasingly greater distances from the
impurity ion. We shall explicitly study two approxima-
tions. In the first, we neglect (ém) unless m=c. In the
second, we neglect (dm) unless m=c or f, where f
denotes a nearest neighbor of c. Both give very nearly
the same results for (c), and (5f) is found to be very
small indeed in the second approximation. This
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convergence encourages us to believe that the second
approximation is a fully satisfactory one.

III. THE SIMPLE-CUBIC NEAREST-
NEIGHBOR MODEL

In order to exhibit numerical results we must ex-
plicate our model, and we henceforth assume a simple
cubic Bravais array of spins interacting by nearest-
neighbor interactions only. The central impurity ion
is indicated by ¢, its six first-neighbor ions at (100)
by f (or, when these must be distinguished, by f,
f",+++), its twelve second-neighbor ions at (100) by s,
and its third-neighbor ions at (200) by .

An enormous simplification occurs in the thermo-
dynamic theory, as contrasted with the zero-tempera-
ture theory of Wolfram and Calloway. In their theory
the amplitude of the wave function at f plays the role of
Gy., and ¥4 need not be equal to ¥,».. But thesymmetry
of the thermodynamic state ensures that Gy. (as well
as (f#) and Ly;,.) is identical for all the six first-neighbor
ions f. Of course, we pay heavily for this advantage,
for the analogs of the last two troublesome terms in
Eq. (2.16) are absent in the zero-temperature theory.

We denote the single nonvanishing host-host ex-
change integral by J, and j;. by j.

It is convenient now to adopt a system of units in
which all energies are measured in units of 22J(S?):

r =§, orw (o) =w(g)

1278y 0O Tapsny E
3.1)

127(S9G=8g, 127(SH)L=2¢.

In these units the spin-wave band of the unperturbed
host lattice extends from w=0 to w=2.

The crystal Green’s functions L;i(w) for a simple-
cubic structure have been studied, and several func-
tions (of low indices) have been tabulated,”?2 but not all
those required are available. We have therefore tabu-
lated the necessary functions, the values being given
in Table I. Details of the evaluation procedure are given
in Appendix A.

For the simple-cubic nearest-neighbor model the
following useful identities can be proved directly from
the definition (2.21) of L.

3 g Lp(w)= 10— (w—1)Lec, (3.2)

% L11(w)=081c— (w—1)N:1 Ly, 3.3

4 lZ Loi(w)=6[ 81— (w—1)8sc]
F[6(w—1)2—1IN:L1c— 2 La. (3.4)
l*

2 M. Yussouff and J. Mahanty, Proc. Phys. Soc. (London) 85,
1223 (1965).
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TasLE I. The functions £;; (w). These are proportional to the pure-crystal Green’s functions: £;j(w) =7Gs;(w)/(S?). The running index 7 in
the first column for in-band frequencies labels the “Gaussian frequency” w;, defined by Eq. (A2). For 1<w<2, £ij(w)=—Li(2—w).

Z ® Lee(w) Lae(w) Lre(w) Lo (w)
1 0.0086790 —1.51877 —0.09526; —0.31400 —0.09423: —0.23349 —0.091332 —2.13235 —0.52526:
2 0.0412512 —1.53040 —0.24324; —0.25260 —0.22335: —0.14914 —0.20412; —1.56575 —1.02718;
3 0.0837488 —1.55199 —0.35990:; —0.17838 —0.30111: —0.05651 —0.24790: —1.10506 —1.02348;
4 0.1163210 —1.56850 —0.43915; —0.12112 —0.33987: 0.00639 —0.25690: —0.89959 —0.90372;
5 0.1336790 —1.57864 —0.47384: —0.09222 —0.352862 0.03542 —0.25002: —0.84449 —0.78979;
6 0.1662512 —1.59283 —0.54548; —0.03481 —0.37297; 0.08940 —0.23673: —0.77832 —0.61784s
7 0.2087488 —1.61492 —0.63538: 0.03732 —0.38656: 0.14493 —0.20429; —0.82444 —0.40022;
8 0.2413210 —1.63328 —0.70679; 0.09199 —0.38951Z 0.17734 —0.17421: —0.93101 —0.27846:
9 0.2586790 —1.64329 —0.74109; 0.12004 —0.38797:; 0.19109 —0.15198; —1.00736 —0.20260;
10 0.2912512 —1.66009 —0.81471% 0.17364 —0.381062 0.21306 —0.11529; —1.15943 —0.13625:
11 0.3337488 —1.68480 —0.91289; 0.24167 —0.36378: 0.22682 —0.06221: —1.40589 —0.09995;
12 0.3663210 —1.70602 —0.99467: 0.29324 —0.34424; 0.22568 —0.023074 —1.62059 —0.13341;
13 0.3836790 —1.71642 —1.03548; 0.31958 —0.33193; 0.22247 +-0.00219; —1.73285 —0.13929;
14 0.4162512 —1.73590 —1.126037 0.36944 —0.30329; 0.21019 4-0.03837: —1.94190 —0.23833:
15 0.4587488 —1.76388 —1.25226; 0.43278 —0.25746: 0.17850 -0.08233: —2.23046 —0.41222;
16 0.4913210 —1.78932 —1.36277: 0.48112 —0.21425; 0.14003 +4-0.10558: —2.47530 —0.61346:
17 0.5086790 —1.79961 —1.41982; 0.50507 —0.18959; 0.11898 -0.12100: —2.58889 —0.69954;
18 0.5412512 —1.82200 —1.55468: 0.55081 —0.13272; 0.06959 +0.12405: —2.82288 —1.00461z
19 0.5837488 —1.85294 —1.76062: 0.60848 —0.04259; —0.01087 +4-0.10216; —3.16196 —1.51971;
20 0.6163210 —1.88745 —1.97244; 0.65454 +0.04911; —0.09441 +-0.03516: —3.51570 —2.17450;
21 0.6336790 —1.89007 —2.09216: 0.67300 +-0.10309; —0.12758 —0.00515: —3.62990 —2.53072:
22 0.6662512 —1.82058 —2.60546: 0.68212 4-0.30662: —0.12286 —0.36063: —3.43371 —4.81916;
23 0.7087488 —1.24603 —2.70722; 0.51099 +4-0.39427; 0.31458 —0.24609: —0.76755 —4.31100;
24 0.7413210 —1.01445 —2.70664: 0.43735 +0.43013; 0.41134 —0.09950; —0.16595 —3.69066:
25 0.7586790 —0.92979 —2.71021; 0.40845 -0.44893; 0.41721 —0.03262; —0.09606 —3.45706:
26 0.7912512 —0.76630 —2.69926; 0.34892 40.47448; 0.42234 +0.09739: 0.05737 —3.01958:
27 0.8337488 —0.58588 —2.69489; 0.27640 +4-0.50471: 0.38010 --0.23091: 0.09105 —2.67755:
28 0.8663210 —0.45631 —2.69341: 0.22038 +4-0.52349; 0.32959 +-0.31146; 0.10238 —2.51991;
29 0.8836790 —0.39910 —2.69373: 0.19364 +0.53226; 0.28825 +4-0.34619; 0.05218 —2.46727;
30 0.9162512 —0.28140 —2.68858: 0.13870 4-0.54332; 0.21716 +0.40399; 0.04456 —2.366537
31 0.9587488 —0.13736 —2.68702; 0.06839 +-0.55324¢ 0.10967 +-0.44844:; 0.01733 —2.31153;
32 0.9913210 —0.02598 —2.68855: 0.01343 +4-0.55695: 0.02608 --0.460037 0.02028 —2.30873:
2.1 1.13044 0.10291 0.06307 1.21184
2.2 0.97934 0.06190 0.03537 1.00785
2.3 0.87494 0.04353 0.02399 0.89181
24 0.79373 0.03049 0.01689 0.80259
2.5 0.72835 0.02380 0.01248 0.73298
2.6 0.67428 0.01848 0.00984 0.67835
2.7 0.62779 0.01412 0.00749 0.62945
2.8 0.58819 0.01234 0.00627 0.59030
2.9 0.55373 0.00982 0.00545 0.55625
3.0 0.52307 0.00866 0.00450 0.52388
3.1 0.49606 0.00774 0.00393 0.49659
3.2 0.47177 0.00642 0.00330 0.47156
3.3 0.44980 00.0627 0.00255 0.44802
3.4 0.43097 0.00510 0.00283 0.43230
3.5 0.41354 0.00436 0.00251 0.41447
3.6 0.39760 0.00403 0.00207 0.39797
3.7 0.38312 0.00306 0.00169 0.38353
3.8 0.36971 0.00293 0.00115 0.36902
3.9 0.35771 0.00239 0.00097 0.35705
40 0.34700 0.00179 0.00120 0.34764

In the latter two equations the summations over /*
denote summations over the “star of I”’, or over all sites
equivalent to / under the operations of the cubic group.
The number of such sites is denoted by N,.

With all these preliminaries disposed of we can pro-
ceed to the first approximation, in the following section.
We note in passing, however, that the simplest possible
approximation (the “zeroth” approximation) can be
obtained by relaxing the requirement of self-consistency,
and taking (ém)=0 for all m. This zeroth approxima-
tion, with the additional simplification S7=JS, was
reported in a preliminary account of the present work.?

IV. FIRST APPROXIMATION: ZERO RANGE
OF SPIN DEVIATION

We tentatively assume that all spin deviations {ém)
except (dc) are negligible, and proceed to evaluate this
single unknown spin deviation. Writing Eqgs. (19)-(20)
successively for G., and Gy, we obtain two coupled
linear equations, which are trivially solved to give

_{e?) LeetL1e(3/T)+Bc)(1+5/T)Les

1 4G/ (It o—0Le)Falsc) (14 j/T)E5e
(4.1)
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The zeros of the denominator give all but one of the
single-spin-excitation frequencies because the poles of
the numerator [at w=8(k)] are cancelled by cor-
responding poles in the denominator. The exceptional
case is the pole of the numerator at w=0, which is not
cancelled and which remains as an eigenfrequency of the
perturbed system. This mode is the uniform precession
of all spins, which is unaffected by spin magnitude or
exchange interaction.

The poles of G, are spaced in a way which is familiar
in other impurity problems,?! being interleaved be-
tween the unperturbed eigenvalues 8(k), except for one
possible pole which is split off the band. Thus, the
density of states in the band is unchanged (to order
1/N) from that in the pure crystal. To see that this is
so we examine the denominator of G, which is given
explicitly by

(1+§)<1+w<6c>)+§w—[<6c><w-1>(1+§>+§w]

N 2k: w—8(k)

(4.2)

As w varies between two. successive values of &(k),
which are separated by O(1/N) ,the sum goes mono-
tonically from plus to minus infinity. If the quantity in
brackets does not have a zero in this small interval,
the entire last term in Eq. (4.2) behaves similarly. The
first three terms of Eq. (4.2) are simply linear in w, and
the corresponding straight line intersects the nearly
vertical curve at some point in the interval. Thus, the
poles of G.. alternate with the unperturbed spin-wave
poles 8(k).

In addition to the interleaved poles, one pole can be
split off the top of the band. The values of the parame-
ters necessary for the appearance of such a localized
mode can be determined by setting (4.2) equal to zero
for w just above the top of the spin-wave band (0= 2).
At this energy £.. is equal” to 1.48. Thus the marginal
condition for a localized mode is

(A+7/7)(142(c)+25/T
—[(6c)A+4/7)+25/71(2.96)=0 (4.3)
| j | _1=096(30)

77 2.9240.96(3c)

or

(4.4)

- At zero temperature (3¢) is simply (S;—S)/S, and
Eq (4.4) then reproduces the criterion found by
Wolfram and Calloway. In particular j/J must be
greater than 0.34 for Sr=S.

If j/J is positive, we expect (5c) to be greater than
(S1—S)/S at higher temperatures. Thus, the require-
ment on j/J becomes less stringent as temperature
increases.?? We shall subsequently see that a localized
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mode can appear at elevated temperatures even though
it does not exist at zero temperature.

It should be noted that only a single localized mode
appears when we study G, whereas Wolfram and
Calloway found seven, of s, p, and d symmetry. Ob-
viously this is a result of the fact that only the s-like
mode has a nonzero amplitude at the central ion. The
other localized modes would appear as poles of the
Green’s function Gyy.

Comparison of Eqgs. (2.6) and (4.1) reveals that the
spectral weight function 4.(8,w) consists of a set of
delta functions at the poles of Go(w). As N — o the
poles of G..(w) crowd together quasidensely, except
for the possible isolated pole above the spin-wave band.
If we then examine G..(w+1¢) for fixed small positive e
we will not be able to distinguish the effects of the sepa-
rate poles when the eigenvalue separation becomes much
less than ¢, and the distribution of poles will appear like
a cut along the real w axis. Thus taking the limit N —o
first, and then ¢— 0, we effectively average over the
quasidense poles. In the language of many-body theory,
a “quasiparticle” is formed as a superosition of neighbor-
ing eigenstates. The dephasing of these states in time
gives an apparent imaginary part to the energy, or
appears as a lifetime of the quasiparticle.

In the limiting process defined above, the quantity

Loo(w) is
/ d*k 1
(27)3 w— &(k)

8(w— 8(k))=P..(w)—irN(w)/N, (4.5)

lim hm £w(w+ze) =

e>0t

. / &k
—1r
(2m)?

where P,.(w) is defined by the principal value integral,
and N(w)/N is the density of states per site in the
unperturbed crystal.

For w within the band we now have, by Egs. (2.7),
(4.1), and (4.5), and the identity (3.2),

(c?)*/(S7) N (w)

A(Bw)=—" 52/[{5(1+(5 D
1—¢—Bo
+[‘°+E<5C>(‘*’— 1)][1_‘*’Pcc]}2
o [w+E(5c) (0—1) 1N (w)/N*], (4.6)
where

E=1+7/j. 4.7)
We recall that Eq. (2.3) provides us with a sum rule
which, in our reduced units, is

/ do(l—ct)A,B)/()=2. (49

This can be used as a check of self-consistency when
there is no localized mode, or it can be used to evaluate
the weight of the localized mode when it exists. In
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Fig. 2 of Ref. 9 we plotted the integrand of Eq. (4.8),
divided by N(w)/N, as a function of w. Recalling the
interpretation of 4.(8,») given in Sec. II, we see that
this removal of the density-of-states factor [which, to
O(1/N) can be taken to be the perturbed density of
states ] leaves a function describing the probability for a
single excitation of energy w to flip the impurity spin.
Any deviations from the pure host value of unity are
readily observed in such a plot. By Eq. (4.8) the product
of these curves and N(w)/N should be normalized to 2
when no localized mode is present; even in this crude
approximation we found excellent normalization.

At this point we should evaluate {¢c?) by Egs. (2.9)-
(2.11), but as that requires considerable labor we pro-
ceed directly to the second approximation, which will
be evaluated fully and explicitly.

where

14+(Ler=Loo)+(/T+1(81)) (G/T+n(8e)) (@Lee—1) 4(Ler— Las)(3S)

—oLse(§/T+n(f)) 14+(5/T+n(3c)wL s
C=| —w:e(j/J+1(f)) wLso(5/T+n(dc))
=L j/J+1(of)) wLo( 5/ T+n(0c))

and we have defined

Solving for G,.(w), we find

Geoe= (91/D)(c*)/,

where
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V. SECOND APPROXIMATION: NUMERICAL
ANALYSIS

Returning to Egs. (2.19) and (2.20) assuming only
(d¢c) and (5f) to be nonzero, we find we can write four
simultaneous equations for the Green’s functions G,
Grey Gsey and Gio. These are most succinctly written in
matrix notation

gcc eBcc
¢ ) Ly
° Gr =< K, 5.1)
gxc T | Lse
gtc oetc
or
{c?)
Z: CiiGie= Lic, (5.2)
J ™

(Ler—L)(8f)
32X %{f'—z :st)(5f > &L ;: erf'—Zt: L7 1(8f)
1+3(2 Zf: £sf_‘§ Ls)(0f) %[; °esf—zt L [(3f) |
3(2 Zf: £:f—28 L£:)(0f) 1+%[; £u—2ﬂ3 L 1(0f)
(5.3)
1=1+j3/J. (5.4)

(5.5)

D=dete,

and 9T is the determinant of the same matrix except for the replacement of ©;, by £;.. By judicious subtraction of
rows or columns these determinants can be reduced by one order, so that

77(1+<5c>)_1+a£cc 4<6f>(ee\tc:£sc) <5f>[1_(w—1)£cc_£tc]
N=|ale. 1- [(5/4)£tt’ - <6f>[3tt’+A(£sc"' £tc)+ (O)—' l)oesc]
FA(Lee— 582/ T(51)
a(£tc+4£sc) 0 1— <6f>(w"— 1) (£tc+4£sc—A£cc)+A:|
L —A[9(14(¢)) — 1+, ]
. (5.6)
wm11+"7(1+<5f>)(1_""£cc) My Mz
D= |a—n(1+(0f))wLs. Aoz IMog| , (5.7)
\w—f)lgl— 77(1—}—<5f)){w£t(+4w£sc+A[1—-(w— 1)£cc]} 0 3123

where £, denotes ¢ X, £,», and where

a= (1=w)n(1+(3c)+w,
A=6(1—w)2—1.

(5.8)
(5.9

Discussion of the poles of the Green’s function
parallels that in the preceding section, with similar con-
clusions. We proceed directly to the evaluation of {¢?)
and (f2). We then calculate 4.(8,w) by Eqgs. (2.7) and

(5.6)~(5.7). This spectral weight function in turn
yields a quasiboson energy w(c) after integration ac-
cording to Eq. (2.9); the numerical integrations have
been carried out by Gaussian-quadrature methods, as
discussed in Appendix A. Finally {c*) is calculated by
Eq. (2.10), to be used again as the starting approxima-
tion for a repetition of the complete cycle, until self-
consistency is obtained.

For complete self-consistency, we should, of course,
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Fic. 1. The density of states per spin, N (w)/N, within the spin-
wave band. This density of states is the same (to order 1 /N) for
impure and pure host crystals.

calculate Gyy, to evaluate (f?) by an analogous pro-
cedure. Instead we have resorted to the relatively simple
molecular field theory, which should be sufficient for
the small quantity (8f). Consider a spin in the first
shell. In our approximation, it has five normal neighbors
with magnetization (S#), and one abnormal neighbor,
with magnetization {¢*). The increment in the molecular
field acting on this f-shell spin is then

Ah=2(J+ 5){c?)—2J(S*)=2J(S9)[j/T+n(dc)]. (5.10)
The increment in magnetization of the f-site ion is
therefore

(§)(8f)=xAh,

where x is the molecular field susceptibility. Inserting
this susceptibility explicitly, we find

(5.11)

<5f>=%[-;—+n(5c>]

I: 4(S2)/Bwo ]
Xl 1— ’
(25+1)2 csch2[ (S+3)Bwo ] — csch?(36wo)

(5.12)

where w, is the quasiboson frequency of the pure host
at the given temperature 1/8.

At each stage in the iteration we have simply related
(6f) to (dc) by Eq. (5.12). The first guess of {(c*) was
taken as Si/S.

Our criterion of self-consistency was a rather strin-
gent one, requiring that the difference in the values
of {c*) on successive iterations be less than 0.01. In
almost all cases the required convergence was obtained
in less than five iterations, being slowest, of course, at
high temperatures and for large disparity between host
and impurity parameters. At each iteration we have
also checked the sum rule [Eq. (4.8)] when no localized
mode existed, and we have found it to be satisfied
always to within 29. The spectral weight function,
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magnetization, and the quasiboson energies of the pure
host and the impurity ion are shown in Figs. 2-4.

To locate the position of the localized mode at each
temperature requires a numerical search for the isolated
root of the denominator. This in turn requires know-
ledge of the unperturbed propagators above the band.
These were calculated in the required region, as de-
scribed in Appendix A, and the position of the localized
mode was obtained at each temperature, using the self-
consistent values of (c*) and (f?). However, instead
of evaluating the residue of G.. at this pole we have
determined the weight of the § function by the sum
rule for 4.(8,»). The position and weight of the localized
modes, as a function of temperature, are also shown in
Figs. 6 and 7.

VI. RESULTS AND DISCUSSION

In order to examine the quantitative predictions of
our theory and, in particular, to investigate the effects
of varying impurity parameters, we have carried out a
rather extensive series of calculations. Representative
results are shown in Figs. 1-8, in which we present, as
functions of temperature, both host and impurity
magnetization ((S?) and (c?)), effective boson energy
[wo and w(c) ], and the frequency and weight (w, and W)
of a localized mode (when it exists). In addition we
show the dependence of the spectral weight function
on frequency, at very low temperature and just below
T.. All these data are shown for various values of host
spin S, impurity spin Sz, and 9= (J+j7)/J.

A. The Spectral Weight Function

In the unperturbed crystal the spectral weight func-
tion A,(B,w) is proportional to the density of states
per spin:

(1—ef%)44(B,w)/2(S*)=N(w)/N .

This curve is shown in Fig. 1. Accordingly we plot the
reduced spectral weight function

ImGeo(w) /N(w)
() N
(6.1)

Q(w)=A4o(B,w)(57)/ Ao(Bw){c?)= —

Any deviation of @(w) from unity then represents a dis-
crimination (by spin excitations of energy w) between
the impurity and other sites. By the sum rule (4.8)
@(w) is normalized to two, so an enhanced probability
of flipping the impurity spin by excitations in one
energy region [ @(w)>1] must be compensated by a
reduced probability [@(w)<1] elsewhere in the band.

As discussed in Ref. 9, the shape of G(w) can be
understood qualitatively on the basis of simple physical
considerations. Consider first the case in which host
and impurity spins are equal, but <1, as in Figs. 2(a)
(n=0.8) and 2(b) (1=0.4). A localized deviation (or
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A (w)

F16. 2. Reduced spectral weight function @(w). (a). S;=S5=2.5,
7=0.8; (b) S;=5=2.5, 7=0.4; (c) Sy=5=2.5, n=1.25. In each
case the solid curve represents @(w) close to the Curie tempera-
ture, and the dashed curve gives the zero-temperature limit of
@ (w). As described in the text the energy scale is different for the
two curves, » being in units of 127(S#).

“spin flip”’) introduced into the lattice has lower energy
at the impurity than elsewhere, so the impurity acts as
an attractive center. Nevertheless, a long-wavelength
spin wave simply sweeps over this local potential well
without appreciable modification, as any wave is
insensitive to a perturbation of range small compared
to its wavelength. Consequently, @(w) is equal to unity
in the limit w — 0. As w increases, the wavelength of
the excitation becomes comparable with the width of
the attractive potential well, the spin deviation is
resonantly trapped, and the spectral weight function
becomes large. The compensating reduction required
by the sum rule occurs near the top of the band, where
the spin wave can be treated as a localized-spin-
deviation packet. As this packet approaches the at-
tractive center it loses potential energy and corre-
spondingly increases its kinetic energy; it therefore
spends an abnormally small time on the impurity, so
that @(w)<1. This picture suggests that with de-
creasing values of 5 the peak should move to lower
energies and become sharper, and these effects are
indeed observed in the figures. Incidentally, the sudden
changes of slope in these curves are reflections of the
Van Hove singularities in the density of states.

The opposite tendencies are found for a strongly
bound impurity, as shown in Fig. 2(c) for n=1.25.
The impurity now acts as a repulsive center. Long-
wavelength, low-energy excitations are again un-
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perturbed. Near the top of the band the spin-deviation
packet slows down near the impurity, spending an
abnormally long time there and peaking @®(w). The
required reduction in ®@(w) elsewhere now occurs near
the middle of the band, corresponding to the repulsive
scattering of these spin waves from the impurity.

When the repulsive potential becomes of the order of
the bandwidth this suppression extends to the top of the
band, squeezing the spectral weight out into a high-
energy & function. This & function corresponds, of
course, to the localized mode which appears for these
strong couplings.

Comparison of the reduced spectral weight function
at low temperature (dashed curves) with that just
below T, (solid curves) indicates that the peak sharpens
with increasing temperature. This effect occurs for all
values of the parameters S, Sy, and 5. We see no trans-
parent argument which would lead us to anticipate
this result of the numerical analysis.

One of the most striking results of our calculations
is the lack of any appreciable shift in peak position with
temperature. Since the energy units we have chosen are
proportional to (§%) this result demonstrates the very
accurate scaling of the peak frequency with the host
magnetization. The result undoubetdly depends to some
extent on the use of the random-phase approximation,
but it is #ot tautologically equivalent to the RPA.

In Fig. 3 we examine the behavior of @(w) for the
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F1c. 3. Reduced spectral weight function ®(w) for a series of

impurity spins, S;=3, $, § (pure host, shown dashed), %, in a host
of spins, S=4. The exchange ratio » is maintained at unity. The

temperature is the same in all cases, T~ T,.

case of unequal spins but equal exchange integrals
(n=1). A decrease in the magnitude of St is qualita-
tively similar to a decrease in 7, in that it gives a peak
in @(w) at intermediate band energies. However, only
the height of the peak—not its location—seems to
depend on the value of S7. This determination of the
peak frequency by exchange parameters alone is found
to hold as well, to a good approximation, for values of
other than unity. Similarly, an increase in Sy is qualita-
tively like an increase in 7, in that it shifts spectral
weight to the upper part of the band. However, even
small changes in # produce very prominent peaking of
@(w), whereas changes in St are relatively ineffective.
Thus, a reduction of # from 1.0 to 0.4 gives a maximum
in @(w)~20, while double this fractional reduction in
Sr—from 2.5 to 0.5—produces a peak height only of the
order of 5.

B. Magnetization and Quasiboson Energy

Magnetization curves for the impurity with S;=S
and various 7 are shown in Fig. 4(a), and with »=1.0

1.0,

w(c)

0.5

|
% 05 7o

T/Te
(a)
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and various Sy in Fig. 4(b). The magnetization of the
unperturbed host is shown dashed, for comparison.

We expect more tightly coupled spins to be more
difficult to flip, and we indeed find that increasing
either n or S; tends to raise the value of (c?)Sr at a
given temperature. Again variations of % are con-
siderably more effective than the same fractional
changes in S7.

As we remarked in the Introduction, a common
feature of the empirical observations is that the mag-
netization of the impurity is well represented by a
Brillouin function with argument proportional to the
host magnetization. In our language this is equivalent
to the statement that the quasiboson energy, in reduced
units, is approximately independent of temperature
[see Eq. (2.10)]. We have therefore included plots of the
quasiboson energies for impurity and host, normalized
in each case to the value at T, in Figs. 4(a) (S7=S,
various ) and 4(b) (y=1.0, various St). We do observe
that for weakly coupled impurities the quasiboson
energy w(c) of the impurity becomes nearly constant
over a wide temperature range.

For the two cases (Sr=.S, n=1.4, 2.0) in which the
coupling is sufficiently strong for a localized mode to
exist w(c) departs from its value at 7', even faster than
does wo. Although in each case the ¢ function contributes
an appreciable fraction of the spectral weight the
Boltzmann factor diminishes its importance in deter-
mining w(c).

Finally there remains the case of coupling not suf-
ficiently strong to split off a localized mode. The peak
in @(w) at the top of the band is still at a low enough
energy to be thermally effective; w(c) for the case
7=1.0, S;=3.5 is virtually indistinguishable from w(c)
for =1.0, Sr=1.5 (in fact, the former curve lies
slightly above the latter).

1.0

<>
St

w(c)

0, - 1
o 05 . Lo

T/T,

(b)

F16. 4. Reduced impurity magnetization {(¢#)/S; and quasiboson energy w(c) (normalized to its value at
T/Ts=1), as functions of reduced temperature T/T,. (a). The effects of varying the ratio of exchange inte-
grals: 7=0.4, 0.8, 2.0, for Sy=5=2.5; (b) the effects of varying the impurity spin: S7=3%, §, § in a host, S=3,
and p=1. For reference in both (a) and (b) the corresponding curves for the pure host are shown dashed.
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In order to illustrate the comparison with experiment
more directly (although less elegantly) we turn to the
recent results of Koi, Tsujimara, and Hihara? on the
magnetization of Mn in Fe (keeping in mind our remarks
in the Introduction concerning applicability of our
theory to metallic systems). In Fig. 5 we show the
empirical host and impurity magnetizations as well as
the theoretical curves for these functions (as obtained
from the Green’s function within the RPA and in our
simple-cubic, nearest-neighbor exchange model). Clearly

~ the RPA and the nearest-neighbor model are inadequate
for the host, for well understood reasons. To correct
crudely for this deficiency we have also “renormalized”
our result to the empirical host magnetization by
multiplying w(c) at each temperature by the ratio of
the measured to the theoretical value of (S#) [that, is,
w(c) = w(€){(S*)meas./(S¥theor. |- The resultant “re-
normalized” impurity magnetization is also shown in
Fig. 5. As anticipated in the article8 by Jaccarino,
Walker, and Wertheim, the agreement with experi-
ment is excellent.

In cases such as rare-earth ions in garnets, which are
very weakly bound, the constancy of the quasiboson
energy [ Fig. 4(a)] guarantees excellent agreement with
the observed molecular-field behavior. The strong-
coupling experimental results!-* are also reasonably well
described by molecular-field theory, even though w(c)
for these cases is only slightly flatter (as a function of
temperature) than wo,. However, the impurity mag-
netization is so nearly constant in these strongly
coupled cases that it does not provide a critical test of
the molecular-field model.

C. The Effective Molecular-Field Coefficient

An alternative interpretation can be given to the
quasiboson energy, providing helpful insight into the
impurity problem. We define an effective host-impurity
coupling constant J’(8) by the usual form of the
molecular-field equation

(c*)=S1B4/ (827 (B)(s)) . (6.2)

Then we observe that 227" (8){(S9)=Q(c), or wlc) is
simply proportional to J'(8): w(c)=J'(8)/J, whence

J'(B)/ T+ =wlc)/n. (6.3)

In Fig. 6 we plot J'(8)/(J+7)=w(c)/n as a function
of n for each of the values Sy=1.5, 2.5, and 3.5, and for
two temperatures. Even when the molecular-field type
of solution is valid we see that the usual assumption
that the effective coupling constant J’(8) is simply
equal to J+7 is not necessarily correct, although this
relation is approached in the weak-coupling limit.

D. Localized Modes

The s-wave localized-mode frequency (when it
exists) is given by the one zero of the Green’s-function
denominator [Eq. (5.7)] which occurs above the band

THERMODYNAMIC PROPERTIES OF SPIN IMPURITIES

293

REDUCED MAGNETIZATION

o | L 1 !
(o] 0.2 0.4 0.6 0.8 1.0

T/Te

F16. 5. Empirical (Ref. 2) values of the impurity magnetization
are indicated by circles, of the host by the upper solid curve, for
dilute Mn in Fe. The theoretical curves for these functions, as
obtained within our model, are also shown (dashed for the im-
purity, dot-dashed for the host). The solid curve represents the
theoretical impurity magnetization as corrected by an approximate
accounting for the discrepancy between the empirical and theo-
retical values for the host (see text). As in Ref. 8 we have taken
S'=1and Sr=3%. The value of 1 required to obtain a high-tempera-
ture value of w(c) consistent with their value of HoM®(w(c)=~0.23)
is n=0.25. This very weak host-impurity exchange coupling ex-
plains the observed accuracy of molecular-field theory.

(w>2). Its qualitative behavior is more readily as-
certained from Egs. (4.2)-(4.4), obtained from the
“first approximation.” A preliminary discussion on this
basis was presented? by two of us at the 1965 Confer-
ence on Magnetism and Magnetic Materials.

Consider the criterion (4.4) for the first emergence of
a localized mode as the impurity-host coupling is in-
creased. At =0 we can take (éc)=(S;—S)/S, and Eq.
(4.4) reduces to the condition found by Wolfram and

0o 1.0 20

7

F16. 6. The effective relative exchange parameter J'(8,1)/ (J+ )
=w(c)/n as a function of 5. The solid curves are for a temperature
T=T,; the dashed curves are for T'~0.37T,. For each of these
temperature values the lowest curve corresponds to an impurity
spin S7=3%, the middle curve to S;=% and the highest to S;=3%.
In all cases S=3%.

» D. Hone and H. Callen, J. Appl. Phys. (to be published).
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Fi1c. 7. The energy of the localized mode above the top of the
band, ws—2.0, as a function of temperature, for n=1.4 and 2.0
and for several values of S7. Note that (w,—2.0) is expressed in
reduced units, or in units of 12J(S?).

Calloway. These strongly coupled impurity spins are
more difficult to flip than a typical host spin (spectral
weight is concentrated at high energies), so (c?) de-
decreases less rapidly than (S?), and é&c therefore
increases as the temperature is raised. Hence the re-
quirements set by (4.4) for a minimum value of j/J
become less stringent with rising temperature. It is,
in fact, sometimes possible for a localized mode to
split off the top of the band at some nonzero tempera-
ture in a system where no such mode exists at 7'=0.
This conclusion strongly suggests that all localized-
mode frequencies w, increase as a function of tempera-
ture. In unreduced units this implies that the energy
of such a mode decreases less rapidly than (S2). This
expectation is corroborated by the numerical results,
as shown in Fig. 7. The two values n=1.4 and »=2.0
are shown for various Sy.

We have examined one system for which the localized
mode appears only at high temperatures. In Fig. 2(c)
we have plotted the reduced spectral weight function

0= T T T T
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for S;=2.5, »=1.25. Although the function as drawn
satisfies the sum rule (4.8) at low temperatures, the
solid curve (T'=T,) is found to be about 79 deficient.
Indeed, above about 0.9 T, we find that a localized
mode appears, with energy w, which rises to the value
2.019 just below T'..

The spectral weight W contained in the 6 function
at w, tends to increase with the value of w,; except for
the case discussed in the preceding paragraph it is
found not to be highly temperature-dependent. This
behavior of the weight W is shown in Fig, 8.

The ideas and techniques which have been explored
here have application to a number of related problems.
At the expense of relative algebraic, rather than con-
ceptual, complexity, the restrictions to simple-cubic
crystals and nearest-neighbor interactions can be re-
laxed. Work is in progress on the impure antiferro-
magnet and on concentration-dependent effects.

APPENDIX A: SIMPLE-CUBIC-CRYSTAL
GREEN’S FUNCTIONS

As shown by Slater and Koster!? (see also the
Appendix of Wolfram and Calloway’) the crystal
Green’s functions of a simple-cubic structure can be
reduced from the three-dimensional integral of Eq.
(2.21) to a one-dimensional integral

Lyi{(w)= — 3iHirmtn) / dt D) T ()T u(t),
’ (A1)

where r,—r1;=(I,m,n) and J; is the Bessel function of
(integral) order .

Because of the great reduction in required computer
time we have chosen to do all numerical integrations by
the Gaussian-quadrature method, based on Legendre
polynomials.2* Integrations over o, involving £4i(w),
were carried out by 16 four-point quadratures spanning
the spin-wave band (0<w<2), and, when necessary,
by extension of this net above the band. The net of
points within the band is given by

0p=0insm=(2n+142,)/16, 7=0,1,---,15;
m=1,234, (A2)

where

21=—x4=—0.86113631; x=—ux3=—0.33998104.

(A3)

It is at these energies that we have evaluated the un-
perturbed propagators £,i(wp), given in Table I

To carry out the numerical integration of equation
(A1) we have used polynomial approximations? for the
Bessel functions, accurate to 1073. We have also

2 Zdenek Kopal, Numerical Analysis (John Wiley & Sons, Inc.,
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followed the procedure of others??? in truncating the
integration at ¢=>50. However, instead of using Simp-
son’s rule, which is both time consuming and subject
to troublesome round-off errors, we again employed the
Gaussian-quadrature method, with 64 four-point
quadrature intervals in the range 0<:<50.

To estimate the errors accumulated in the numerical
integrations we have calculated the redundant prop-
agator £, and checked its value by the identity (3.5)
Lre(w)— 14 (w—1) Lce(w) =0. The real and imaginary
parts of this quantity were each found to be consistently
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less in absolute value than 2X10~4 In addition we
checked the exactly integrable propagator?®

£51)= / JEOT0) di=%,
0

finding 0.33327.
All numerical calculations were carried out on an
IBM 7040 computer.

26 G, N. Watson, Theory of Bessel Functions (Cambridge
University Press, Cambridge, England, 1922), p. 412.
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Determination of Electron Energy Losses in Rubidium*
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Surface and volume plasmon energies of 2.4 and 3.45 eV, and energy losses of 25 and 55 eV, are measured
in the characteristic electron energy-loss spectra of rubidium. A computer program used to determine peak

positions and evaluate energy losses is described.

INTRODUCTION

EASUREMENTS of the characteristic loss
spectra of the alkali metals are of interest for
comparison with the theoretical values of the plasmon
energy.! Several measurements have been made of the
loss spectra of lithium,*3 sodium,?** and potassium,?*
but no studies of the optical loss function or the energy
losses of electrons have been reported previously for
rubidium.

APPARATUS AND EXPERIMENTAL
PROCEDURE

The apparatus employed in these measurements of
the characteristic electron energy-loss spectra of rubid-
ium has been described previously.® The multichannel
analyzer was used as a multi-scalar, with appropriate
circuitry installed to synchronize the channel-advance
signals with the energy sweep. The rubidium target was
maintained with a clean surface by continuous evapora-
tion of the pure metal direct from the glass ampoule in
which it was supplied.® The energy spread of the pri-
mary electrons prevented resolution of the surface and
volume components of the loss spectrum of rubidium,

* Work supported by the U. S. Army Research Office and the
University of Western Australia.
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and the method previously employed to separate these
components in the case of potassium® was again used.
Many loss spectra were obtained, in the range of
primary energies 250 to 2500 eV, and the data com-
prising each spectrum was analyzed by computer
methods described below.

The energy scale of each spectrum was determined as
previously described, by shifting the zero-loss peak
successively by measured energy decrements, as
determined by a potentiometer and standard cell.

DATA-ANALYSIS PROGRAM
Processing of Data

The procedure used for determining the position of
the peaks in each loss spectrum relied on the assumption
that the background under each peak has constant
curvature, while the peak itself is characterized by a
relatively rapid variation in curvature. On this basis,
the second derivative of the spectrum will in general be
negative in the region occupied by a peak, with the
background contributing only a relatively small positive
or negative constant value to this second derivative.
The position of the peak, in terms of channel number,
may then be calculated as n=>"n:f/"/> f;’, where f’
is the value of the second derivative determined for
channel number #;, and each summation extends over
the range for which £/’ <0.

The required calculations were written as a program
in FORTRAN II, and were run on an IBM 1620 computer.?

71. B. M. (Australia).



